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Abstract1

Modeling molecular potential energy surface is of pivotal importance in science.2

Graph Neural Networks have shown great success in this field. However, their3

message passing schemes need special designs to capture geometric information4

and fulfill symmetry requirement like rotation equivariance, leading to complicated5

architectures. To avoid these designs, we introduce a novel local frame method6

to molecule representation learning and analyze its expressivity. Projected onto a7

frame, equivariant features like 3D coordinates are converted to invariant features,8

so that we can capture geometric information with these projections and decouple9

the symmetry requirement from GNN design. Theoretically, we prove that given10

non-degenerate frames, even ordinary GNNs can encode molecules injectively11

and reach maximum expressivity with coordinate projection and frame-frame12

projection. In experiments, our model uses a simple ordinary GNN architecture13

yet achieves state-of-the-art accuracy. The simpler architecture also leads to higher14

scalability. Our model only takes about 30% inference time and 10% GPU memory15

compared to the most efficient baselines.16

1 Introduction17

Prediction of molecular properties is widely used in fields such as material searching, drug designing,18

and understanding chemical reactions [1]. Among properties, potential energy surface (PES) [2],19

the relationship between the energy of a molecule and its geometry, is of pivotal importance as it20

can determine the dynamics of molecular systems and many other properties. Many computational21

chemistry methods have been developed for the prediction, but few can achieve both high precision22

and scalability.23

In recent years, machine learning (ML) methods have emerged, which are both accurate and efficient.24

Graph Neural Networks (GNNs) are promising among these ML methods. They have improved con-25

tinuously [3–10] and achieved state-of-the-art performance on many benchmark datasets. Compared26

with popular GNNs used in other graph tasks [11], these models need special designs, as molecules27

are more than a graph composed of merely nodes and edges. Atoms are in the continuous 3D space,28

and the prediction targets like energy are sensitive to the coordinates of atoms. Therefore, GNNs for29

molecules must include geometric information. Moreover, these models should keep the symmetry30

of the target properties for generalization. For example, the energy prediction should be invariant to31

the coordinate transformations in O(3) group, like rotation and reflection.32

All existing methods can keep the invariance. Some models [4, 5, 8] use hand-crafted invariant33

features like distance, angle, and dihedral angle as the input of GNN. Others use equivariant rep-34

resentations, which change with the coordinate transformations. Among them, some [6, 9, 12] use35

irreducible representations of the SO(3) group. The other models [7, 10] manually design functions36

for equivariant and invariant representations. All these methods can keep invariance, but they vary37

in performance. Therefore, expressivity analysis is necessary. However, the symmetry requirement38

hinders the application of the existing theoretical framework for ordinary GNNs [13].39

By using the local frame, we decouple the symmetry requirement. As shown in Figure 1, our40

model, namely GNN-LF, first produces a frame (a set of bases of R3 space) equivariant to O(3)41
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Figure 1: An illustration of our model. One local frame is generated for each atom. Frames are used
to transform geometric information into invariant representations. Then an ordinary GNN is applied.
transformations. Then it projects the relative positions and frames of neighbor atoms on the frame42

as the edge features. Therefore, an ordinary GNN with no special design for symmetry can work43

on the graph with only invariant features. The expressivity of the GNN for molecules can also44

be proved using a framework for ordinary GNNs [13]. As the GNN needs no special design for45

symmetry, GNN-LF also has a simpler architecture and, thus, better scalability. Our model achieves46

state-of-the-art performance on the MD17 and QM9 datasets. It also uses only 30% time and 10%47

GPU memory than the fastest baseline on the PES task.48

2 Preliminaries49

Ordinary GNN. Message passing neural network (MPNN) [14] is a common framework of GNNs.50

For each node, a message passing layer aggregates information from neighbors to update the node51

representations. The kth layer can be formulated as follows.52

h(k)
v = U(k)(h(k−1)

v ,
∑

u∈N(v)

M (k)(h(k−1)
u , evu)) (1)

where h
(k)
v is the representations of node v at the kth layer, N(v) is the set of neighbors of v, h(0)

v is53

the node v’s features, euv is the features of edge uv, and U (k),M (k) are some functions.54

Xu et al. [13] provide a theoretical framework for the expressivity of ordinary GNNs. One message55

passing layer can encode neighbor nodes injectively and then reaches maximum expressivity. With56

several message passing layers, MPNN can learn the information of multi-hop neighbors.57

Modeling PES. PES is the relationship between molecular energy and geometry. Given a molecule58

with N atoms, our model takes the kinds of atoms z ∈ ZN and the 3D coordinates of atoms59

r⃗ ∈ RN×3 as input to predict the energy Ê ∈ R of this molecule. It can also predict the force60

ˆ⃗F ∈ RN×3 = −∇r⃗Ê .61

Equivariance. To formalized the symmetry requirement, we define equivariant and invariant func-62

tions as in [15].63

Definition 2.1. Given a function h : X→ Y and a group G acting on X and Y as ⋆. We say that h is64

G-invariant: if h(g ⋆ x) = h(x), ∀x ∈ X, g ∈ G (2)
G-equivariant: if h(g ⋆ x) = g ⋆ h(x), ∀x ∈ X, g ∈ G (3)

The energy is invariant to the permutation of atoms, coordinates’ translations, and coordinates’ or-65

thogonal transformations (rotations and reflections). GNN naturally keeps the permutation invariance.66

As the relative position r⃗ij = r⃗i − r⃗j ∈ R1×3, which is invariant to translation, is used as the input to67

GNNs, the translation invariance can also be ensured. So we focus on orthogonal transformations.68

Orthogonal transformations of coordinates form the group O(3) = {Q ∈ R3×3 | QQT = I}, where69

I is the identity matrix. Representations are considered as functions of z and r⃗, so we can define70

equivariant and invariant representations.71

Definition 2.2. Representation s is called an invariant representation if s(z, r⃗) = s(z, r⃗oT ),∀o ∈72

O(3), z ∈ ZN , r⃗ ∈ RN×3. Representation v⃗ is called an equivariant representation if v⃗(z, r⃗)oT =73

v⃗(z, r⃗oT ),∀o ∈ O(3), z ∈ ZN , r⃗ ∈ RN×3.74

Invariant and equivariant representations are also called scalar and vector representations respectively75

in some previous work [7].76
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Frame is a special kind of equivariant representation. Through our theoretical analysis, frame E⃗ is77

an orthogonal matrix in R3×3, E⃗E⃗T = I . GNN-LF generates a frame E⃗i ∈ R3×3 for each node i.78

We will discuss how to generate the frames in Section 5.79

In Lemma 2.1, we introduce some basic operations of representations.80

Lemma 2.1.81

• Any function of invariant representation s will produce an invariant representation.82

• Let s ∈ RF denote an invariant representation, v⃗ ∈ RF×3 denote an equivariant representation.83

We define s · v⃗ ∈ RF×3 as a matrix whose (i, j)th element is siv⃗ij . When v⃗ ∈ R1×3, we first84

broadcast it along the first dimension. Then the output is also an equivariant representation.85

• Let v⃗ ∈ RF×3 denote an equivariant representation. E⃗ ∈ R3×3 denotes an equivariant frame.86

The projection of v⃗ to E⃗, denoted as PE⃗(v⃗) := v⃗E⃗T , is an invariant representation in RF×3. For87

v⃗, PE⃗ is a bijective function. Its inverse P−1

E⃗
convert an invariant representation s ∈ RF×3 to88

an equivariant representation in RF×3, P−1

E⃗
(s) = sE⃗.89

• Projection of v⃗ to a general equivariant representation v⃗′ ∈ RF ′×3 is an invariant representation90

in RF×F ′
, Pv⃗′(v⃗) = v⃗v⃗′T .91

Local Environment. Most PES models set a cutoff radius rc and encode the local environment of92

each atom as defined in Definition 2.3.93

Definition 2.3. Let rij denote ||r⃗ij ||. The local environment of atom i is LEi = {(sj , r⃗ij)|rij < rc},94

the set of invariant atom features sj (like atomic numbers) and relative positions r⃗ij of atoms j within95

the sphere centered at i with cutoff distance rc, where rc is usually a hyperparameter.96

In this work, orthogonal transformation of a set/sequence means transforming each element in97

the set/sequence. For example, an orthogonal transformation o will map {(sj , r⃗ij)|rij < rc} to98

{(sj , r⃗ijoT )|rij < rc}.99

3 Related work100

We classify existing ML models for PES into two classes: manual descriptors and GNNs. GNN-LF101

outperforms the representative of each kind in experiments.102

Manual Descriptor. These models first use manually designed functions with few learnable parame-103

ters to convert one molecule to a descriptor vector and then feed the vector into some ordinary ML104

models like kernel regression [16–18] and neural network [19–21] to produce the prediction. These105

methods are more scalable and data-efficient than GNNs. However, due to the hard-coded descriptors,106

they are less accurate and cannot process variable-size molecules or different kinds of atoms.107

GNN. These GNNs mainly differ in the way to incorporate geometric information.108

Invariant models use rotation-invariant geometric features only. Schutt et al. [3] and Schütt et al. [4]109

only consider the distance between atoms. Klicpera et al. [5] introduce angular features, and Gasteiger110

et al. [8] further use dihedral angles. Similar to GNN-LF, the input of the GNN is invariant. However,111

the features are largely hand-crafted and are not expressive enough, while our projections on frames112

are learnable and provably expressive. Moreover, as some features are of multiple atoms (for example,113

angle is a feature of three-atom tuple), the message passing scheme passes messages between node114

tuples rather than nodes, while GNN-LF uses an ordinary GNN with lower time complexity.115

Recent works have also utilized equivariant features, which will change as the input coordinates rotate.116

Some [6, 9, 12, 22] are based on irreducible representations of the SO(3) group. Though having117

certain theoretical expressivity guarantees [23], these methods and analyses are based on polynomial118

approximation. High-order tensors are needed to approximate complex functions like high-order119

polynomials. However, in implementation, only low-order tensors are used, and these models’120

empirical performance is not high. Other works [7, 10] model equivariant interactions in Cartesian121

space using both invariant and equivariant representations. They achieve good empirical performance122

but have no theoretical guarantees. Different sets of functions must be designed separately for123

different input and output types (invariant or equivariant representations), so their architectures are124

also complex. Our work adopts a completely different approach. We introduce O(3)-equivariant125
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frames and project all equivariant features on the frames. The expressivity can be proved using the126

existing framework [13] and needs no high-order tensors.127

Frame models. Some of existing methods [24, 25] designed for other tasks also use frame to128

decouple the symmetry requirement. However, in conclusion, these methods differ significantly from129

ours in task, theory, and method as follows.130

• Most target properties of molecules are O(3)-equivariant or invariant (including energy and131

force). Our model can fully describe symmetry, while existing "frame" models cannot. For132

example, a molecule and its mirroring must have the same energy, and GNN-LF will produce133

the same prediction while existing models cannot keep the invariance.134

• Our theoretical analysis removes group representation used in [23, 26].135

• Existing models use some schemes not learnable to initialize frames and update them. GNN-LF136

uses a learnable message passing scheme to produce frames and will not update them, leading137

to simpler architecture and lower overhead.138

The comparison is detailed in Appendix F.139

4 How frames boost expressivity?140

Though symmetry imposes constraints on our design, our primary focus is expressivity. Therefore,141

we only discuss how the frame boosts expressivity in this section. Our methods, implementations,142

and how our model keeps invariance will be detailed in Section 6 and Appendix J. We assume the143

existence of frames in this section and will discuss it in Section 5. All proofs are in Appendix A.144

