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Figure 1: 3D camera control for text-to-video generation. We introduce a method that can control
camera poses for text-to-video generation using video diffusion transformers. (left) The method takes
as input a set of camera poses used to generate each frame of a rendered video. (center, right) Applying
multiple camera trajectories with the same text prompt enables synthesis of complex scenes from a
varied set of viewpoints. Video results: https://snap-research.github.io/vd3d.

ABSTRACT

Modern text-to-video synthesis models demonstrate coherent, photorealistic gener-
ation of complex videos from a text description. However, most existing models
lack fine-grained control over camera movement, which is critical for downstream
applications related to content creation, visual effects, and 3D vision. Recently,
new methods demonstrate the ability to generate videos with controllable cam-
era poses—these techniques leverage pre-trained U-Net-based diffusion models
that explicitly disentangle spatial and temporal generation. Still, no existing ap-
proach enables camera control for new, transformer-based video diffusion models
that process spatial and temporal information jointly. Here, we propose to tame
video transformers for 3D camera control using a ControlNet-like conditioning
mechanism that incorporates spatiotemporal camera embeddings based on Plücker
coordinates. The approach demonstrates state-of-the-art performance for control-
lable video generation after fine-tuning on the RealEstate10K dataset. To the best of
our knowledge, our work is the first to enable camera control for transformer-based
video diffusion models.

1 INTRODUCTION

Text-to-video foundation models achieve unprecedented visual quality (Brooks et al., 2024; Sharma
et al., 2024). They are trained on massive collections of images and videos and learn to synthesize
remarkably consistent and physically plausible visualizations of the world. Yet, they lack built-in
mechanisms for explicit 3D control during the synthesis process, requiring users to manipulate
outputs through prompt engineering and trial and error—a slow, laborious, and computationally
expensive process. For example, as Fig. 2 shows, state-of-the-art video models struggle to follow even
simple “zoom-in” or “zoom-out” camera trajectories using text prompt instructions (see supplemental
webpage). This lack of controllability limits interactivity and makes existing video generation
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Figure 2: Comparing text-to-video, text-to-4D, and camera-conditioned text-to-video generation.
We show time progressing across columns for generated videos from different approaches. Text-
to-4D approaches, such as 4D-fy (Bahmani et al., 2024b) (top), have complete control over the
camera through a 3D representation but lack photorealism. We visualize time progressing while
simultaneously changing the viewpoint. (middle) Methods for text-to-video generation (Menapace
et al., 2024) create realistic videos but do not provide explicit control over the viewpoint. In contrast,
camera-conditioned text-to-video generation (bottom) bridges the gap between the two paradigms by
extending text-to-video generators with 3D camera control without using an explicit 3D representation.
Specifically, we condition VD3D with a zoom-in camera trajectory to control the generation.

techniques challenging to use for artists or other end users. We augment 2D video generation models
with control over the position and orientation of the camera, providing finer-grained control compared
to text prompting, and facilitating use of video generation models for downstream applications.

Several contemporary works (Wang et al., 2023e; He et al., 2024a; Yang et al., 2024b) propose
methods for camera control of state-of-the-art, open-source video diffusion models. The key technical
insight proposed by these methods is to add camera control by fine-tuning the temporal conditioning
layers of a U-Net-based video generation model on a dataset with high-quality camera annotations.
While these techniques achieve promising results, they are not applicable to more recent, high-quality
transformer-based architectures (Vaswani et al., 2017; Peebles & Xie, 2023), such as Sora (Brooks
et al., 2024), SnapVideo (Menapace et al., 2024), and Lumina-T2X (Gao et al., 2024a), as these latest
works simply do not have standalone temporal layers amenable to camera conditioning.

Large video transformers represent a video as a (possibly compressed) sequence of tokens, applying
self-attention layers to all the tokens jointly (Brooks et al., 2024; Menapace et al., 2024). Consequently,
as diffusion transformers do not have standalone temporal layers, they are incompatible with current
camera conditioning approaches. As the community shifts towards large video transformers to jointly
model spatiotemporal dependencies in the data, it is critical to develop methods that provide similar
capabilities for camera control. Our work designs a camera conditioning method tailored to the joint
spatiotemporal computation used in large video transformers and takes a step towards taming them
for controllable video synthesis.

We develop our work on top of our implementation of SnapVideo (Menapace et al., 2024), a state-of-
the-art video diffusion model, that employs Far-reaching Interleaved Transformers (FIT) blocks (Chen
& Li, 2023) for efficient video modeling in the compressed latent space. We investigate various
camera conditioning mechanisms in the fine-tuning scenario and explore trade-offs in terms of visual
quality preservation and controllability. Our findings reveal that simply adapting existing approaches
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to video transformers does not yield satisfactory results: they either enable some limited amount
of control while reducing the visual quality of the output video, or they entirely fail to control
camera motion. Our key technical insight is to enable the control through spatiotemporal camera
embeddings, which we derive by combining Plücker coordinates with the network input through a
separately trained cross-attention layer. To the best of our knowledge, our work is the first to explore
a ControlNet-like (Zhang et al., 2023) conditioning mechanism for spatiotemporal transformers.

We evaluate the method on a collection of manually crafted text prompts and unseen camera trajecto-
ries and compare to baseline approaches that incorporate previous camera control methods into a
video transformer. Our approach achieves state-of-the-art results in terms of camera controllability
and video quality, and also enables downstream applications such as multi-view, text-to-video genera-
tion, as depicted in Figure 1. In contrast to existing image-to-3D methods (e.g., (Liu et al., 2024a;
Qian et al., 2024b; Voleti et al., 2024a)), which are limited to object-centric scenes, our approach
synthesizes novel views for real input images with complex environments.

Overall, our work makes the following contributions.

• We propose a new method to tame large video transformers for 3D camera control. Our
approach uses a ControlNet-like conditioning mechanism that incorporates spatiotemporal
camera embeddings based on Plücker coordinates.

• We thoroughly evaluate this approach, including comparisons to previous camera control
methods, which we adapt to the video transformer architecture.

• We show state-of-the-art results in camera-controllable video synthesis by applying the
proposed conditioning method and fine-tuning scheme to the SnapVideo-based model (Mena-
pace et al., 2024).

2 RELATED WORK

Our method is connected to techniques related to text-to-video, text-to-3D, and text-to-4D generation.
As this is a popular and fast-moving field, this section provides only a partial overview with a focus
on the most relevant techniques; we refer readers to Po et al. (2023) and Yunus et al. (2024) for a
more thorough review of related techniques.