4.1 Decoupling symmetry requirement145

Though equivariant representations have been used for a long time, it is still unclear how to transform146

them ideally. Existing methods [7, 10, 15, 27] either have no theoretical guarantee or tend to use too147

many parameters. This section asks a fundamental question: can we use invariant representations148

instead of equivariant ones and keep expressivity?149

Given any frame E⃗, the projection PE⃗(x⃗) will contain all the information of the input equivariant150

feature x⃗, because the inverse projection function can resume x⃗ from projection, P−1

E⃗
(PE⃗(x⃗)) = x⃗.151

Therefore, we can use PE⃗ and P−1

E⃗
to change the type (invariant or equivariant representation) of152

input and output of any function without information loss.153

Proposition 4.1. Given frame E⃗ and any equivariant function g, there exists a function g̃ =154

PE⃗ ◦ g ◦ P
−1

E⃗
which takes invariant representations as input and outputs invariant representations,155

where ◦ is function composition. g can be expressed with g̃: g = P−1

E⃗
◦ g̃ ◦ PE⃗ .156

We can use a multilayer perceptron (MLP) to approximate the function g̃ and thus achieving uni-157

versal approximation for all O(3)-equivariant functions. Proposition 4.1 motivates us to transform158

equivariant representations to projections in the beginning and then fully operate on the invariant159

representation space. Invariant representations can also be transformed back to equivariant prediction160

with inverse projection operation if necessary.161

4.2 Projection boosts message passing layer162

The previous section discusses how projection decouples the symmetry requirement. This section163

shows that projections contain rich geometry information. Even ordinary GNNs can reach maximum164

expressivity with projections on frames, while existing models with hand-crafted invariant features165

are not expressive enough. The discussion is composed of two parts. Coordinate projection boosts166

the expressivity of one single message passing layer, and frame-frame projection boosts the whole167

GNN composed of multiple message passing layers.168

Note that in this section, we consider input x1, x2 (local environment or the whole molecule) as equal169

if they can interconvert with some orthogonal transformation (∃o ∈ O(3), o(x1) = x2), because the170

invariant representations and energy prediction are invariant under O(3) transformation. Therefore,171

injective mapping and maximum expressivity mean that function can differentiate inputs unequal in172

this sense.173
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(a) (b) (c)

Figure 2: The green balls in the figure are the center atoms. We use balls with different colors to
represent different kinds of atoms. (a) SchNet cannot distinguish two local environments due to the
inability to capture angle. (b) DimeNet cannot distinguish two local environments with the same set
of angles. Blue lines form a regular icosahedron and help visualization. The center atom is at the
symmetrical center of the icosahedron. (c) Invariant models fail to pass the orientation information,
while the projection of frame vectors can solve this problem. For simplicity, we only show one vector
(orange) to represent the frame.

Encoding local environment. Similar to that MPNN can encode neighbor nodes injectively on174

the graph, GNN-LF can encode neighbor nodes injectively in 3D space. Other models can also be175

analyzed from an encoding local environments perspective. GNNs for PES only collect messages176

from atoms within the sphere of radius rc, so one message passing layer of them is equivalent to177

encoding the local environments in Definition 2.3. When mapping local environments injectively, a178

single message passing layer reaches maximum expressivity.179

Some popular models are under-expressive. For example, as shown in Figure 2a, SchNet [4] only180

considers the distance between atoms and neglects the angular information, leading to the inability to181

differentiate some simple local environments. Moreover, Figure 2b illustrates that though DimeNet [5]182

adds angular information to message passing, its expressivity is still limited, which may be attributed183

to the loss of high-order geometric information like dihedral angle.184

In contrast, no information loss will happen when we use the coordinates projected on the frame.185

Theorem 4.1. There exists a function χ. Given a frame E⃗i of the atom i, χ encodes the local186

environment of atom i injectively into atom i’s embeddings.187

χ({(sj , r⃗ij)|rij < rc}) = ρ(
∑

rij<rc

ψ(Concatenate(PE⃗i
(r⃗ij), sj))). (4)

Theorem 4.1 shows that an ordinary message passing layer can encode local environments injectively188

with coordinate projection as an edge feature.189

Passing messages across local environments. In physics, interaction between distant atoms is190

usually not negligible. Using one single message passing layer, which encodes atoms within cutoff191

radius only, leads to loss of such interaction. When using multiple message passing layers, GNN can192

pass messages between two distant atoms along a path of atoms and thus model the interaction.193

However, passing messages in multiple steps may lead to loss of information. For example, in Fig-194

ure 2c, two molecules are different as a part of the molecule rotates. However, the local environment195

will not change. So the node representations, the messages passed between nodes, and finally, the196

energy prediction will not change while two molecules have different energy. This problem will197

also happen in previous PES models [4, 5]. Loss of information in multi-step message passing is a198

fundamental and challenging problem even for ordinary GNN [13].199

Nevertheless, the solution is simple in this special case. We can eliminate the information loss200

by frame-frame projection, i.e., projecting E⃗i (the frame of atom j) on E⃗j (the frame of atom i).201

For example, in Figure 2c, as the molecule rotates, frame vectors also rotate, leading to frame-202

frame projection change, so our model can differentiate them. We also prove the effectiveness of203

frame-frame projection in theory.204

Theorem 4.2. Let G denote the graph in which node i represents the atom i and edge ij exists iff205

rij < rc, where rc is the cutoff radius. Assuming frames exist, if G is a connected graph whose206

diameter is L, GNN with L message passing layers as follows can encode the whole molecule207

{(sj , r⃗ij)|j ∈ {1, 2, ..., n}} injectively into the embedding of node i.208

χ({(sj , r⃗ij , E⃗j)|rij < rc}) = ρ(
∑

rij<rc

ψ(Concatenate(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), sj)). (5)
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(a) (b)

Figure 3: (a) The left part shows the symmetry of the water molecule, which has a rotation axis. Its
equivariant vectors must be parallel to the rotation axis. However, with a frame composed of only
one vector, its geometry can be described. The right part shows that with the projection of r⃗ij on the
frame and the distance between two atoms, the angle θ and the position of j atom can be determined.
(b) The left part is a molecule with central symmetry. Its global frame will be zero. However, when
selected as the center (green), the atom’s environment has no central symmetry.

Theorem 4.2 shows that an ordinary GNN can encode the whole molecule injectively with coordinate209

projection and frame-frame projection as edge features.210

In conclusion, when frames exist, even ordinary GNN can encode molecule injectively and thus211

reach maximum expressivity with coordinate projection and frame-frame projection.212

5 How to build a frame?213

We propose frame generation method after discussing how to use frames because generation method’s214

connection to expressivity is less direct. Whatever frame generation method is used, GNN-LF can215

keep expressivity as long as the frame does not degenerate. A frame degenerates iff it has less than216

three linearly independent vectors. This section provides one feasible frame generation method.217

A straightforward idea is produce frames using invariant features of each atom, like the atomic number.218

However, function of invariant features must be invariant representations rather than equivariant219

frames. Therefore, we consider producing the frame from the local environment of each atom, which220

contains equivariant 3D coordinates. In Theorem 5.1, we prove that there exists a function mapping221

the local environment to an O(3)-equivariant frame.222

Theorem 5.1. There exists an O(3)-equivariant function g mapping the local environment LEi to an223

equivariant representation in R3×3. The output forms a frame if ∀o ∈ O(3), o ̸= I, o(LEi) ̸= LEi.224

Proof is in Appendix A.5. Frames produced by the function in Theorem 5.1 will not degenerate if225

local environments have no symmetry elements, like inversion centers, rotation axes, or mirror planes.226

Building a frame for a symmetric local environment remains a problem in our current implementation227

but will not seriously hamper our model. Firstly, our model can produce reasonable output even228

with symmetric input and is provably more expressive than a widely used model SchNet [4] (see229

Appendix G). Secondly, symmetric molecules are rare and form a zero-measure set. In our two230

representative real-world datasets, less than 0.01% of molecules (about ten molecules in the whole231

datasets of several hundred thousand molecules) are symmetric. Thirdly, symmetric geometry may232

be captured with a degenerate frame. As shown in Figure 3a, water is a symmetric molecule. We can233

use a frame with one vector to describe its geometry. Based on node identity features and relational234

pooling [28], we also propose a scheme in Appendix H to completely solve the expressivity loss235

caused by degeneration. However, for scalability, we do not use it in GNN-LF.236

A message passing layer for frame generation. The existence of the frame generation function237

is proved in Theorem 4.2. Here we demonstrate how to implement it. There exists a universal238

framework for approximating O(3)-equivariant functions [15] which can be used to implement the239

function in Theorem 5.1. For scalability, we use a simplified form of that framework which has240

empirically good performance:241

E⃗i =
∑

j ̸=i,rij<rc

g′(rij , sj) ·
r⃗ij
rij
, (6)

where g′ maps invariant features and distance to invariant weights and the entire framework reduces242

to a message passing process. The derivation is detailed in Appendix B.243
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Local frame vs global frame. With the message passing framework in Equation 6, an individual244

frame, called local frame, is produced for each atom. These local frames can also be summed to245

produce a global frame.246

E⃗ =

n∑
i=1

E⃗i. (7)

The global frame can replace local frames and keep the invariance of energy prediction. All previous247

analysis will still be valid if the frame degeneration does not happen. However, the global frame is248

more likely to degenerate than local frames. As shown in Figure 3b, the benzene molecule has central249

symmetry and produces a zero global frame. However, when choosing each atom as the center, the250

central symmetry is broken, and a non-zero local frame can be produced. We further formalize this251

intuition and prove that the global frame is more likely to degenerate in Appendix I.252

In conclusion, we can generate local frames with a message passing layer.253

6 GNN with local frame254

We formally introduce our GNN with local frame (GNN-LF) model. The whole architecture is255

detailed in Appendix C. The time and space complexity are O(Nn), where N is the number of atoms256

in the molecule, and n is the maximum number of neighbor atoms of one atom.257

Notations. Let F denote the hidden dimension. We first convert the input features, coordinates258

r⃗ ∈ RN×3 and atomic numbers z ∈ NN , to a graph. The initial node feature s(0)i ∈ RF is an259

embedding of the atomic number zi. Edge ij has two features: the edge weight wij = cutoff(rij)260

(where cutoff means the cutoff function), and the radial basis expansion of the distance d0ij = rbf(rij).261

Edge weight wij is not necessary for expressivity. However, to ensure that the energy prediction is a262

smooth function of coordinates, messages passed among atoms must be scaled with wij [19]. These263

special functions are detailed in Appendix C.264

Producing frame. The message passing scheme for producing local frames implements Equation (6).265

E⃗i =
∑

j ̸=i,rij<rc

wij(f1(d
0
ij)⊙ sj) ·

r⃗ij
rij
, (8)

where f1 is an MLP. Note that frame E⃗i ∈ RF×3 in implementation is not restricted to have three266

vectors. The number of vectors equals the hidden dimension. The frame in RF×3 can be considered267

as an ensemble of F
3 frames in R3×3, so this design will not hamper the expressivity.268

Coordinate projection is as follows,269

d1ij =
1

rij
r⃗ijE⃗

T
i . (9)

The projection in implementation is scaled by 1
rij

to decouple the distance information in s(e)ij .270

Frame-frame projection. E⃗iE⃗
T
j is a large matrix. Therefore, we only use the diagonal elements of271

the projection. To keep the expressivity, we transform the frame with two ordinary linear layers.272

d2ij = diag(W1E⃗jE⃗
T
i W

T
2 ). (10)

Adding the projections to edge features, we get a graph with invariant features only.273

GNN working on the invariant graph. The message passing scheme uses the form in Theorem 4.1.274

Let the s(l)i denote the node representations produced by the lth message passing layers. s(0)i = si.275

s
(l)
i = ρ(

∑
j ̸=i,rij<rc

wij(f2(d
0
ij , d

1
ij , d

2
ij)⊙ s

(l−1)
j )), (11)

where ρ is an MLP. We further use a filter decomposition design as follows.276

f2(d
0
ij , d

1
ij , d

2
ij) = g1(d

0
ij)⊙ g2(d1ij , d2ij). (12)

The distance information d0ij is easier to learn as it has been expanded with a set of bases, so a linear277

layer g1 is enough. In contrast, projections need a more expressive MLP g2.278
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Table 1: Results on the MD17 dataset. Units: energy (E) (kcal/mol) and forces (F) (kcal/mol/Å).

Molecule Target FCHL SchNet DimeNet GemNet PaiNN NequIP TorchMD GNN-LF

Aspirin E 0.182 0.37 0.204 - 0.167 - 0.124 0.1342
F 0.478 1.35 0.499 0.2168 0.338 0.348 0.255 0.2018

Benzene E - 0.08 0.078 - - - 0.056 0.0686
F - 0.31 0.187 0.1453 - 0.187 0.201 0.1506

Ethanol E 0.054 0.08 0.064 - 0.064 - 0.054 0.0520
F 0.136 0.39 0.230 0.0853 0.224 0.208 0.116 0.0814

Malonaldehyde E 0.081 0.13 0.104 - 0.091 - 0.079 0.0764
F 0.245 0.66 0.383 0.1545 0.319 0.337 0.176 0.1259

Naphthalene E 0.117 0.16 0.122 - 0.166 - 0.085 0.1136
F 0.151 0.58 0.215 0.0553 0.077 0.097 0.060 0.0550

Salicylic acid E 0.114 0.20 0.134 - 0.166 - 0.094 0.1081
F 0.221 0.85 0.374 0.1048 0.195 0.238 0.135 0.1005

Toluene E 0.098 0.12 0.102 - 0.095 - 0.074 0.0930
F 0.203 0.57 0.216 0.0600 0.094 0.101 0.066 0.0543

Uracil E 0.104 0.14 0.115 - 0.106 - 0.096 0.1037
F 0.105 0.56 0.301 0.0969 0.139 0.173 0.094 0.0751

average rank 3.93 6.63 5.38 2.00 4.36 5.25 2.25 1.75

Sharing filters. Generating different filters f2(d0ij , d
1
ij , d

2
ij) for each message passing layer is time-279

consuming. Therefore, we share filters between different layers. Experimental results show that280

sharing filters leads to minor performance loss and significant scalability gain.281

7 Experiment282

In this section, we compare GNN-LF with existing models and do an ablation analysis. We report the283

mean absolute error (MAE) on the test set (the lower, the better). All our results are averaged over284

three random splits. Baselines’ results are from their papers. The best and the second best results are285

shown in bold and underline respectively in tables. Experimental settings are detailed in Appendix D.286

7.1 Modeling PES287

We first evaluate GNN-LF for modeling PES on the MD17 dataset [29], which consists of MD trajec-288

tories of small organic molecules. GNN-LF is compared with a manual descriptor model: FCHL [18]289

, invariant models: SchNet [4], DimeNet [5], GemNet [8], a model using irreducible representations:290

NequIP [9], and models using equivariant representations: PaiNN [7] and TorchMD [10]. The results291

are shown in Table 1. GNN-LF outperforms all the baselines on 9/16 targets and achieves the292

second-best performance on all other 7 targets. Our model leads to 10% lower loss on average than293

GemNet, the best baseline. The outstanding performance verifies the effectiveness of the local frame294

method for modeling PES. Moreover, our model also uses fewer parameters and only about 30%295

time and 10% GPU memory compared with the baselines as shown in Appendix E.296

7.2 Ablation study297

We perform an ablation study to verify our model designs. The results are shown in Table 2.298

On average, ablation of frame-frame projection (NoDir2) leads to 20% higher MAE, which verifies299

the necessity of frame-frame projection. The column Global replaces the local frames with the global300

frame, resulting in 100% higher loss, which verifies local frames’ advantages over global frame.301

Ablation of filter decomposition (NoDecomp) leads to 9% higher loss, indicating the advantage of302

separately processing distance and projections. Although using different filters for each message303

passing layer (NoShare) uses much more computation time (1.67×) and parameters (3.55×), it304

only leads to 0.01% lower loss on average, illustrating that sharing filters does little harm to the305

expressivity.306
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Table 2: Ablation results on the MD17 dataset. Units: energy (E) (kcal/mol) and forces (F)
(kcal/mol/Å). GNN-LF does not use d2 for some molecules, so the NoDir2 column is empty.

Molecule Target GNN-LF NoDir2 Global NoDecomp GNN-LF Noshare

Aspirin E 0.1342 0.1435 0.2280 0.1411 0.1342 0.1364
F 0.2018 0.2799 0.6894 0.2622 0.2018 0.1979

Benzene E 0.0686 0.0716 0.0972 0.0688 0.0686 0.0713
F 0.1506 0.1583 0.3520 0.1499 0.1506 0.1507

Ethanol E 0.0520 0.0532 0.0556 0.0518 0.0520 0.0514
F 0.0814 0.0930 0.1465 0.0847 0.0814 0.0751

Malonaldehyde E 0.0764 0.0776 0.0923 0.0765 0.0764 0.0790
F 0.1259 0.1466 0.3194 0.1321 0.1259 0.1210

Naphthalene E 0.1136 0.1152 0.1276 0.1254 0.1136 0.1168
F 0.0550 0.0834 0.2069 0.0553 0.0550 0.0547

Salicylic acid E 0.1081 0.1087 0.1224 0.1123 0.1081 0.1091
F 0.1048 0.1328 0.2890 0.1399 0.1048 0.1012

Toluene E 0.0930 0.0942 0.1000 0.0932 0.0930 0.0942
F 0.0543 0.0770 0.1659 0.0695 0.0543 0.0519

Uracil E 0.1037 0.1069 0.1075 0.1053 0.1037 0.1042
F 0.0751 0.0964 0.1901 0.0825 0.0751 0.0754

Table 3: Results on the QM9 dataset. SE(3)-T is short for SE(3)-Transformer

Target Unit SchNet DimeNet++ ComENet Cormorant SE(3)-T PaiNN EGNN Torchmd GNN-LF

µ D 0.033 0.0297 0.0245 0.038 0.051 0.012 0.029 0.002 0.013
α a30 0.235 0.0435 0.0452 0.085 0.142 0.045 0.071 0.01 0.0353

ϵHOMO meV 41 24.6 23.1 34 35 27.6 29 21.2 23.5
ϵLUMO meV 34 19.5 19.8 38 33 20.4 25 17.8 17.0
∆ϵ meV 63 32.6 32.4 61 53 45.7 48 38 37.1
⟨R2⟩ a20 0.073 0.331 0.259 0.961 - 0.066 0.106 0.015 0.037
ZPVE meV 1.7 1.21 1.2 2.027 - 1.28 1.55 2.12 1.19
U0 meV 14 6.32 6.59 22 - 5.85 11 6.24 5.30
U meV 19 6.28 6.82 21 - 5.83 12 6.3 5.24
H meV 14 6.53 6.86 21 - 5.98 12 6.48 5.48
G meV 14 7.56 7.98 20 - 7.35 12 7.64 6.84
Cv cal/mol/K 0.033 0.023 0.024 0.026 0.054 0.024 0.031 0.026 0.022

7.3 Other chemical properties307

Though designed for PES, our model can also predict other properties directly. The QM9 dataset [30]308

consists of 134k stable small organic molecules. The task is to use the atomic numbers and co-309

ordinates to predict properties of these molecules. We compare our model with invariant models:310

SchNet [4], DimeNet++ [31], ComENet [32], a model using irreducible representations: Cor-311

morant [6], SE(3)-Transformer [22], and models using equivariant representations: EGNN [33],312

PaiNN [7] and TorchMD [10]. Results are shown in Table 3. Our model outperforms all other models313

on 7/12 tasks and achieves the second-best performance on 4/5 left tasks, which illustrates that the314

local frame method has the potential to be applied to other fields.315

8 Conclusion316

This paper proposes GNN-LF, a simple and effective molecular potential energy surface model.317

It introduces a novel local frame method to decouple the symmetry requirement and capture rich318

geometric information. In theory, we prove that even ordinary GNNs can reach maximum expressivity319

with the local frame method. Furthermore, we propose ways to construct local frames. In experiments,320

our model outperforms all baselines in both scalability (using only 30% time and 10% GPU memory)321

and accuracy (10% lower loss). Ablation study also verifies the effectiveness of our designs.322
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A Proofs433

Due to repulsive force, atoms cannot be too close to each other in stable molecules. Therefore, we434

assume that there exist an upper bound N of the number of neighbor atoms.435

A.1 Proof of Lemma 2.1436

Proof. For all function g, invariant representation s, transformation o ∈ O(3), g(s(z, r⃗oT )) = g(s).437

Therefore, g(s) is an invariant representation.438

For all invariant representation s, equivariant representation v⃗, and transformation o ∈ O(3),439

s(z, r⃗oT ) · v⃗(z, r⃗oT ) = s(z, r⃗) · (v⃗(z, r⃗)oT ) = (s(z, r⃗) · v⃗(z, r⃗))oT . (13)

Therefore, s · v⃗ is an equivariant representation.440

For all equivariant representations v⃗,441

v⃗(z, r⃗oT )E⃗(z, r⃗oT )T = v⃗(z, r⃗)oT oE⃗(z, r⃗)T = v⃗(z, r⃗)E⃗(z, r⃗)T (14)

PE⃗ is inversible because442

PE⃗(v⃗)E⃗ = v⃗E⃗T E⃗ = v⃗. (15)

For all invariant representations s ∈ RF×3,443

s(z, r⃗oT )E⃗(z, r⃗oT ) = s(z, r⃗)E⃗(z, r⃗)oT . (16)

Similarly,444

v⃗(z, r⃗oT )v⃗′(z, r⃗oT )T = v⃗(z, r⃗)oT ov⃗′(z, r⃗)T = v⃗(z, r⃗)v⃗′(z, r⃗)T . (17)

Therefore, projection on general equivariant representations can also produce invariant representation.445

446

A.2 Proof of Proposition 4.1447

Proof. Assume that s is an invariant representation.448

g̃(s) = PE⃗(g(P
−1

E⃗
(s))) (18)

= g(s(E⃗(z, r⃗)−1)T ))E⃗(z, r⃗)T . (19)