Text-to-video generation. Our work builds on recent developments in 2D video generation models.
One such class of these techniques works by augmenting text-to-image models with layers that
operate on the temporal dimension to facilitate video generation (Blattmann et al., 2023b; Singer
et al., 2023a; Wu et al., 2023; Guo et al., 2024; Blattmann et al., 2023a). Video generation models
can be trained in a hybrid fashion on both images and videos to improve the generation quality (Bain
et al., 2021; Wang et al., 2023b; Xue et al., 2022; Ho et al., 2022a; Guo et al., 2024; He et al., 2022;
Wang et al., 2023c; Zhou et al., 2022). While they are primarily based on convolutional, U-Net-style
architectures, a recent shift towards transformer-based architectures enables synthesis of much longer
videos with significantly higher quality (Brooks et al., 2024; Ma et al., 2024b; Menapace et al., 2024;
Ma et al., 2024a). Still, these methods do not enable synthesis with controllable camera motion.

4D generation. Previous methods also tackle the problem of 4D generation, i.e., generating videos of
dynamic 3D scenes from controllable viewpoints, usually from an input text prompt or image. Since
the initial work on this topic using large-scale generative models (Singer et al., 2023b), significant
improvements in the visual quality and motion quality of generated scenes have been achieved (Ren
et al., 2023; Ling et al., 2024a; Bahmani et al., 2024b; Zheng et al., 2024a; Bahmani et al., 2024a).
While these methods generate scenes based on text conditioning, other approaches convert an input
image or video to a dynamic 3D scene (Ren et al., 2023; Zhao et al., 2023; Yin et al., 2023; Pan et al.,
2024; Zheng et al., 2024a; Ling et al., 2024a; Gao et al., 2024b; Zeng et al., 2024; Chu et al., 2024).
Another line of work (Bahmani et al., 2023a; Xu et al., 2023) extends 3D GANs into 4D by training
on 2D videos, however the quality is limited and models are trained on single category datasets.
All of these methods are focused on object-centric generation, typically based on 3D volumetric
representations. As such, they typically do not incorporate background elements, and overall, they do
not approach the level of photorealism demonstrated by the state-of-the-art video generation models
used in our technique (see Fig. 2).

3



Published as a conference paper at ICLR 2025

Controllable generation with diffusion models. Methods for controllable generation using diffusion
models have had significant impact, both in the context of image and video generation. For example,
existing techniques allow controllable image generation conditioned on text, depth maps, edges,
pose, or other signals (Zhang et al., 2023; Ye et al., 2023). While Chen et al. (2024) developed a
ControlNet-based mechanism for transformer-based diffusion, limited to spatial conditioning with
spatial signals, we explore conditioning mechanisms for camera poses (a spatio-temporal signal with
an intricate temporal component) in a spatio-temporal transformer. Furthermore, there is a line of
work for 3D generation that conditions diffusion models on camera poses for view-consistent multi-
view generation (Watson et al., 2023; Tseng et al., 2023; Chan et al., 2023; Yu et al., 2023a; Kumari
et al., 2024; Müller et al., 2024; Gao et al., 2024c). Our approach is most similar to related techniques
in video generation that seek to control the camera position. For example, MotionCtrl (Wang et al.,
2023e) designs camera and object control mechanisms for the VideoCrafter1 (Chen et al., 2023b) and
SVD (Blattmann et al., 2023a) models. However, MotionCtrl is designed for U-Net-based approaches
and does not directly apply to video diffusion transformers.

Concurrent 3D camera control methods. Concurrent approaches enable camera control by con-
ditioning the temporal layers of the network with camera pose information, e.g., using Plücker
coordinates (He et al., 2024a; Guo et al., 2024; Xu et al., 2024b; Kuang et al., 2024) or other em-
beddings (Yang et al., 2024b). Interestingly, it is also possible to incorporate camera control into
video generation models without additional training through manipulation and masking of attention
layers, though this requires additional tracking, segmentation, or depth for each input video (Hu et al.,
2024; Xiao et al., 2024; Hou et al., 2024). Another recent work (Ling et al., 2024b) transfers motion,
including camera motion, to other generated videos.

Although these approaches demonstrate promising results for U-Net-based video diffusion models,
the techniques are not applicable to modern video transformers that model spatio-temporal dynamics
jointly. While another concurrent work (Watson et al., 2024) uses a transformer-based architecture for
space and time, it does not tackle text-based generation for dynamic scenes but focuses on novel view
synthesis from an input image. In our work, we design an efficient mechanism that enables camera
control in video diffusion transformers using a ControlNet inspired mechanism without sacrificing
visual quality.

3 METHOD

3.1 LARGE TEXT-TO-VIDEO TRANSFORMERS

Text-to-video generation. Diffusion models have emerged as the dominant paradigm for large-
scale video generation (Ho et al., 2022b;a; Brooks et al., 2024). The standard setup considers
the conditional distribution p(x|y) of videos x ∈ RF×H×W (consisting of F frames of H × W
resolution) given their text descriptions y ∈ YL, consisting of L (possibly padded) tokens from the
alphabet Y . Following (Karras et al., 2022), our video diffusion framework assumes a denoising model
Dθ : (x̃;y, σ) 7→ x̂ that predicts a clean video x̂ from the corresponding noised input x̃ = x+ σε,
where ε ∼ N (0, I) is standard Gaussian noise and σ ∼ logN (Pmean, P

2
std) is the noise strength,

sampled from log-normal distribution with location Pmean and scale Pstd. The model is parametrized
by a neural network Fθ(x̃;y, σ) as Dθ(x̃;y, σ) = cout(σ)Fθ(cin(σ)x̃;y, σ) + cskip(σ)x̃, where
cin(σ), cout(σ) and cskip(σ) are input, output and residual scaling factors from (Karras et al., 2022).
The minimization objective is defined as

L(θ) = E
p(x,y,σ,ε)

[
∥Dθ(x+ σε;y, σ)− x∥22

]
. (1)

We refer the reader to (Menapace et al., 2024) and (Karras et al., 2022) for further details on the
diffusion setup, which we adopted without modifications.

Spatiotemporal transformers. Following SnapVideo (Menapace et al., 2024), our video generator
consists of two models: the base 4B-parameters generator, operating on 16-frames 36× 64 resolution
videos, and a 288× 512 upsampler. The latter, a diffusion model itself, is fine-tuned from the base
model and conditioned on the generated low-resolution videos. Each model uses FIT transformer
blocks (Chen & Li, 2023; Jabri et al., 2022) for efficient self-attention operations (see Fig. 3). An
FIT model consists of B blocks (we have B = 6 in all the experiments) and first partitions each
frame in an input video into patches (Dosovitskiy et al., 2021) of resolution hp × wp (we use
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Figure 3: Overview of architecture. We adapt a FIT-based architecture (Chen & Li, 2023) to
incorporate camera control. We take as input the noisy input video x̃, camera extrinsics Cf , and
camera intrinsics Kf for each video frame f . We compute the Plücker coordinates for each pixel
within the video frames using the camera parameters. Both the input video and Plücker coordinate
frames are converted to patch tokens, and we condition the video patch tokens using a mechanism
similar to ControlNet (Zhang et al., 2023) (“Plücker conditioning” block). Then, the model estimates
the denoised video x̂ by recurrent application of FIT blocks (Chen & Li, 2023). Each block reads
information from the patch tokens into a small set of latent tokens on which computation is performed.
The results are written to the patch tokens in an iterative denoising diffusion process.