The representation g̃(s) can be written as a function of (z, r⃗). Then, we have449

∀o ∈ O(3), g̃(s)(z, r⃗oT ) = g(s(E⃗(z, r⃗oT )−1)T ))E⃗(z, r⃗oT )T (20)

= g(s(E⃗(z, r⃗)−1)T )oT )oE⃗(z, r⃗)T (21)

= g(s(E⃗(z, r⃗)−1)T ))oT oE⃗(z, r⃗)T (22)

= g(s(E⃗(z, r⃗)−1)T ))E⃗(z, r⃗)T (23)
= g̃(s)(z, r⃗). (24)

Therefore, g̃(s) is also an invariant representation.450
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A.3 Proof of Theorem 4.1451

We first prove that when the multiset of invariant features and coordinate projections equal, the452

multiset of invariant features and coordinates are just distinguished from each other with an orthogonal453

transformation.454

Lemma A.1. Given two frames E⃗1, E⃗2, and two sets of atoms {(s1,i, r⃗1,i|i = 1, 2, ..., n},455

{(s2,i, r⃗2,i|i = 1, 2, ..., n}. If {(s1,i, PE⃗1
(r⃗1,i)|i = 1, 2, ..., n} = {(s2,i, PE⃗2

(r⃗2,i)|i = 1, 2, ..., n},456

there exists o ∈ O(3), {(s1,i, r⃗1,i|i = 1, 2, ..., n} = {(s2,i, r⃗2,ioT |i = 1, 2, ..., n}457

Proof. As {(s1,i, PE⃗1
(r⃗1,i)|i = 1, 2, ..., n} = {(s2,i, PE⃗2

(r⃗2,i)|i = 1, 2, ..., n}, there exists permu-458

tation π : {1, 2, ..., n} → {1, 2, ..., n}, so that459

s1,i = s1,π(i), PE⃗1
(r⃗1,i) = PE⃗2

(r⃗2,π(i)) (25)
460

s1,i = s1,π(i), r⃗1,iE⃗
T
1 = r⃗2,π(i)E⃗

T
2 (26)

461

s1,i = s1,π(i), r⃗1,i = r⃗2,π(i)E⃗
T
2 E⃗1. (27)

As E⃗1, E⃗2 are both orthogonal matrix, E⃗T
2 E⃗1 ∈ O(3). Let o denotes E⃗T

2 E⃗1,462

{(s1,i, r⃗1,i|i = 1, 2, ..., n} = {(s2,i, r⃗2,ioT |i = 1, 2, ..., n}. (28)

463

According to [34], there exists ρ and ψ so that464

ρ(
∑

rij<rc

ψ(Concatenate(PE⃗i
(r⃗ij), sj))) (29)

encoding {(PE⃗i
(r⃗ij), sj)|rij < rc} injectively. Let χ denote this function. According to Lemma A.1,465

χ encodes local environments injectively when the difference caused by orthogonal transformation is466

neglected.467

A.4 Proof of Theorem 4.2468

Notation: Given a molecule with atom coordinates r⃗ ∈ RN×3 and atomic features (like embedding of469

atomic number) s ∈ RN×F , let G denote the undirected graph corresponding to the molecule. Node470

i in G represents the atom i in the molecule. G has edge ij iff rij < rc, where rc is the cutoff radius.471

Let d(G, i, j) denote the shortest path distance between node i and j in graph G.472

Note that a single layer defined in Equation 5 can still encode the local environment, as extra473

frame-frame projection cannot lower the expressivity.474

Lemma A.2. Given a frame E⃗, with suitable functions ρ and ψ, χ defined in Equation 5 encodes the475

local environment injectively.476

Proof. According to Theorem 4.1, there exists ρ′ and ψ′ so that477

ρ(
∑

rij<rc

ψ(Concatenate(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), sj)) (30)

can encode local environment injectively. Let ρ equals to ρ′,478

ψ(cat(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), sj)) = ψ′(cat(PE⃗i
(r⃗ij), sj)). (31)

Then,479

χ({(sj , r⃗ij , E⃗j)|rij < rc}) = ρ′(
∑

rij<rc

ψ′(cat(PE⃗i
(r⃗ij), sj)) (32)

encodes local environment injectively.480

Now we begin to prove the Theorem 4.2.481
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Proof. We use cat to represent concatenate throughout the proof. Let N(i)l denote {j|d(G, i, j) ≤ l}.482

The lth message passing layer has the following form.483

s
(l)
i = ρl(

∑
j∈N1(i)

ψl(cat(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), s
(l−1)
j )), (33)

where s(0)i = si.484

By enumeration on l, we prove that there exist ρl, ψl so that s(l)i = φ({cat(sj , PE⃗i
(r⃗ij))|j ∈ Nl(i)}).485

We first define some auxiliary functions.486

According to [34], there exists a multiset function φ mapping a multiset of invariant representations487

to an invariant representation injectively. φ can have the following form488

φ({xi|i ∈ I}) =
∑
i

ψ(xi), (34)

where I is some finite index set. As φ is injective, it has an inverse function.489

We define function m,m′,m′′ to extract invariant representation from concatenated node features.490

m(cat(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), s
(0)
j )) = cat(s(0)j , PE⃗i

(r⃗ij)). (35)
491

m′(cat(sj , PE⃗i
(r⃗ij))) = sj . (36)

492
m′′(cat(sj , PE⃗i

(r⃗ij))) = PE⃗i
(r⃗ij). (37)

Last but not least, there exist a function T transforming coordinate projections from one frame to493

another frame.494

T (PE⃗i
(r⃗ij), PE⃗i

(E⃗j), PE⃗j
(r⃗jk)) = PE⃗i

(r⃗ij) + PE⃗j
(r⃗jk)PE⃗i

(E⃗j) = PE⃗i
(r⃗ik) (38)

l = 1: let ψ1 = ψ ·m , ρ1 is identity mapping.495

l > 1: Assume for all l′ < l, s(l
′)

i = φ({cat(sj , PE⃗i
(r⃗ij))|j ∈ Nl′(i)}).496

ψl has the following form.497

ψl(cat(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), s
(l−1)
j )) = ψ(φ(

{cat(m′(x), T (PE⃗i
(r⃗ij), PE⃗i

(E⃗j),m
′′(x))|x ∈ φ−1(s

(l−1)
j )})). (39)

Therefore498

ψl(cat(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), s
(l−1)
j )) = ψ(φ({cat(sk, PE⃗i

(r⃗ik))|k ∈ Nl−1(j)})). (40)

Note ψl transforms coordinate projection from an old frame to a new frame.499

Therefore, the input of ρl, namely a(l)i , has the following form.500

a
(l)
i =

∑
j∈N(i)

ψl(cat(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), s
(l−1)
j ) (41)

=
∑

j∈N(i)

ψ(φ({cat(sk, PE⃗i
(r⃗ik))|k ∈ Nl−1(j)})) (42)

= φ({φ({cat(sk, PE⃗i
(r⃗ik))|k ∈ Nl−1(j)})|j ∈ N(i)}) (43)

We can transform a
(l)
i to a set of set of invariant representations with the following function.501

η(a
(l)
i ) = {φ−1(s)|s ∈ φ−1(a

(l)
i )}. (44)

Therefore, η(a(l)i ) = {{cat(sk, PE⃗i
(r⃗ik))|k ∈ Nl−1(j)}|j ∈ N(i)}502
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We can use another function ι unions invariant representation sets in set S to a set of invariant503

representation.504

ι(S) =
⋃
s∈S

s. (45)

ρl has the following form.505

ρl(a
(l)
i ) = φ ◦ ι ◦ η(a(l)i ). (46)

Therefore, the output is506

ρl(a
(l)
i ) = φ({cat(sk, PE⃗i

(r⃗ik))|k ∈ Nl(i)}}) (47)

Therefore, ∀l ∈ N, there exists ρl, ψl so that s(l)i = φ({cat(sj , PE⃗i
(r⃗ij))|j ∈ Nl(i)}).507

As L is the diameter of G, s
(L)
i = s

(l)
i = φ({cat(sj , PE⃗i

(r⃗ij))|j ∈ NL(i)}) =508

φ({cat(sj , PE⃗i
(r⃗ij))|j ∈ {1, 2, ..., n}}). As φ is an injective function, GNN with L message509

passing layers defined in Equation 5 can encode the {(si, PE⃗i
r⃗ij)|j ∈ {1, 2, ..., n}} injectively to510

s
(L)
i . According to Lemma A.1, this GNN encodes the whole molecule {(si, r⃗ij)|j ∈ {1, 2, ..., n}}511

when the difference caused by orthogonal transformation is neglected.512

A.5 Proof of Theorem 5.1513

Proof. (1) We first prove there exists an O(3)-equivariant function g mapping the local environment514

LEi to a frame E⃗i ∈ R3×3. The frame has full rank if there does not exist o ∈ O(3), o ̸= I, o(LEi) =515

LEi.516

Let γ denote a function mapping local environments to sets of vectors.517

γ({(r⃗ij , sj)|rij < rc}) = {Concatenate(sj r⃗ij , r⃗ij)|rij < rc}, (48)

in which sj is reshaped as F × 1, r⃗ij is of shape 1× 3. γ is O(3)-equivariant. Therefore, we discuss518

the aggregation function on a set of equivariant representation, denoted as {u⃗i|i = 1, 2, ..., n, u⃗i ∈519

RF×3}.520

Assume that V = {{u⃗i|i = 1, 2, ..., n, u⃗i ∈ RF×3}|n = 1, 2, ..., N}, where N is the upper bound of521

the size of local environment, is the set of sets of equivariant messages in local environment.522

An equivalence relation can be defined on V : v1 ∈ V, v2 ∈ V, v1 ∼ v2 iff there exists o ∈523

O(3), o(v1) = v2. Let Ṽ = V/ ∼ denote the quotient set. For each equivalence class [v] with no524

symmetry, a representative v can be selected. We can define a function r : Ṽ − {[v]|[v] ∈ Ṽ , ∃v ∈525

[v], o ∈ O(3), o ̸= I, o(v) = v} → V as r([v]) = v mapping each equivalence class with no526

symmetry to its representative. For a message set with no symmetry, the transformation from its527

representative to it is also unique. Let h : V − {v|v ∈ V,∃o ∈ O(3), o ̸= I, o(v) = v} → O(3).528

h(v) = o, o(r([v])) = v.529

Therefore, the function g can take the form as follows.

g(v) =


0 0 0

0 0 0

0 0 0

 if there exists o ∈ O(3), o ̸= I, ov = v

h(v)T otherwise

Therefore, g ◦ γ is the required function.530

We further detail how to select the representative elements: We first define a linear order relation ≤l531

in V . If v1, v2 ∈ V, |v1| < |v2|, v1 <l v2. So we only consider the order relation between two sets of532

the same size n.533

We first define a function φ mapping message set to a sequence injectively.534

φ({ui|i = 1, 2, ..., n, ui ∈ RF×3}) = [flatten(uπ(i))|i = 1, 2, ..., n,

π is a permutation sorting ui by lexicographical order]. (49)
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Forall v1, v2 ∈ V, |v1| = |v2|, v1 ≤l v2 iff φ(v1) ≤ φ(v2) by lexicographical order. As the size of535

local environent is bounded, the sequence is also of a finite length. Therefore, the lexicographical536

order and thus the linear order relation ≤l are well-defined.537

All permutations of {1, 2, ..., n} form a permutation set Πn.538

For all [v] ∈ Ṽ , let r([v]) = argminv′∈[v] φ(v
′). To illustrate the existence of such minimal sequence,539

we reform it.540

minv′∈[v]φ(v
′) = min

π∈Πn,o∈O(3)
S(o, π) (50)

= min
π∈Πn

min
o∈O(3)

S(o, π), (51)

where S(o, π) = [flatten(uπ(i)oT )|i = 1, 2, ..., n]. Each element of this sequence is continuous to o.541

We first fix the π. As O(3) is a compact group, argmino∈O(3) S(o, π)1 exists. Let L1 = {o|o ∈542

O(3), S(o, π)1 = mino′∈O(3) S(o
′, π)1} is still a compact set. Therefore, argmino∈L1

S(o, π)1543

exists. Let L2 = {o|o ∈ L1, S(o, π)2 = mino′∈L1 S(o
′, π)2}. Similarly, L3, L4, ..., L3Fn can be544

defined and they are non-empty set. Forall o1, o2 ∈ L3Fn, as S(o1, π) ≤ S(o2, π) and S(o2, π) ≤545

S(o1, π) by lexicographical order, S(o2, π) = S(o1, π) and thus o1(v) = o2(v). If v has no546

symmetry, ∀o ∈ O(3), o ̸= I, o(v) ̸= v, o1(v) = o2(v) =⇒ o1 = o2. Therefore, L3Fn contains a547

unique element o(0)v and mino∈O(3) S(o, π) is unique.548

As Πn is a finite set, if mino∈O(3) S(o, π) exist for all π ∈ Πn, minπ∈Πn
mino∈O(3) S(o, π) must549

exist. Therefore the minimal sequence exists. As ≤l is a linear order, the minimal sequence is unique.550

With the unique sequence, the unique representative can be determined.551

(2) Then we prove there does not exist o ∈ O(3), o ̸= I, o(LEi) = LEi if the frame has full rank.552

The frame E⃗ is a function of local environment. If there exists

o ∈ O(3), o(LEi) = LEi.

Then E⃗(o(LEi)) = E⃗(LEi)o
T = E⃗(LEi).553

As E⃗ is an invertible matrix, o = I . Therefore, LEi has no symmetry.554

555

B Derivation of the message passing section for frame556

The framework proposed by Villar et al. [15] is557

hn({m⃗i1, m⃗i2, m⃗i2, ..., m⃗in}) =
n∑

j=1

g(m⃗ij , {m⃗i1, ..., m⃗in} − {m⃗ij}) · m⃗ij , (52)

where hn is the aggregation function for n messages. g is a O(3)-invariant functions. We can further558

reform it.559

hn({{m⃗i1, m⃗i2, ..., m⃗in}}) =
n∑

j=1

g
(n)
1 (g

(n)
2 (m⃗ij), hn−1({m⃗i1, m⃗i2, ..., m⃗i,n} − {m⃗ij}))m⃗ij ,

(53)
where g(n)1 , g

(n−1)
2 are two O(3)-invariant functions. With this equation, we can recursively build n560

message aggregation function hn with hn−1. Its universal approximation power has been proved in561

[15].562

However, as they can have varied numbers of neighbors, different nodes have to use different563

aggregation functions, which is hard to implement. Therefore, we desert the recursive term hn−1.564

hn({{m⃗i1, m⃗i2, ..., m⃗in}}) =
n∑

j=1

g(m⃗ij)m⃗ij . (54)
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Figure 4: The architecture of GNN-LF. (a) The full architecture of GNN-LF contains four parts:
an embedding block, a geo2filter block, message passing (MP) layers, and an output module.
Embedding block consists of an embedding layer converting atomic numbers to learnable tensors
and a neighborhood embedding block proposed by Thölke and Fabritiis [10]. (b) The geo2filter
block builds a graph with the coordinates of atoms, passes messages to produce local frames, projects
equivariant features onto the frames, and uses edge invariant features to produce edge filters. (c)
A message passing layer filters atom representations with edge filters to produce messages and
aggregates these messages to update atom embeddings. (d) The projection block produces d1, d2 and
concatenates them.

The message m⃗ij can have the form Concatenate(1, s) · r⃗ij in Theorem 4.1. As g is an invariant565

function, we can further simplify Equation 54.566

hn({{m⃗i1, m⃗i2, ..., m⃗in}}) =
n∑

j=1

g′(rij , sj)
r⃗ij
rij
, (55)

where g′ is a function mapping invariant representations to invariant representations.567

C Archtecture of GNN-LF568

The full architecture is shown in Figure 4.569

Following Thölke and Fabritiis [10], we also use a neighborhood embedding block which aggregates570

neighborhood information as the initial atom feature.571

s
(0)
i = Emb1(zi) +

∑
rij<rc

Emb2(zj)⊙ f(d0ij). (56)

where Emb1 and Emb2 are two embedding layers and f is the filter function.572

These special functions are proposed by previous methods [19, 35].573

cutoff(r) =

{
1
2 (1 + cos πr

rc
), r < rc

0, r > rc
(57)

rbfk(rij) = e−βk(exp(−rij)−µk)
2

, (58)

where βk, µk are coefficients of the kth basis.574
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For PES tasks, the output module is a sum pooling and a linear layer. Other invariant prediction575

tasks can also use this module. However, on the QM9 dataset, we design special output modules576

for two properties. For dipole moment µ, given node representations [si|i = 1, 2, ..., N ] and atom577

coordinates [r⃗i|i = 1, 2, ..., N ], our prediction is as follows.578

µ̂ = |
∑
i

(qi − averagej(qj))r⃗i|, (59)

where qi ∈ R, the prediction of charge, is function of si. We use a linear layer to convert si to qi. As579

the whole molecule is electroneutral, we use qi − averagej(qj).580

For electronic spatial extent ⟨R2⟩, we make use of atom mass (known constants) [mi|i = 1, 2, ..., N ].581

The output module is as follows.582

r⃗c =

∑
imir⃗i∑
imi

(60)

ˆ⟨R2⟩ = |
∑
i

xi|r⃗i − r⃗c|2|, (61)

where xi ∈ R is an invariant representation feature of node i. We also use a linear layer to convert si583

to xi.

Table 4: The training, inference time and the GPU memory consumption of random batches of
32 molecules (16 molecules for GemNet) from the MD17 dataset. The format is training time in
ms/inference time in ms/inference GPU memory comsumption in MB. N denotes the number of
atoms in the molecule, and n means an atom’s maximum number of neighbors.

DimeNet GemNet torchmd GNN-LF NoShare

number of parameters 2.1 M 2.2 M 1.3 M 0.8M∼1.3M 2.4M∼5.3M

time complexity O(Nn2) O(Nn3) O(Nn) O(Nn) O(Nn)

aspirin 727/133/5790 2823/612/15980 188/32/2065 65/10/279 142/22/883
benzene 669/ 94/1831 2242/393/3761 478/33/918 29/ 8/95 40/11/213
ethanol 672/ 95/784 2256/344/1565 417/32/532 59/ 8/54 76/11/115

malonaldehyde 657/ 88/784 2237/355/1565 753/32/532 57/ 7/68 68/10/127
naphthalene 614/112/4470 2613/498/11661 265/32/1694 61/ 9/175 97/15/491

salicylic_acid 619/ 92/3489 2577/430/8182 239/34/1418 59/ 9/176 79/15/424
toluene 595/113/3148 2495/423/7153 896/45/1322 62/ 8/176 83/15/458
uracil 595/107/1782 2165/354/3735 118/32/907 66/ 8/99 87/14/302

average 643/104/2760 2426/426/6700 419/34/1174 57/ 9/140 84/14/377

584

Table 5: The inference time and the GPU memory consumption of random batches of 32 molecules
from the QM9 dataset and U0 target. The format is inference time in ms/inference GPU memory
comsumption in MB.

EGNN ComENet GNN-LF

number of parameters 0.75M 4.2M 1.7M
GPU memory 1105 356 329

inference time (ms) 4.2 11.9 6.6

D Experiment settings585

Computing infrastructure. We leverage Pytorch for model development. Hyperparameter searching586

and model training are conducted on an Nvidia A100 GPU. Inference times are calculated on an587

Nvidia RTX 3090 GPU.588
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Training process. For MD17/QM9 dataset, we set an upper bound (6000/1000) for the number of589

epoches and use an early stop strategy which finishes training if the validation score does not increase590

after 500/50 epoches. We utilize Adam optimizer and ReduceLROnPlateau learning rate scheduler to591

optimize models.592

Model hyperparameter tuning. Hyperparameters were selected to minimize l1 loss on the validation593

sets. The best hyperparameters selected for each model can be found in our code in the supplement594

materials. For MD17/QM9, we fix the initial lr to 1e − 3/3e − 4, batch size to 16/64, hidden595

dimension to 256. The cutoff radius is selected from [4, 12]. The number of message passing layer is596

selected from [4, 8]. The dimension of rbf is selected from [32, 96]. Please refer to our code for the597

detailed settings.598

Dataset split. We randomly split the molecule set into train/validation/test sets. For MD17, the size599

of the train and validation set are 950, 50 respectively. All remaining data is used for test. For QM9:600

The sizes of randomly splited train/validation/test sets are 110000, 10000, 10831 respectively.601

E Scalability602

To assess the scalability of our model, we show the inference time of random MD17 batches of 32603

molecules on an NVIDIA RTX 3090 GPU. The results are shown in Table 4. Note that GemNet604

consumes too much memory, and only batches of 16 molecules can fit in the GPU. Our model only605

takes 30% time and 12% space compared with the fastest baseline. Moreover, NoShare use 260%606

more space and 67% more computation time than GNN-LF with filter sharing technique.607

We also compare computational overhead on tasks other than PES in the QM9 dataset (see Table 5).608