hp = wp = 4 in all the experiments). These video patches are then independently projected via a
feedforward (FF) layer to obtain a sequence of video tokens v(b)

ℓ:L ≜ (v1, ...,vL) ∈ RL×d of length
L = F × (H/hp)× (W/wp) and dimensionality d. Next, each FIT block “reads” the information
from this video sequence into a much shorter sequence of M latent tokens z(b)

m:M ≜ (z1, ...,zM )
through a “read” cross-attention layer, followed by a feedforward layer. The core processing with
self-attention layers is performed in this latent space, and then the result is written back to the video
tokens through a corresponding “write” cross-attention layer (also followed by an FF layer). The
latent tokens in each subsequent FIT block are initialized from the previous one, which helps to
propagate the computational results throughout the network. In this way, the entire computation
occurs jointly in both spatial and temporal axes, which yields superior scalability (Menapace et al.,
2024). However, it abandons the decomposed spatial/temporal computation nature of modern video
diffusion U-Nets, which modern camera conditioning techniques (Wang et al., 2023e; Yang et al.,
2024b) rely on to enforce control without compromising visual quality.

3.2 CAMERA CONTROL FOR SPATIOTEMPORAL TRANSFORMERS

Spatiotemporal camera representation. The standard way of representing camera parameters
for a video (in the pinhole model) is via a trajectory of extrinsics and intrinsics camera parameters
(Cf ,Kf )

F
f=1 for each f -th frame. The matrix Cf = [R; t] ∈ R3×4, describes the camera rotation

R ∈ R3×3 and translation t × R3, and Kf ∈ R3×3 contains the focal length and principal point
(and also horizontal/vertical skew coefficient, but it is always 0 in our setup). To control camera
motion, existing methods condition the temporal attention layers of U-Net-based video generators on
embeddings computed from these camera parameters (Wang et al., 2023e; Yang et al., 2024b; Hu
et al., 2024). Such a pipeline provides a good conditioning signal for convolutional video generators
with decomposed spatial/temporal computation, but our experiments demonstrate that it works poorly
for spatiotemporal transformers: they either fail to pick up any controllability (when being added
as transformed residuals to the latent tokens), or degrade the visual quality of the output (when
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the original network parameters are being fine-tuned). This motivates us to design a better camera
conditioning scheme, tailored for modern large-scale spatiotemporal transformers.

First, we propose to normalize the camera parameters w.r.t the first frame. For this, we recompute
the rotations and translations for each f -th frame as R′

f = R−1
1 Rf and t′f = tf − t1. This

procedure results in normalized camera extrinsics as Cf
′ = [R′

f ; t
′
f ] and establishes a consistent

coordinate system across different samples in the dataset. After that, we found it essential to enrich
the conditioning information by switching from temporal frame-level camera parameters to pixel-wise
spatiotemporal ones. This is achieved by computing the Plücker coordinates for each pixel, providing
a fine-grained positional representation.

Plücker coordinates provide a convenient parametrization of lines in the 3D space, and we use them
to compute fine-grained positional representations of each pixel in each frame of a video. Given
the extrinsic and intrinsic camera parameters R′

f , t
′
f ,Kf of the f -th frame, we parametrize each

(h,w)-th pixel as a Plücker embedding p̈f,h,w ∈ R6 from the camera position to the pixel’s center as

p̈f,h,w = (tf
′ × d̂f,h,w, d̂f,h,w), d̂f,h,w =

d

∥df,h,w∥
, df,h,w = Rf

′Kf [w, h, 1]
⊤ + tf

′. (2)

This approach mirrors the technique used in recent 3D works (Sitzmann et al., 2021; Chen et al.,
2023a; Kant et al., 2024) as well as CameraCtrl (He et al., 2024a), a concurrent study focusing on
camera control in U-Net-based video diffusion models. The motivation for using Plücker coordinates
is that geometric manipulations in the Plücker space can be performed through simple arithmetics
on the coordinates, which makes it easier for the network to use the positional information stored in
such a disentangled representation.

Computing Plücker coordinates for each pixel results in a P̈ ∈ R6×F×H×W spatiotemporal camera
representation for a video. To input it into the model, we first perform the equivalent ViT-like (Doso-
vitskiy et al., 2021) hp × wp patchification procedure. It is followed by a learnable 2-layered MLP
MLPp̈ with a GELU (Hendrycks & Gimpel, 2016) non-linearity to obtain the Plücker camera tokens
sequence c̈ℓ:L ∈ RL×d of the same length L = F × (H/hp) × (W/wp) and dimensionality d as
the video tokens sequence v

(b)
ℓ:L. This spatiotemporal representation carries fine-grained positional

information about each pixel in a video, making it easier for the generator to accurately follow the
desired camera motion.

Camera conditioning. To input the Plücker embeddings into our video generator, we design an
efficient ControlNet like (Zhang et al., 2023) mechanism tailored for large transformer models (see
Fig. 3). This mechanism is guided by two main objectives: 1) the model should be amenable to rapid
fine-tuning from a small dataset with estimated camera positions; and 2) the visual quality shouldn’t be
compromised during the fine-tuning stage. We found that meeting these objectives is more challenging
for spatiotemporal transformers compared to U-Net-based models with decomposed spatial/temporal
computation, since even minor interventions into their design quickly lead to degraded video outputs.
We hypothesize that the core reason for it is the entangled spatial/temporal computation of video
transformers: any attempt to alter the temporal dynamics (such as camera motion) influences spatial
communication between the tokens, leading to unnecessary signal propagation and overfitting during
the fine-tuning stage. To mitigate this, we input the camera information gradually through read
cross-attention layers, zero-initialized from the original network parameters of the corresponding
layers.

Specifically, in each b-th FIT block of our video generator, we replace its standard read cross-
attention operation (see (Jabri et al., 2022; Menapace et al., 2024) for details):

z′(b)
m:M = FF(b)(XAttn(b)(z

(b)
m:M ,v

(b)
ℓ:L)), (3)

where FF(·) and XAttn(·, ·) denote feed-forward and cross-attention layers respectively. Our revised
formulation is given as:

z′(b)
m:M = FF(b)(XAttn(b)(z(b)

m:M ,v
(b)
ℓ:L)) + Conv(b)res

[
FF(b)

cam(XAttn(b)cam(z
(b)
m:M , c̈ℓ:L + v

(b)
ℓ:L))

]
, (4)

where FF(b)
cam, and XAttn(b)cam are learnable layers, Conv(b)res is a 1-dimensional convolution that processes

camera-augmented latents. The produced latents z′(b)
m:M are then passed to the sequence of four
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Figure 4: Camera-conditioned text-to-video generation. Comparison of the proposed approach
to MotionCtrl and CameraCtrl for the same camera trajectory input. We adapted MotionCtrl and
CameraCtrl to the same transformer-based model for fair comparisons. MotionCtrl exhibits worse
quality due to fine-tuning existing layers, and CameraCtrl is not sensitive to camera conditioning.
See the supplementary webpage for video results.

self-attention layers, which are the core computational component of FIT. It is crucial to instantiate the
weights of the output convolutions Conv(b)

res from zeros to preserve the model initialization. Besides,
we initialize the weights of FF(b)

cam and XAttn(b)
cam from the corresponding parameters of the original

network. This approach helps to preserve visual quality at initialization and facilitates rapid fine-
tuning on a small dataset. As a result, we obtain the method for fine-grained 3D camera control in
large video diffusion transformers. We name it VD3D and visualize its architecture in Figure 3.