As we use the same model for different tasks in the QM9 dataset, models are only compared on U0609

task. GNN-LF achieves the lowest GPU memory consumption, competitive inference speed, and610

model size.611

F Existing methods using frame612

Though some previous works [24–26, 33, 36] also use the term "frame" or designs similar to "frame",613

they are very different methods from ours.614

The primary motivation of our work is to get rid of equivariant representation for higher and provable615

expressivity, simpler architecture, and better scalability. We only use equivariant representations in616

the frame generation and projection process. After projection, all the remaining parts of our model617

only operates on invariant representations. In contrast, existing works [24, 26, 33, 36] still use both618

equivariant and invariant representations, resulting in extra complexity even after using frame. For619

example, functions for equivariant and invariant representations still need to be defined separately, and620

complex operation is needed to mix the information contained in the two kinds of representations. In621

addition, our model can beat the representative methods of this kind in both accuracy and scalability622

on potential energy surface prediction tasks.623

Other than the different primary motivation, our model has an entirely different architecture from624

existing ones.625

1. Generating frame: ClofNet [26] and LoCS [25] produces a frame for each pair of nodes and626

use some process not learnable to produce the frame. Both EGNN [33] and GMN [36] use627

coordinate embeddings which are initialized with coordinates. Luo et al. [24] initializes the628

frame with zero. Then these models use some schemes to update the frame. Our model uses629

a novel message passing scheme to produce frames and will not update it, leading to simpler630

architecture and low computation overhead.631

2. Projection: Existing models [24, 26, 33, 36] only project equivariant features onto the frame,632

while we also use frame-frame projection, which is verified to be critical both experimentally633

and theoretically.634

3. Message passing layer: Existing models [24–26, 33, 36] all use both invariant representation635

and equivariant features and pass both invariant and equivariant messages, which needs to mix636

invariant representations and equivariant representations, update invariant representations, and637

update equivariant representations, while our model only uses invariant representations, resulting638

in an entirely different and much simpler design with significantly higher scalability.639
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4. Our designing tricks, including: message passing scheme to produce frame, filter decomposition,640

and filter sharing, are not used in [24, 26, 33, 36]. Our experiments and ablation study verified641

their effectiveness.642

Furthermore, existing models use different groups to describe symmetry. Luo et al. [24], Kofinas643

et al. [25], Du et al. [26] design SO(3)-equivariant model, while our model is O(3)-equivariant. We644

emphasize that this is not a constraint of our model but a requirement of the task. As most target645

properties of molecules are O(3)-equivariant (including energy and force we aim to predict), our646

model can fully describe the symmetry.647

Our theoretical analysis is also novel. Luo et al. [24], Satorras et al. [33], Huang et al. [36] have no648

theoretical analysis of expressivity. Du et al. [26]’s analysis is primarily based on the framework of649

Dym and Maron [37], which is further based on the polynomial approximation and the group repre-650

sentation theory. The conclusion is that a model needs many message passing layers to approximate651

high-order polynomials and achieve universality. Our theoretical analysis gets rid of polynomial and652

group representation and provides a much simpler analysis. We also prove that one message passing653

layer proposed in our paper are enough to be universal.654

In summary, although also using “frame”, our work is significantly different to any existing work in655

either method, theory, or task.656

Gauge-equivariant CNNs Gauge-equivariance methods [38–40] have never been used in the po-657

tential energy surface task. The methods seem similar to ours as they also project equivariant658

representations onto some selected orientations. However, the differences are apparent.659

1. Some of these methods are not strictly O(3)-equivariant. For example, the model of de Haan660

et al. [39] is not strictly equivariant for angle ̸= 2π/N , while our model (and all existing models661

for potential enerby surface) is strictly O(3)-equivariant. Loss of O(3)-equivariance leads to662

high sample complexity.663

2. Building grid is infeasible for potential energy surface tasks as atoms can move in the whole664

space. Moreover, the energy prediction must be a smooth function of the coordinates of atoms.665

Therefore, the space should not be discretized. The model of Suk et al. [40] works on some666

discrete grid and cannot be used for the molecular force field.667

3. Even though Suk et al. [40] seem to achieve strict O(3)-equivariance with high complexity, it668

only uses the tangent plane’s angle and loses some information. Only one angle relative to a669

reference neighbor is used. Such an angle is expressive enough in a 2D tangent space because670

the coordinate can be represented as (r cos θ, r sin θ). However, for molecule in 3D space, such671

an angle is not enough(the coordinates can be represented as (r cos θ sinϕ, r sin θ sinϕ, r cosϕ).672

The angles in tangent space only provide θ). In contrast, we use the projection on three frame673

directions, so our model can fully capture the coordinates.674

4. Gauge-equivariance methods all use some constained kernels, which needs careful designation.675

Our model needs no specially designed kernel and can directly use the ordinary message676

passing scheme. Such simple design leads to provable expressivity, simpler architecture, and low677

time complexity. Our time complexity is O(Nn), while the that of Suk et al. [40] is O(Nn2),678

where N is the number of atoms, n is the maximum node degree).679

G Expressivity with symmetric input680

We use the symbol in Equation 5 SchNet’s message can be formalized as follows.681

χ({(sj , r⃗ij , E⃗j)|rij < rc}) = ρ(
∑

rij<rc

ψ(Concatenate(sj , rij)). (62)

In implementation, GNN-LF has the following form.682

χ({(sj , r⃗ij , E⃗j)|rij < rc}) = ρ(
∑

rij<rc

ψ(Concatenate(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), sj , rij)). (63)

Therefore, for all input molecules, GNN-LF is at least as expressive as SchNet.683
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Theorem G.1. ∀L ∈ N+, for all L layer SchNet, there exists a L layer GNN-LF produce the same684

output for all input molecule.685

Proof. Let the following equation denote the lth layer SchNet.686

χ′
l({(s

(l)
j , r⃗ij , E⃗j)|rij < rc}) = ρ′l(

∑
rij<rc

ψ′
l(Concatenate(s(l−1)

j , rij)). (64)

Let ρl = ρ′l, ψl(Concatenate(PE⃗i
(r⃗ij), PE⃗i

(E⃗j), sj , rij)) = ψ′
l(Concatenate(sj , rij)), which ne-687

glects the projection input.688

Let the lth layer of GNN-LF have the following form.689

χl({(s(l)j , r⃗ij , E⃗j)|rij < rc}) = ρl(
∑

rij<rc

ψl(Concatenate(s(l−1)
j , rij)). (65)

This GNN-LF produces the same output as the SchNet.690

691

H How to overcome the frame degeneration problem.692

As shown in Theorem 5.1, if the frame is O(3)-equivariant, no matter what scheme is used, the frame693

will degenerate when the input molecule is symmetric. In other words, the projection degeneration694

problem roots in the symmetry of molecule. Therefore, we try to break the symmetry by assigning695

node identity features s′ to atoms. The ith row of s′ is i. We concatenate s and s′ as the new node696

feature s̃ ∈ RN×(F+1). Let η denote a function concatenating node feature s and node identity697

features s′, η(s) = s̃. Its inverse function removes the node identity η−1(s̃) = s.698

In this section, we assume that the cutoff radius is large enough so that local environments cover699

the whole molecule. Let [n] denote the sequence 1, 2, ..., n. Let s ∈ RN×F denote the invariant700

atomic features, r⃗ ∈ RN×3 denote the 3D coordinates of atoms, and r⃗i, the ith row of r⃗, denote the701

coordinates of atom i. Let r⃗ − r⃗i denote an N × 3 matrix whose jth row is r⃗j − r⃗i. We assume that702

N > 1 throughout this section.703

Now each atom in the molecule has a different feature. The frame generation is much simpler now.704

Proposition H.1. With node identity features, there exists an O(3)-equivariant function mapping the705

local environment LEi = {(s̃i, r⃗ij)|j ∈ [N ]} to a frame E⃗i ∈ R3×3, and the first rank(E⃗i) rows of706

E⃗i form an orthonormal basis of span({r⃗ij |j ∈ [N ]}) while other rows are zero.707

Proof. For node i, we can use the following procedure to produce a frame.708

Initialize E⃗i as an empty matrix. For j in [1, 2, 3, ..., n], if r⃗ij is linearly independent to row vectors709

in E⃗i, add r⃗ij as a row vector of E⃗i.710

Therefore, when the procedure finishes, the row vectors of E⃗ form a maximal linearly independent711

system of {r⃗ij |j ∈ [N ]}.712

Then, we use the Gram-Schmidt process to orthonormalize the non-empty row vectors in E⃗, and713

then use zero to fill the empty rows in E⃗ to form a 3× 3 matrix. Therefore, the first rank(E⃗i) rows714

of E⃗i are orthonormal, and can linearly express all vector in {r⃗ij |j ∈ [N ]}. In other words, the first715

rank(E⃗i) rows of E⃗i form an orthonormal basis of span({r⃗ij |j ∈ [N ]}).716

Note that r⃗ij , 0⃗ are O(3)-equivariant vectors. Therefore, the frame produced with this scheme is717

O(3)-equivariant.718

With the frame, GNN-LF has the universal approximation property.719

Proposition H.2. Assuming that the node identity features are used, and the frame is produced by720

the method in Proposition H.1. For all O(3)-invariant and translation-invariant functions f(s, r⃗), f721

can be written as a function of the embeddings of node 1 produced by one message passing layer722

proposed in Theorem 4.1.723
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Proof. Let er ∈ R3×3 denote a diagonal matrix whose first r diagonal elements are 1 and others are724

0.725

With node identity features and method in Proposition H.1, the first rank(E⃗i) rows of E⃗i form726

an orthonormal basis of span({r⃗ij |j ∈ [N ]}) while other rows are zero. Especial, all vectors in727

{r⃗1j |j ∈ [N ]} can be written as linear combination of rows in E⃗1, r⃗1j = w1jE⃗j . Therefore, the728

projection operation PE⃗1
: {r⃗1j |j ∈ [N ]} → {(r⃗1j)E⃗T

1 |j ∈ [N ]} is injective, as729

PE⃗1
(r⃗1j)E⃗1 = w1jE⃗1E⃗

T
1 E⃗1 = w1jerank(E⃗1)

E⃗1 = w1jE⃗1 = r⃗1j . (66)

According to the proof of Theorem 4.1, there exists injective function χ so that node embeddings730

z1 = χ({s̃j , PE⃗1
(r⃗1j)|j ∈ [N ]}). Note that both E⃗1 and z1 are functions of LE1.731

Let τ denote a function (z1, E⃗1) = τ({(s̃j , r⃗1j)|j ∈ [N ]}), so that732

∀o ∈ O(3), (z1, E⃗1o
T ) = τ({(s̃j , r⃗1joT )|j ∈ [N ]}). (67)

Moreover, τ is also an invertible function because733

{(s̃j , r⃗1j)|j ∈ [N ]} = {(s, pE⃗1)|(s, p) ∈ χ−1(z1)}. (68)

Because the last column of s̃ is the node identity feature, there exists an bijective function φ converting734

set of features to matrix of features.735

φ({(s̃j , r⃗1j)|j ∈ [N ]}) = (s,−(r⃗ − r⃗1)). (69)

Intuitively, it puts the features of atom with node identity i to the ith row of feature matrix. Similarly,736

φ′({(s̃j , PE⃗1
(r⃗1j))|j ∈ [N ]}) = (s,−(r⃗ − r⃗1)E⃗T

1 ). (70)

As f is a translation- and O(3)-invariant function,737

f(s, r⃗) = f(s, r⃗ − r⃗1) = f(s,−(r⃗ − r⃗1)) = f(φ({(s̃j , r⃗1j)|j ∈ [N ]})). (71)

Let g = f ◦ φ ◦ τ−1. So738

g(E⃗1, z1) = f(s, r⃗), (72)
739

∀o ∈ O(3), g(E⃗1o
T , z1) = f(s, r⃗oT ) = f(s, r⃗). (73)

Let extend(Ei) ∈ O(3) denote any matrix whose first rank(Ei) rows equals to Ei’s first rows.740

Therefore,741

f(s, r⃗) = f(s, r⃗extend(E⃗1)
T ) = g(E⃗1extend(E⃗1)

T , z1) = g(erank(E⃗1)
, z1) = g′(rank(E⃗1), z1).