3.3 TRAINING DETAILS

To ensure comparability with prior work such as (Wang et al., 2023e), we train our video generator on
the same RealEstate10K dataset (Zhou et al., 2018). We optimize only the newly added parameters
FFp̈ and (FF(b),XAttn(b))Bb=1, and keep the rest of the network frozen. We found that training only
the base 36× 64 model was sufficient, as the 288× 512 upsampler already accurately follows the
camera motion of a low-resolution video.

3.4 DATASET

We fine-tune a text-to-video model, pre-trained on 2D video data, on RealEstate10K (Zhou et al.,
2018). The training split for fine-tuning consists of roughly 65K video clips, and is the same as is
used in concurrent work (MotionCtrl (Wang et al., 2023e) and CameraCtrl (He et al., 2024a)).

3.5 METRICS

We conduct a user study to evaluate our approach for camera-controlled text-to-video generation. The
study participants are presented with 20 side-by-side comparisons between the proposed approach
and the baselines as well as a reference video from RealEstate10K with the same trajectory to better
judge the camera alignment. We ask 20 participants for each generated video sequence to indicate
which generated video they prefer based on multiple submetrics, namely, camera alignment, motion
quality, text alignment, visual quality, and overall preference. The user study involved negligible risk
to the participants and was conducted with appropriate institutional review board and legal approval.
We evaluate our method using 20 camera trajectories sampled from the RealEstate10K test split that
were not seen during training for the user study. We use the full test split combined with unseen text
prompts for the automated camera evaluations, i.e., 6928 unseen camera trajectories combined with
out-of-distribution text prompts.
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3.6 BASELINES

We compare our work to MotionCtrl (Wang et al., 2023e) and the concurrent work CameraCtrl (He
et al., 2024a) by adapting their publicly released code to the same pre-trained video model as ours.
Note that both baselines were originally designed for space-time disentangled U-Net video diffusion
models. Hence, their approaches are not directly applicable to the spatio-temporal transformers, and
so we adapt them to this setting as follows. For MotionCtrl, we omit their object motion control
module and use their proposed camera motion control module to encode the camera parameters into a
context vector used with the SnapVideo model. We fine-tune both the camera motion control module
and the cross attention between the latent vectors and the patches. For CameraCtrl, we fine-tune the
original camera encoder module and use this to produce the latent vectors in the SnapVideo model.
During fine-tuning the model weights are kept frozen—i.e., the same as in our proposed approach.
Furthermore, we include comparisons to the original MotionCtrl and CameraCtrl works built on
the U-Net-based AnimateDiff (Guo et al., 2024) architecture. For fair comparison, we evaluate all
metrics for MotionCtrl (U-Net) and CameraCtrl (U-Net) on the same test sets as our method using
the publicly provided code and checkpoints. Moreover, we provide metrics for the base model used
across all our experiments, i.e., a model without camera injection. We provide more baseline variants
of MotionCtrl and CameraCtrl in the appendix in Sec. B.3.

4 EXPERIMENTS

4.1 ASSESSMENT

We provide a qualitative and quantitative assessment of our approach compared to the baselines in
Fig. 4 and in Tab. 1. Following CameraCtrl (He et al., 2024a), we also evaluate the camera pose
accuracy using ParticleSfM (Zhao et al., 2022) on generated videos in Tab. 2. We use generations for
text prompts from RealEstate10K (Zhou et al., 2018) and MSR-VTT (Xu et al., 2016), testing both
in- and out-of-distribution prompts. Note that we adjust the CameraCtrl (He et al., 2024a) evaluation
pipeline by normalizing all cameras into a unified scale as COLMAP provides different scales across
different scenes. This prevents scenes with large scale to have a higher impact on the errors. Please
also refer to the supplementary webpage for additional video results.

In Fig. 4 we observe that adapting the camera conditioning method from the MotionCtrl degrades
visual quality and text alignment, likely because this approach adjusts the weights of the base video
model. In the space-time U-Net for which this approach was proposed, the temporal layers can be
fine-tuned without sacrificing visual fidelity. Since spatio-temporal transformers do not decompose
temporal and spatial attributes in the same way, the model overfits to the small dataset used to
fine-tune the cross-attention layer. While we observe some agreement with the camera poses used
to condition the model, the text alignment is generally low in our experiments (see supplemental
webpage). In contrast, CameraCtrl keeps the pre-trained video model weights frozen and only trains
a camera encoder. This leads to strong visual quality, but the generated videos show little agreement
with the input camera poses. For fair comparison, we trained all models for the same number of
iterations (described in Sec. 3.3).

The results of the user study in Tab. 1 show that most participants prefer the generated videos using
the proposed camera conditioning mechanism across all evaluated sub-metrics. We also observe
a pronounced preference for the camera alignment of the proposed method compared to the other
baselines. That is, 82% and 78% of participants prefer the camera alignment of the proposed method
compared to our respective adaptations of MotionCtrl and CameraCtrl to the video transformer model.
All results are significant at the p < 0.001 level as evaluated using a χ2 test. We further present
image-based metrics for multi-view generation and video generation quality metrics in the appendix
in Sec. B.1 and Tab. B.2 respectively. The results of our camera pose accuracy evaluation in Tab. 2
further demonstrate that our approach clearly outperforms previous works. Note that the previous
works MotionCtrl and CameraCtrl especially struggle with the rotation accuracy.

4.2 ABLATIONS

Plücker embedding. We motivate our Plücker embedding conditioning mechanism by training a
variant using the raw camera matrices. Concretely, we flatten and concatenate extrinsics and intrinsics

8



Published as a conference paper at ICLR 2025

Table 1: Quantitative results. We compare our method to MotionCtrl and CameraCtrl implemented
on the same base video models as ours. The methods are evaluated in a user study in which participants
indicate their preference based on camera aligntment (CA), motion quality (MQ), text alignment
(TA), visual quality (VQ), and overall preference (Overall). The percentages indicate preference for
VD3D vs. the alternative method (in each row). All results are statistically significant with p < 0.001
as evaluated using a χ2 test.