(74)

Note that rank(E⃗1) = rank(r⃗ − r⃗1) = rank(PE⃗1
(r⃗ − r⃗1)) = rank(ι ◦ φ′ ◦ χ−1(zi)), where ι742

is a selection function: ι(z,−(r⃗ − r⃗0)E⃗
T
1 ) = −(r⃗ − r⃗0)E⃗

T
1 . Therefore, f(s, r⃗) = g′(rank(ι ◦743

χ−1(z1)), z1) = g′′(z1).744

For simplicity, let function ψ denote GNN-LF with node identity features (including adding node745

identity feature, generating frame, and a message passing layer proposed in Theorem 4.1), ψ(z, r⃗) is746

the embeddings of node 1.747

Node identity features help avoiding expressivity loss caused by frame degeneration. However, GNN-748

LF’s output is no longer permutation invariant. Therefore, we use the relational pooling method [28],749

which introduces extra computation overhead and keeps the permutation invariance.750

To illustrate this method, we first define some concepts. Function π : [n]→ [n] is a permutation iff it751

is bijective. All permutation on [n] forms the permutation group Sn. We compute the output of all752

possible atom permutations and average them, in order to keep permutation invariance. We define the753

permutation of matrix here: for all matrix of shape N ×m, ∀π ∈ SN , the ith row of π(M) equals to754

the (π−1(i))th row of M .755
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Proposition H.3. For all O(3)-invariant, permutation-invariant and translation invariant function756

f(s, r⃗), there exists GNN-LF ψ and some function g, with which 1
N !

∑
π∈SN

g(ψ(π(s), π(r⃗))) is757

permutation invariant and equals to f(s, r⃗).758

Proof. Define a "frame" (defined in Definition 1 in [28]) F : V → 2Sn , where V is the embedding759

space. ∀v ∈ V , F (v) = Sn. So the relational pooling of GNN-LF with node identity features760

⟨g ◦ ψ⟩F (s, r⃗) = 1
N !

∑
π∈SN

g(ψ(π(s)), π(r⃗)). Note that the permutation operation π and O(3)761

operation o commute: π(r⃗oT ) = π(r⃗)oT . According to Theorem 2 in [28], ⟨g ◦ ψ⟩F is permutation762

invariant.763

According to Theorem 4 in [28], if there exist function g′ and ψ′ so that g′ ◦ ψ′ = f (the existence is764

shown in Proposition H.2), there will also exist GNN-LF ψ and function g, so that ⟨g ◦ ψ⟩F (s, r⃗) =765

f(s, r⃗).766

Therefore, we can completely solve the frame degeneration problem with the relational pooling trick767

and node identity features. However, the time complexity is up to O(N !N2), so we only analyze this768

method theoretically.769

I Why is global frame more likely to degenerate than local frame?770

Let [N ] denote the sequence 1, 2, ..., N . N is the number of atoms in the molecule.771

We first consider when local frame degenerates. As shown in Theorem 5.1, the degeneration happens772

if and only if the local environment is symmetric under some orthogonal transformations.773

rank(E⃗i) < 3⇔ ∃o ∈ O(3), o ̸= I, {(si, r⃗ijoT )|rij < rc} = {(si, r⃗ij)|rij < rc}. (75)

The global frame has the following form,774

E⃗ =

N∑
i=1

E⃗i. (76)

We first prove some properties of E⃗ function.775

Proposition I.1. E⃗ is an O(3)-equivariant, translation-invariant, and permutation-invariant function.776

Proof. O(3)-equivariance: ∀o ∈ O(3), E⃗i(s, r⃗o
T ) = E⃗i(s, r⃗)o

T . Therefore,777

E⃗(s, r⃗oT ) =

N∑
i=1

E⃗i(s, r⃗o
T ) = (

N∑
i=1

E⃗i(s, r⃗))o
T = E⃗(s, r⃗)oT . (77)

Translation-invariance: For all translation t⃗ ∈ R3, let r⃗ + t⃗ denote a matrix of shape N × 3 whose ith778

row is r⃗i + t⃗. As E⃗i is a function of r⃗i − r⃗j = r⃗i + t⃗− (r⃗j + t⃗), E⃗i(z, r⃗ + t) = E⃗i(z, r⃗). Therefore,779

E⃗(s, r⃗ + t) =

N∑
i=1

E⃗i(s, r⃗ + t) =

N∑
i=1

E⃗i(s, r⃗) = E⃗(s, r⃗). (78)
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Permutation-invariance: for all permutation π ∈ Sn, π(r⃗)i = π(r⃗)π−1(i).780

E⃗(π(s), π(r⃗)) =

N∑
i=1

E⃗i(π(s), π(r⃗)) (79)

=

N∑
i=1

E⃗i({(π(s)j , π(r⃗)i − π(r⃗)j | |π(r⃗)i − π(r⃗)j | < rc}) (80)

=

N∑
i=1

E⃗i({(sπ−1(j), r⃗π−1(i) − r⃗π−1(j))|rπ−1(i)π−1(j) < rc}) (81)

=

N∑
i=1

E⃗i({(sj , r⃗i − r⃗j |rij < rc}) (82)

= E⃗(s, r⃗). (83)

781

Then we prove a sufficient condition for global frame degeneration.782

Proposition I.2. rank(E⃗ < 3) if there exists t⃗ ∈ R3 and o ∈ O(3), o ̸= I such that {(si, r⃗i − t⃗)|i ∈783

[N ]} = {(si, (r⃗i − t⃗)oT )|i ∈ [N ]}.784

Proof. As E⃗ is a permutation invariant function,785

E⃗ = E⃗({(si, r⃗i)|i ∈ [N ]}). (84)

As E⃗ is a translation-invariant and O(3)-equivariant function,786

E⃗({(si, (r⃗i− t⃗)oT )|i ∈ [N ]}) = E⃗({(si, (r⃗i− t⃗))|i ∈ [N ]})oT = E⃗({(si, r⃗i))|i ∈ [N ]})oT . (85)

Therefore, under the condition {(si, r⃗i − t⃗)|i ∈ [N ]} = {(si, (r⃗i − t⃗)oT )|i ∈ [N ]}, we have787

E⃗({(si, r⃗i))|i ∈ [N ]})oT = E⃗({(si, r⃗i))|i ∈ [N ]}), (86)

=⇒ E⃗({(si, r⃗i))|i ∈ [N ]})(I − oT ) = 0. (87)

Therefore, rank(E⃗) + rank(I − oT )− 3 ≤ 0. As I ̸= oT , rank(I − oT ) > 0, rank(E⃗) < 3.788

The main difference between the degeneration conditions is the choice of origin. The local frame of789

atom i degenerates when the molecule is symmetric with atom i as the origin point, while the global790

frame degenerates if the molecule is symmetric with any origin point. Therefore, the global frame is791

more likely to degenerate.792

Corollary I.1. Assume the cutoff radius is large enough so that local environments contain all atoms.793

If there exists i, rank(E⃗i) < 3, then rank(E⃗) < 3.794

Proof. As rank(E⃗i) < 3, ∃o ∈ O(3), o ̸= I, {(sj , (r⃗i − r⃗j)oT )|j ∈ [N ]} = {(sj , (r⃗i − r⃗j))|j ∈795

[N ]}.796

Therefore,797

{(sj ,−(r⃗i − r⃗j)oT )|j ∈ [N ]} = {(sj ,−(r⃗i − r⃗j))|j ∈ [N ]} (88)

=⇒ {(sj , (r⃗j − r⃗i)oT )|j ∈ [N ]} = {(sj , r⃗j − r⃗i))|j ∈ [N ]} (89)

Let t⃗ = r⃗i, according to Proposition I.2, rank(E⃗) < 3.798

Therefore, when the cutoff radius is large enough, the global frame will also degenerate if some local799

frame degenerates.800
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J How does GNN-LF keep O(3)-invariance.801

The input of GNN-LF is atomic numbers z ∈ ZN and 3D coordinates r⃗ ∈ RN×3, where N is the802

number of atoms in our molecule. The energy prediction produced by GNN-LF should be O(3)-803

equivariant. To formalize, ∀o ∈ O(3), GNN-LF(z, r⃗) = GNN-LF(z, r⃗oT ). For example, when the804

input molecule rotates, the output of GNN-LF should not change.805

We state the Definition 2.2 and Lemma 2.1 here again.806

Definition J.1. Representation s is called an invariant representation if s(z, r⃗) = s(z, r⃗oT ),∀o ∈807

O(3), z ∈ ZN , r⃗ ∈ RN×3. Representation v⃗ is called an equivariant representation if v⃗(z, r⃗)oT =808

v⃗(z, r⃗oT ),∀o ∈ O(3), z ∈ ZN , r⃗ ∈ RN×3.809

Lemma J.1.810

1. Any function of invariant representation s will produce an invariant representation.811

2. Let s ∈ RF denote an invariant representation, v⃗ ∈ RF×3 denote an equivariant representation.812

We define s · v⃗ ∈ RF×3 as a matrix whose (i, j)th element is siv⃗ij . When v⃗ ∈ R1×3, we first813

broadcast it along the first dimension. Then the output is also an equivariant representation.814

3. Let v⃗ ∈ RF×3 denote an equivariant representation. E⃗ ∈ R3×3 denotes an equivariant frame.815

The projection of v⃗ to E⃗, denoted as PE⃗(v⃗) := v⃗E⃗T , is an invariant representation in RF×3. For816

v⃗, PE⃗ is a bijective function. Its inverse P−1

E⃗
convert an invariant representation s ∈ RF×3 to an817

equivariant representation in RF×3, P−1

E⃗
(s) = sE⃗.818

4. Projection of v⃗ to a general equivariant representation v⃗′ ∈ RF ′×3 can also be defined. It819

produces an invariant representation in RF×F ′
, Pv⃗′(v⃗) = v⃗v⃗′T .820

As shown in Figure 1, GNN-LF first generates a frame for each atom and projects equivariant features821

of neighbor atoms onto the frame. A graph with only invariant features is then produced. An ordinary822

GNN is then used to process the graph and produce the output. We illustate them step by step.823

Notations. The initial node feature of node i, zi ∈ N, is an integer atomic number, which neural824

network cannot process directly. So we first use an embedding layer to transform zi to float features825

si = s(zi) ∈ RF , where F is the hidden dimension. According to the first point of Lemma J.1, si is826

an invariant representation.827

r⃗i ∈ R1×3, the 3D coordinates of atom i, is an equivariant representation. r⃗ij = r⃗i − r⃗j ∈ R1×3 is828

the position of atom i relative to atom j.829

∀o ∈ O(3), r⃗ij(z, r⃗oT ) = r⃗io
T − r⃗joT = r⃗ij(z, r⃗)o

T , (90)
so r⃗ij is an equivariant representation. rij denotes the distance between atom i and atom j. rij =830 √
r⃗ij r⃗Tij ∈ R. According to the fourth point of Lemma J.1, r⃗ij r⃗Tij is an invariant representation.831

According to the first point of Lemma J.1, rij =
√
r⃗ij r⃗Tij is thus an invariant representation.832

Frame Generation. As shown in Equation 8, our frame has the following form.833

E⃗i =
∑

j ̸=i,rij<rc

w(rij)

rij
(f(rij)⊙ sj) · r⃗ij , (91)

where w(rij) ∈ R and f(rij) ∈ RF denotes two function of rij , ⊙ denotes Hadamard product.834
w(rij)
rij

(f(rij)⊙ sj) as a whole is a function of rij and sj , which are both invariant representations.835

According to the first point of Lemma J.1, w(rij)
rij

(f(rij)⊙ sj) is an invariant representation ∈ RF . ·836

denotes the scale operation described in the second point of Lemma J.1, so w(rij)
rij

(f(rij)⊙ sj) · r⃗ij837

is an equivariant representation. The frame of atom i, namely E⃗i ∈ RF×3, is an equivariant838

representation, because839

E⃗i(z, r⃗o
T ) =

∑
j ̸=i,rij<rc

(
w(rij)

rij
(f(rij)⊙ sj) · r⃗ijoT ), (92)

= (
∑

j ̸=i,rij<rc

w(rij)

rij
(f(rij)⊙ sj) · r⃗ij)oT = E⃗i(z, r⃗)o

T . (93)
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Table 6: Mean average error on the MD17 dataset. Units: energy (E) (kcal/mol) , forces (F)
(kcal/mol/Å).Tuned means GNN-LF with tuned cutoff radius. cf* means GNN-LF with cutoff *Å.
Torchmd is the strongest baseline.

cf3.5 cf4.5 cf5.5 cf6.5 cf7.5 cf8.5 cf9.5 Tuned Torchmd

Aspirin E 0.1544 0.9091 0.1378 0.1896 0.1322 0.1312 0.1312 0.1342 0.1240
F 0.3092 1.6694 0.2164 0.4170 0.1896 0.1954 0.1954 0.2018 0.2550

Benzene E 0.0686 0.0701 0.0696 0.0689 0.0690 0.0694 0.0697 0.0686 0.0560
F 0.1559 0.1490 0.1624 0.1489 0.1496 0.1492 0.1489 0.1506 0.2010

Ethanol E 0.0516 0.0519 0.0523 0.0514 0.0514 0.0514 0.0514 0.0520 0.0540
F 0.0874 0.0885 0.0877 0.0798 0.0798 0.0798 0.0798 0.0814 0.1160

Malonaldehyde E 0.0772 0.0780 0.0784 0.0744 0.0744 0.0747 0.0747 0.0764 0.0790
F 0.1622 0.1623 0.1631 0.1190 0.1128 0.1126 0.1126 0.1259 0.1760

Naphthalene E 0.1153 0.1153 0.1590 0.1148 0.1124 0.1124 0.1124 0.1136 0.0850
F 0.0538 0.0538 0.1261 0.0506 0.0507 0.0507 0.0507 0.0550 0.0600

Salicylic E 0.1110 0.1238 0.1082 0.1090 0.1077 0.1078 0.1085 0.1081 0.0940
F 0.1335 0.1525 0.1037 0.1019 0.1021 0.1014 0.1013 0.1005 0.1350

Toluene E 0.0947 0.1004 0.1601 0.0924 0.0924 0.0924 0.0924 0.0930 0.0740
F 0.0662 0.0664 0.2502 0.0518 0.0518 0.0518 0.0518 0.0543 0.0660

Uracil E 58.794 0.149 0.1037 0.2334 0.1038 0.1039 0.1037 0.1037 0.0960
F 17.0794 0.1106 0.077 0.4496 0.0842 0.0771 0.077 0.0751 0.0940

Projection. Projection is composed of two parts. As shown in Equation 9 and Equation 6.840

d1ij =
1

rij
(r⃗ijE⃗

T
i )d

2
ij = diag(W1E⃗jE⃗

T
i W

T
2 ), (94)

where W1,W2 ∈ RF×F are two learnable linear layers. According to the fourth point of lemma J.1,841

d1ij = r⃗ijE⃗
T
i are invariant representations. According to the fourth point of lemma J.1, E⃗jE⃗

T
i are842

invariant representations. d2ij = diag(W1E⃗jE⃗
T
i W

T
2 ) is a function of E⃗jE⃗

T
i , so d2ij are invariant843

representations.844

Graph Neural Network. We use an ordinary GNN to produce the energy prediction. The GNN845

takes si as the input node features and (rij , d
1
ij , d

2
ij) as the input edge features.846

GNN-LF(z, r⃗) = GNN({si|i = 1, 2, .., N}, {(rij , d1ij , d2ij)|i = 1, 2, .., N, j = 1, 2, .., N}). (95)

As all inputs of GNN is invariant to O(3) operation, the energy prediction will also be O(3)-invariant.847

Our GNN has an ordinary message passing scheme. The message from atom j to atom r is848

mij = f2(rij , d
1
ij , d

2
ij)⊙ sj , (96)

where f ′ is a neural network, whose output ∈ RF . The message combines the features of edge i, j849

and node j. Each message passing layer will update the node feature si.850

si ← si + g(
∑

j∈N(i)

mij), (97)

where g is a multi-layer perceptron, N(i) is the set of neighbor nodes of node i.851

After some message passing processes, si contains rich graph information. The energy prediction is852

Ê = h(

N∑
i=1

si), (98)

where h is a multi-layer perceptron.853

K How cutoff radius affects performance854

Instead of taking a physically motivated cutoff radius, we set it to be a hyperparameter and tune it.855

Intensive hyperparameter tuning may prohibit GNN-LF from real-world applications. However, we856

find that GNN-LF is robust to the cutoff radius and does not need a lot of tuning.857
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Table 7: Results on MD17 with different splits. Units: energy (E) (kcal/mol) , forces (F)
(kcal/mol/Å).

Molecule Target Our split DimeNet split

Aspirin E 0.1342 0.1294
F 0.2018 0.1902

Benzene E 0.0686 0.0695
F 0.1506 0.1477

Ethanol E 0.052 0.051
F 0.0814 0.078

Malonaldehyde E 0.0764 0.074
F 0.1259 0.1147

Naphthalene E 0.1136 0.1138
F 0.055 0.0493

Salicylic acid E 0.1081 0.1072
F 0.1005 0.097

Toluene E 0.093 0.0914
F 0.0543 0.0499

Uracil E 0.1037 0.1033
F 0.0751 0.0763

As shown in Table 6, when the cutoff radius is low, the accuracy is low and unstable. However, when858

the cutoff radius is large enough, GNN-LF outperforms the strongest baseline torchmd and achieves859

the performance of GNN-LF with a tuned cutoff radius.860

L Results with DimeNet split861

Our baselines take slightly different dataset splits. For comparison, we use the same split as our862

strongest baseline [10]. It is also the split with the fewest training and validation samples and, thus,863

the most challenging setting. Other baselines may use slightly larger training and validation datasets.864

For example, in the MD17 dataset, our split uses 950 training samples, while DimeNet uses 1000865

training samples. With the split of DimeNet, the performance of GNN-LF increases by 0.5% on866

average (see Table 7). So the differences in dataset split will not hamper our conclusion: GNN-LF867

achieves state-of-the-art performance in PES tasks.868

M Ablation of frame ensembles869

Though we use an ensemble of frames in implementation, one frame is enough for expressivity in870

expressivity analysis. This section considers GNN-LF with a single frame (1-frame for short).871

The experimental results in MD17 dataset are shown in Table 8. Ablation of frame ensemble leads872

to 10% test loss increase. However, the performance of 1-frame is still competitive, as 1-frame873

outperforms all baselines on 3/16 targets and achieves the second-best performance on 11/16 targets.874

The outstanding performance of GNN-LF validates our expressivity analysis.875

Though frame ensemble is not vital for performance, we always use it in GNN-LF. As GNN-LF876

generates frames and projections only once, using frame ensembles will not lead to significant877

computation overhead. In the setting of Table 4, both 1-frame and GNN-LF with frame ensemble878

take 9 ms per inference iteration.879

N Frame Visualization880

We visualize local frames of atoms in Figure 5. In these molecules, frame vector directions are881

diverse. Therefore, frames are not likely to degenerate, and frames in the same ensemble vary greatly882

rather than collapse into a single frame.883
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aspirin benzene malonaldehyde

naphthalene salicylic_acid ethanol

toluene uracil
Figure 5: Visualization of frames in randomly selected molecules in MD17 dataset. Here frame
vectors are represented as lines rooted in atoms.

O Inplementation of frame-frame projection884

In theory, frame-frame projection is E⃗iE⃗
T
j . However, in implementation, we use diag(W1E⃗iE⃗

T
j W

T
2 )885

(see Equation 10). This section explains the reason for the difference.886

Directly using E⃗iE⃗
T
j leads to large computation overhead. E⃗iE⃗

T
j is a matrix ∈ RF×F , where F887

is the hidden dimension, usually 256. Flattening E⃗iE⃗
T
j and transforming it to F dimension needs888

at least a linear layer with 16M parameters (ten times more than the total number of parameters of889

GNN-LF in MD17 dataset), which is infeasible. Therefore, sampling elements in E⃗iE⃗
T
j is a must.890

Moreover, our sampling method will not hamper expressivity. In theory, frames with 3 vectors and891

3 × 3 frame-frame projections are enough. Therefore, simply selecting a 3 × 3 diagonal block in892

E⃗E⃗T can fulfill the theoretical requirements. We use a learnable process to simulate this operation.893

Now we explain the sampling method in GNN-LF. Note that we do not directly take the diagonals894

of E⃗iE⃗
T
j . Instead, we use diag(W1E⃗iE⃗

T
j W

T
2 ), where W1,W2 ∈ RF×F are two learnable matrix895

used to select elements. Appropriate W1,W2 can select arbitrary F elements in E⃗iE⃗
T
j . For example,896

given897

W1 =

F∑
i=1

1i,ai ,W2 =

F∑
i=1

1i,bi , (99)
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Table 8: Results on the MD17 dataset. Units: energy (E) (kcal/mol) and forces (F) (kcal/mol/Å).

Molecule Target 1-frame DimeNet GemNet PaiNN TorchMD 1-frame GNN-LF

Aspirin E 0.1474 0.204 - 0.1670 0.1240 0.1474 0.1342
F 0.2784 0.499 0.2168 0.3380 0.2550 0.2784 0.2018

Benzene E 0.0692 0.078 - - 0.0560 0.0692 0.0686
F 0.1532 0.187 0.1453 - 0.2010 0.1532 0.1506

Ethanol E 0.0525 0.064 - 0.0640 0.0540 0.0525 0.0520
F 0.0897 0.230 0.0853 0.2240 0.1160 0.0897 0.0814

Malonaldehyde E 0.0789 0.104 - 0.0910 0.0790 0.0789 0.0764
F 0.1651 0.383 0.1545 0.3190 0.1760 0.1651 0.1259

Naphthalene E 0.1138 0.122 - 0.1660 0.0850 0.1138 0.1136
F 0.0606 0.215 0.0553 0.0770 0.0600 0.0606 0.0550

Salicylic acid E 0.1088 0.134 - 0.1660 0.0940 0.1088 0.1081
F 0.1290 0.374 0.1268 0.1950 0.1350 0.1290 0.1005

Toluene E 0.0997 0.102 - 0.0950 0.0740 0.0997 0.0939
F 0.0682 0.216 0.0600 0.0940 0.066 0.0682 0.0543

Uracil E 0.1048 0.115 - 0.1060 0.096 0.1048 0.1037
F 0.0944 0.301 0.0969 0.1390 0.094 0.0944 0.0751

where 1i,j denotes the matrix whose (i, j) elements is 1, other elements are 0,898

diag(W1E⃗iE⃗
T
j W

T
2 ) = [(E⃗iE⃗

T
j )aibi |i = 1, 2, .., F ]. (100)

899
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