Human Preference
Method CA MQ TA VQ Overall

VD3D vs. MotionCtrl 82% 81% 86% 81% 84%
VD3D vs. CameraCtrl 78% 64% 63% 65% 66%

Table 2: Camera pose evaluation. We evaluate all models using reference camera trajectories from
the RealEstate10K test set. We compute translation and rotation errors based on estimated camera
poses from generations using ParticleSfM (Zhao et al., 2022).

Method RealEstate10K MSR-VTT

TransError (↓) RotError (↓) TransError (↓) RotError (↓)

Base Model 0.616 0.207 0.717 0.216

MotionCtrl (U-Net) 0.477 0.094 0.593 0.137
CameraCtrl (U-Net) 0.465 0.089 0.587 0.132
MotionCtrl 0.518 0.161 0.627 0.148
CameraCtrl 0.532 0.165 0.578 0.220
Ours 0.409 0.043 0.504 0.050
w/o Plucker 0.517 0.161 0.676 0.156
w/o ControlNet 0.573 0.182 0.787 0.179
w/o weight copy 0.424 0.044 0.513 0.063
w/o add context 0.602 0.212 0.702 0.128
w/o Plucker context 0.487 0.088 0.627 0.091

matrices in the channel dimension and repeat the values in the spatial patch dimensions. We observe
that Plücker embeddings provide an essential spatial conditioning mechanism, as shown in Tab. 2.

ControlNet conditioning. Our ControlNet-inspired conditioning mechanism ensures fast and precise
learning of the conditioning signal distribution. Instead of using a ControlNet block, we simply add
zero-initialized Plücker embedding features to the patches and observe close to no camera control.
We observe training cross-attention layers in the ControlNet block is key to learning camera control
while preserving the original model weights. This is confirmed by our camera evaluation in Tab. 2.

ControlNet weight copy. While the ControlNet block is essential, copying the pre-trained weights
into the new copy has rather minor impact, as shown in Tab. 2. To verify this, we train a model where
we randomly initialize the cross-attention block between patches and latents instead of copying the
weights. We observe similar results, showing that rather the architecture and zero-initialization are
the key component of this design.

Add to context vector. We train a model where we use camera matrices, linearly encode them, and
add them to the context vector as a simple conditioning mechanism for transformer-based models.
The rendered videos show little to no correlation with the input camera matrices, resulting in poor
camera pose accuracy, as shown in Tab. 2. This highlights the importance of carefully incorporating
cameras into the spatio-temporal patches with our Plücker embedding block.

Plücker in context vector. We train a model where we integrate Plücker embeddings into the context
vector instead of the patches. We similarly compute Plücker embeddings, but instead of patchifying
them, we flatten and linearly map the embeddings into a vector that has the same shape as the
context vector. We fuse the Plücker features and context vector using the same Plücker conditioning
mechanism used for the patches. We observe higher camera pose errors in Tab. 2, highlighting that it
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“A bedroom with a bed, lamps and a window” “A house sitting in the middle of a grassy field”Camera “A bedroom with a bed, lamps and a window” “A house sitting in the middle of a grassy field”Camera

Figure 5: Conditional multi-view generation on a real image. We can generate arbitrary camera
trajectories from a given real image for multi-view synthesis, paving the way to single-image scene
reconstruction using camera-controlled video models.

is crucial to incorporate the spatio-temporal Plücker embeddings into the spatio-temporal patches
instead of using the context vector.

4.3 APPLICATIONS

Image-to-video generation. We synthesize camera-controlled videos based on different camera
poses as shown in Fig. 1. For this task we use a version of our pre-trained text-to-video model
that we fine-tune on video sequences where a random subset of the input frames are masked. At
inference time, we can provide image guidance for any of the generated frames, providing an
additional dimension of controllability when paired with our proposed method for camera control.
To demonstrate image-to-video generation in Fig. 1, we condition the model using camera poses
along with image guidance from the first frame of a generated video sequence. Note that our method
provides no control over motion within the scene itself; hence, scene motion can differ depending on
the random seed or the provided camera poses.

Image-to-multiview generation. We also explore multi-view generation for static scenes as shown in
Fig. 5. Given a real input image of a complex scene unseen during training, our camera-conditioned
model generates view-consistent renderings of that scene from arbitrary viewpoints. These multi-view
renderings could be directly relevant to downstream 3D reconstructions pipelines, e.g., based on
NeRF (Mildenhall et al., 2020) or 3D Gaussian Splatting (Kerbl et al., 2023). We show the potential
of camera-conditioned image-to-multiview generation for complex 3D scene generation, but we leave
more extensive exploration of this topic for future work.

5 CONCLUSION

Large-scale video transformer models show immense promise to solve many long-standing chal-
lenges in computer vision, including novel-view synthesis, single-image 3D reconstruction, and
text-conditioned scene synthesis. Our work brings additional controllability to these models, enabling
a user to specify the camera poses from which video frames are rendered.

Limitations and future work. There are several limitations to our work, which highlight important
future research directions. For example, while rendering static scenes from different camera view-
points produces results that appear 3D consistent, dynamic scenes rendered from different camera
viewpoints can have inconsistent motion (see supplemental videos). We envision that future video
generation models will have fine-grained control over both scene motion and camera motion to
address this issue. Further, our approach applies camera conditioning only to the low-resolution
SnapVideo model and we keep their upsampler model frozen (i.e., without camera conditioning)—it
may be possible to further improve camera control through joint training, though this brings additional
architectural engineering and computational challenges. Finally, our approach is currently limited
to generation of relatively short videos (16 frames), based on the design and training scheme of
the SnapVideo model. Future work to address these limitations will enable new capabilities for
applications in computer vision, visual effects, augmented and virtual reality, and beyond.
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6 ETHICS STATEMENT

Broader Impact. Recent video generation models demonstrate coherent, photorealistic synthesis of
complex scenes—capabilities that are highly sought after for numerous applications across computer
vision, graphics, and beyond. Our key technical contributions relate to camera control of these models,
which can be applied to a wide range of methods. As with all generative models and technologies,
underlying technologies can be misused by bad actors in unintended ways. While these methods
continue to improve, researchers and developers should continue to consider safeguards, such as
output filtering, watermarking, access control, and others.

Data. To develop the camera control methods proposed in this paper, we used RealEstate10K (Zhou
et al., 2018). RealEstate10K is released and open-sourced by Google LLC under a Creative Commons
Attribution 4.0 International License, and sourced from content using a CC-BY license. The dataset
can be found under the following URL: https://google.github.io/realestate10k.
The RealEstate10K dataset was published as part of a research paper by Zhou et al. (2018): “Stereo
Magnification: Learning View Synthesis using Multiplane Images" at SIGGRAPH 2018. The
RealEstate10K dataset is a commonly used dataset for 3D reconstruction (Charatan et al., 2024),
3D generation (Gao et al., 2024c), and camera-controlled video generation (Wang et al., 2023e).
Similarly, closely related baselines such as MotionCtrl (Wang et al., 2023e) and CameraCtrl (He
et al., 2024a) use the identical dataset to train and evaluate their camera-controlled video diffusion
models. Hence, we follow an established training and evaluation pipeline without any modifications
to the data.

7 REPRODUCIBILITY STATEMENT

We have structured our paper to ensure comprehensive reproducibility of our camera control method.
Section 3 provides a detailed description of our method, including theoretical foundations and core
algorithmic components. Section 4 presents thorough experimental details, covering evaluation
protocols, metrics, and comparisons with baselines. All implementation specifics, including train-
ing procedures, architectural choices, and hyperparameters, are documented in Appendix C. To
further facilitate reproducibility, we include the source code of our camera-controlled FIT block as
supplementary material. The provided implementation contains the core components necessary to
replicate our approach, accompanied by documentation and usage examples. We welcome requests
for additional technical details or clarifications to support the research community in reproducing and
building upon our work.
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A RELATED WORK

Due to space constraints, we summarize related 3D and an extended list of 4D works in the appendix.

3D generation. Limited to single category trainings, early work on 3D generation extends GANs
into 3D using a neural renderer as an inductive bias (DeVries et al., 2021; Chan et al., 2022; Or-
El et al., 2022; Schwarz et al., 2022; Bahmani et al., 2023b), Towards more diverse and flexible
generation, CLIP-based supervision (Radford et al., 2021) enabled text-based generation and editing
of 3D assets (Chen et al., 2018; Jain et al., 2022; Sanghi et al., 2022; Jetchev, 2021; Gao et al., 2023;
Wang et al., 2022). With recent advances in diffusion models, Score Distillation Sampling (SDS)
replaces CLIP supervision with diffusion model supervision (Poole et al., 2023; Wang et al., 2023d;
Lin et al., 2023a; Chen et al., 2023c; Liang et al., 2023; Wang et al., 2023a; Li et al., 2024d; He et al.,
2024b; Ye et al., 2024; Liu et al., 2024c; Yu et al., 2023b; Katzir et al., 2024; Lee et al., 2024a; Sun
et al., 2024a) for higher quality generation. In order to improve the 3D structure of scenes, another
line of work generates multiple views of a scene (Lin et al., 2023b; Liu et al., 2023; Shi et al., 2024;
Feng et al., 2024a; Liu et al., 2024b; Kim et al., 2023; Voleti et al., 2024b; Höllein et al., 2024).
Alternatively, other methods use iterative inpainting for 3D scene generation (Höllein et al., 2023;
Shriram et al., 2024). Recent methods lift input images into 3D (Chan et al., 2023; Tang et al., 2023;
Gu et al., 2023; Liu et al., 2024d; Yoo et al., 2023; Tewari et al., 2023; Qian et al., 2024c; Long
et al., 2024; Wan et al., 2024; Szymanowicz et al., 2023) using NeRF (Mildenhall et al., 2020), 3D
Gaussian Splatting (Kerbl et al., 2023), or Meshes in combination with diffusion models. Other
recent methods (Hong et al., 2024; Li et al., 2024b; Xu et al., 2024d;c; Zhang et al., 2024a; Han et al.,
2024; Jiang & Wang, 2024; Xie et al., 2024; Tang et al., 2024; Tochilkin et al., 2024; Qian et al.,
2024a; Szymanowicz et al., 2024b;a) tackle fast feed-forward 3D generation, directly predicting a 3D
generation from input images or text. Different from our approach, these methods can only synthesize
static scenes.

4D generation. Previous methods also tackle the problem of 4D generation, i.e., generating videos of
dynamic 3D scenes from controllable viewpoints, usually from an input text prompt or image. Since
the initial work on this topic using large-scale generative models (Singer et al., 2023b), significant
improvements in the visual quality and motion quality of generated scenes have been achieved (Ren
et al., 2023; Ling et al., 2024a; Bahmani et al., 2024b; Zheng et al., 2024a; Gao et al., 2024b; Yang
et al., 2024a; Jiang et al., 2024; Bahmani et al., 2024a; Zhang et al., 2024d; Xu et al., 2024a; Miao
et al., 2024; Li et al., 2024a). While these methods generate scenes based on text conditioning, other
approaches convert an input image or video to a dynamic 3D scene (Ren et al., 2023; Zhao et al., 2023;
Yin et al., 2023; Pan et al., 2024; Zheng et al., 2024a; Ling et al., 2024a; Gao et al., 2024b; Zeng et al.,
2024; Chu et al., 2024; Wu et al., 2024; Yang et al., 2024c; Wang et al., 2024; Feng et al., 2024b; Sun
et al., 2024b; Zhang et al., 2024b; Yu et al., 2024; Ren et al., 2024; Lee et al., 2024b; Li et al., 2024c;
Van Hoorick et al., 2024; Uzolas et al., 2024; Huang et al., 2024; Chai et al., 2024; Liang et al., 2024;
Zhang et al., 2024c). Another line of work (Bahmani et al., 2023a; Xu et al., 2023) extends 3D GANs
into 4D by training on 2D videos, however the quality is limited and models are trained on single
category datasets. Still, all of these methods are focused on object-centric generation, typically based
on 3D volumetric representations. As such, they typically do not incorporate background elements,
and overall, they do not approach the level of photorealism demonstrated by the state-of-the-art video
generation models used in our technique.

B QUANTITATIVE EVALUATION

We further evaluate all models for the task of single image-to-multiview generation. Furthermore, we
provide results for established 2D video generation metrics.

B.1 MULTI-VIEW GENERATION

We evaluate our model for image-to-multiview generation. Due to ground truth correspondences
for the RealEstate10K (Zhou et al., 2018) dataset, we can condition our model on a given camera
trajectory and assess image based metrics, i.e., PSNR, SSIM, and LPIPS. We provide results for the
low-resolution base model and the upsampled high-resolution results in Tab. 3.
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B.2 QUALITY METRICS

Moreover, we evaluate all models on established image and video generation metrics, namely,
FID (Heusel et al., 2017), FVD (Unterthiner et al., 2018), and CLIPSIM (Wu et al., 2021). We
provide results for RealEstate10K (Zhou et al., 2018) and MSR-VTT (Xu et al., 2016) in Tab. 4.

It is important to highlight that FID and FVD are not direct measurements of visual quality—these
metrics measure similarities between dataset distributions. So while fine-tuning on a dataset will
degrade these scores relative to the original model, this degradation is expected because the model is
fitting a different data distribution than the one used in the original training run. The same degradation
in FID after fine-tuning is observed in the original ControlNet paper (Zhang et al., 2023), where the
authors report an increase in FID when comparing the StableDiffusion base model (6.09 FID) to their
fine-tuned ControlNet model (15.27 FID; see their Table 3). We believe that joint training with 2D
video data may help to alleviate this degradation, and we will explore joint training strategies as part
of future work.

B.3 BASELINE VARIANTS

We provide further variants of MotionCtrl and CameraCtrl adopted to the SnapVideo base model.
These variants performed worse than the ones presented in the main paper, hence we mainly show
them here for completeness to show the different implementations we explored.

On top of that, we train a variant of MotionCtrl where instead of integrating the camera matrices
into the context vector, we integrate them into the output of the cross-attention layer between the
latent tokens and patches (as in our approach). We observe degraded camera control compared to our
approach. Moreover, we train a variant of CameraCtrl where we incorporate the Plucker embeddings
of the CameraCtrl camera encoder into the patches instead of the latents. We observe worse camera
control compared to our model. Furthermore, we train a variant of MotionCtrl where we freeze
all base model layers similar to CameraCtrl and our approach. We use the same batch size, same
number of iterations, and same parameter size as our proposed method for fair comparisons. Note
that MotionCtrl unfreezes the attention layer after injecting camera features into the base model.
This experiment highlights that we outperform MotionCtrl independent of training or freezing these
attention layers. We show results for camera pose accuracy, multi-view generation, and video quality
in Tab. 5, Tab. 6, and Tab. 7 respectively.

B.4 GENERALIZATION OF CAMERA TRAJECTORIES

We conduct additional experiments with horizontal and vertical panning, where the camera trajectory
is defined by rotation-only camera matrices without any translation. Specifically, we manually
construct each trajectory by randomly selecting either the x-, y-, or z-axis and randomly sampling
the angular extent of the trajectory (from 0 to 120 degrees). We set the camera translation to the
zero vector. We show results in Tab. 8 and observe higher accuracy for our methods. Furthermore,
we include results for non-random, user-defined camera trajectories that involve camera movements
with significant directional changes including both rotations and translations in Tab. 9. These include
following trajectories: rotation around clockwise; rotation around anticlockwise; rotation clockwise
without translation; rotation anticlockwise without translation; zoom out, then up translation; trans-
lation right, then rotation anticlockwise; translation left, then rotation clockwise; translation left;
translation right; translation up; translation down. We observe that our method generalizes to input
camera trajectories with variable rotations and translations.

B.5 EXPERIMENTS WITH VANILLA DIT

Instead of building upon the FIT (Chen & Li, 2023) architecture, we implemented our VD3D method
on top of a pre-trained text-to-video DiT model (Peebles & Xie, 2023) in the latent space of the
CogVideoX (Yang et al., 2024d) autoencoder. We include these results in Tab. 10 and Tab. 11. Instead
of building on top of read attention in FIT, we incorporate the ControlNet conditioning on top of the
vanilla attention mechanism of the actual tokens. We observe that the vanilla DiT version further
improves quality and camera accuracy on out-of-distribution prompts (MSR-VTT). We believe that
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our proposed method of spatio-temporal Plucker tokens and aligning them with video patch tokens
through a ControlNet-type of conditioning mechanism is agnostic to the transformer architecture and
will serve as a starting point for follow-up works.

Base video DiT architecture details. The video DiT architecture follows the design of other
contemporary video DiT models (e.g., Sora (Brooks et al., 2024), MovieGen (Polyak et al., 2024),
OpenSora (Zheng et al., 2024b), LuminaT2X (Gao et al., 2024a), and CogVideoX (Yang et al.,
2024d)). As the backbone, it incorporates a transformer-based architecture with 32 DiT blocks. Each
DiT block includes a cross-attention layer for processing text embeddings (produced by the T5-11B
model), a self-attention layer, and a fully connected network with a ×4 dimensionality expansion.
Attention layers consist of 32 heads with RMSNorm for query and key normalization. Positional
information is encoded using 3D RoPE attention, where the temporal, vertical, and horizontal axes are
allocated fixed dimensionality within each attention head (using a 2:1:1 ratio). LayerNorm is applied
to normalize activations within each DiT block. A pre-trained CogVideoX autoencoder is utilized for
video dimensionality reduction, employing causal 3D convolution with a 4×8×8 compression rate
and 16 channels per latent token. The model features a hidden dimensionality of 4,096 and comprises
11.5B parameters. It leverages block modulations to condition the video backbone on rectified flow
timestep information, SiLU activations, and 2×2 ViT-like patchification of input latents to reduce
sequence size.

Base video DiT training details. The base DiT model is optimized using AdamW, with a learning
rate of 0.0001 and weight decay of 0.01. It is trained for 750,000 iterations with a cosine learning rate
scheduler in bfloat16. Image animation support is incorporated by encoding the first frame with the
CogVideoX encoder, adding random Gaussian noise (sampled independently from the video noise
levels), projecting via a separate learnable ViT-like patchification layer, repeating sequence-wise to
match video length, and summing with the video tokens. Training incorporates loss normalization
and is conducted jointly on images and videos with variable resolutions (256, 512, and 1024), aspect
ratios (16:9 and 9:16 for videos; 16:9, 9:16, and 1:1 for images), and video lengths (ranging from 17
to 385 frames). Videos are generated at 24 frames per second, and variable-FPS training is avoided
due to observed performance decreases for target framerates without fine-tuning.

Base video DiT inference details. Inference uses standard rectified flow without stochasticity. We
find forty steps to balance quality and sampling speed effectively. For higher resolutions and longer
video generation, a time-shifting strategy similar to Lumina-T2X is used, with a time shift of

√
32

for 1024-resolution videos.

C TRAINING DETAILS

Compute details. A single training run for the smaller 700M parameter generator takes approximately
1 day on a node equipped with 8× NVIDIA A100 40GB GPUs, connected via NVIDIA NVLink,
along with 960 GB of RAM and 92 Intel Xeon CPUs. The larger 4B parameter model was trained on
8 such nodes for 1,5 days, totaling 64× NVIDIA A100 40GB GPUs. In total, we conducted ≈150
training runs for the smaller model during the development stage of 4B generator. Consequently, the
project’s total compute utilization amounted to approximately 2700 NVIDIA A100 40GB GPU-days.

Optimization details. We experiment with two model variants: a smaller generator with approxi-
mately 700 million parameters for ablations and initial explorations, and a larger 4 billion parameter
model, which we use for the main results in this paper. Both models were trained with a batch size
of 256 over 50,000 optimization steps with the LAMB optimizer (You et al., 2019). The learning
rate was warmed up for the first 10,000 iterations from 0 to 0.005 and then linearly decreased to
0.0015 over subsequent iterations. For the large model, VD3D contains 230M trainable parameters in
total which corresponds to around 5% of the total amount. Since the original video diffusion model
is trained in the any-frame-conditioning pipeline (Menapace et al., 2024), we can produce variable
camera trajectories from the same starting frame. For text conditioning, we use the T5-11B (Raffel
et al., 2020) language model to encode text 1024-dimensional embeddings into 128-length sequences.
For training efficiency, they were precomputed for the entire dataset. The rest of the training details
have been adopted from (Menapace et al., 2024).
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Table 3: Multi-view generation. We evaluate all models using reference camera trajectories and
single-view input images of the RealEstate10K test set. We compute reconstruction metrics based on
the subsequent frames for the low-resolution and upsampled high-resolution generations.

Method Low-resolution High-resolution

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Base Model 14.74 0.320 0.334 13.23 0.459 0.572

MotionCtrl (U-Net) 15.35 0.387 0.294 13.64 0.473 0.548
CameraCtrl (U-Net) 15.86 0.412 0.266 13.81 0.479 0.540
MotionCtrl 15.07 0.348 0.308 13.42 0.467 0.560
CameraCtrl 14.81 0.327 0.330 13.21 0.456 0.571
Ours 17.23 0.534 0.211 14.90 0.499 0.499
w/o Plucker 14.89 0.346 0.308 13.05 0.455 0.573
w/o ControlNet 14.66 0.313 0.340 13.10 0.450 0.573
w/o weight copy 16.96 0.509 0.220 14.75 0.495 0.504
w/o add context 14.45 0.303 0.368 13.06 0.446 0.588
w/o Plucker context 14.76 0.322 0.318 13.28 0.463 0.579

Table 4: Quality metrics evaluation. We evaluate all models using text prompts from the
RealEstate10K and MSR-VTT test sets respectively.

Method RealEstate10K MSR-VTT

FID (↓) FVD (↓) CLIPSIM (↑) FID (↓) FVD (↓) CLIPSIM (↑)

Base Model 8.22 160.37 0.2677 3.50 141.26 0.2774
MotionCtrl (U-Net) 2.99 61.70 0.2646 16.85 283.12 0.2411
CameraCtrl (U-Net) 2.48 55.64 0.2681 12.33 201.33 0.2505
MotionCtrl 1.50 52.30 0.2708 9.97 183.57 0.2677
CameraCtrl 2.28 66.31 0.2730 8.47 181.90 0.2690
Ours 1.40 42.43 0.2807 7.80 165.18 0.2689

w/o Plucker 1.17 43.65 0.2715 9.84 152.91 0.2660
w/o ControlNet 3.66 137.06 0.2766 8.34 185.79 0.2674
w/o weight copy 1.38 42.00 0.2710 10.09 218.43 0.2647
w/o add context 1.45 44.74 0.2735 9.56 173.43 0.2657
w/o Plucker context 1.54 43.88 0.2724 8.83 168.95 0.2615

Table 5: Camera pose evaluation with additional baselines. We evaluate additional variants of the
baselines using reference camera trajectories from the RealEstate10K test set. We compute translation
and rotation errors based on estimated camera poses from generations using ParticleSfM (Zhao et al.,
2022).

Method RealEstate10K MSR-VTT

TransError (↓) RotError (↓) TransError (↓) RotError (↓)

MotionCtrl (latents) 0.549 0.183 0.650 0.145
CameraCtrl (patches) 0.587 0.197 0.648 0.233
MotionCtrl (frozen) 0.607 0.205 0.678 0.122
Ours 0.409 0.043 0.504 0.050
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Table 6: Multi-view generation. We evaluate additional variants of the baselines using refer-
ence camera trajectories and single-view input images of the RealEstate10K test set. We compute
reconstruction metrics based on the subsequent frames for the low-resolution and upsampled high-
resolution generations.

Method Low-resolution High-resolution

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

MotionCtrl (latents) 14.67 0.323 0.331 13.23 0.467 0.562
CameraCtrl (patches) 14.42 0.304 0.366 13.04 0.450 0.577
MotionCtrl (frozen) 14.59 0.308 0.340 13.11 0.455 0.573
Ours 17.23 0.534 0.211 14.90 0.499 0.499

Table 7: Quality metrics evaluation with additional baselines. We evaluate additional variants of
the baselines using text prompts from the RealEstate10K and MSR-VTT test sets respectively.

Method RealEstate10K MSR-VTT

FID (↓) FVD (↓) CLIPSIM (↑) FID (↓) FVD (↓) CLIPSIM (↑)

MotionCtrl (latents) 1.83 77.39 0.2788 10.21 187.42 0.2636
CameraCtrl (patches) 2.57 71.04 0.2703 9.84 184.22 0.2612
MotionCtrl (frozen) 3.53 142.15 0.2772 8.19 165.48 0.2679
Ours 1.40 42.43 0.2807 7.80 165.18 0.2689

Table 8: Camera pose evaluation for random rotation trajectories. We evaluate all models
using trajectories with randomly selected x-, y-, or z-axis and randomly sampled angular extent of
the trajectory. We compute translation and rotation errors based on estimated camera poses from
generations using ParticleSfM (Zhao et al., 2022).

Method RealEstate10K MSR-VTT

TransError (↓) RotError (↓) TransError (↓) RotError (↓)

MotionCtrl 0.396 0.087 0.417 0.120
CameraCtrl 0.381 0.092 0.433 0.138
Ours 0.202 0.037 0.265 0.044

Table 9: Camera pose evaluation for random trajectories with translations and rotations. We
evaluate all models using 11 trajectories for 1000 prompts with trajectories that involve significant
directional changes including both rotations and translations. We compute translation and rotation
errors based on estimated camera poses from generations using ParticleSfM (Zhao et al., 2022).

Method RealEstate10K MSR-VTT

TransError (↓) RotError (↓) TransError (↓) RotError (↓)

MotionCtrl 0.451 0.095 0.456 0.146
CameraCtrl 0.369 0.088 0.479 0.135
Ours 0.236 0.041 0.258 0.050
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Table 10: Camera pose evaluation with vanilla video DiT backbone. We incorporate our approach
into a pre-trained vanilla DiT model in the latent space of CogVideoX (Yang et al., 2024d). We
compute translation and rotation errors based on estimated camera poses from generations using
ParticleSfM (Zhao et al., 2022).

Method RealEstate10K MSR-VTT

TransError (↓) RotError (↓) TransError (↓) RotError (↓)

MotionCtrl 0.501 0.145 0.602 0.152
CameraCtrl 0.513 0.138 0.559 0.195
Ours 0.421 0.056 0.486 0.047

Table 11: Quality metrics evaluation with vanilla video DiT backbone. We incorporate our
approach into a pre-trained vanilla DiT model in the latent space of CogVideoX (Yang et al., 2024d).
We evaluate additional variants of the baselines using text prompts from the RealEstate10K and
MSR-VTT test sets respectively.

Method RealEstate10K MSR-VTT

FID (↓) FVD (↓) CLIPSIM (↑) FID (↓) FVD (↓) CLIPSIM (↑)

MotionCtrl 1.37 44.62 0.2752 9.68 157.90 0.2684
CameraCtrl 2.13 53.72 0.2748 8.32 152.88 0.2723
Ours 1.21 38.57 0.2834 6.88 137.62 0.2790
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