
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Decoder-Only LLMs are Better Controllers for Diffusion Models
Anonymous Authors

Text Prompt: Envision a secluded beach at twilight, where the last golden rays of the sun
cast a soft glow on the rugged cliffs. The sky is a tapestry of pink and purple, with the early
evening stars just beginning to emerge. Waves gently lap against the shore, where a lone,
ancient oak tree stands, its twisted roots spilling out onto the white sand. Nearby, a
weathered boat rests in the sand, abandoned, its paint peeling and sails tattered. In the
background, a lighthouse perches precariously at the cliff’s edge, its beacon flickering to life
as the light fades. The scene is one of serene isolation, untouched by the rush of modern
life, a timeless testament to nature's quiet majesty.

Text Prompt: In the room, there is a transparent glass vase filled with beautiful pink roses.
Three lemons are placed next to the vase on a table. The table is a next to a green couch.
The couch is adorned with two pillows, One is pink and the other has a green and gray
pattern. The floor is covered with wooden flooring. The walls are painted with latex paint.
The ceiling is made of plaster and has a line-shaped design. The room has a large window,
providing ample natural light.

Dalle-3 Ours Dalle-3 Ours

Figure 1: Comparison of our LLMDiff with DALL-E 3 [2]. The pink texts represents the parts that our model has understood
but DALL-E 3 has not. Diffusion Models like DALL-E 3 that are based on text encoders are prone to neglecting details when
interpreting long complex texts, and they lack a comprehensive understanding of entity relationships. Instead, our model,
which employs a decoder-only LLM, can more effectively grasp semantic and logical relationships between entities. As a result,
it generates images that more accurately align with the user’s intent.

ABSTRACT
Groundbreaking advancements in text-to-image generation have
recently been achieved with the emergence of diffusion models.
These models exhibit a remarkable ability to generate highly artistic
and intricately detailed images based on textual prompts. However,
obtaining desired generation outcomes often necessitates repetitive
trials of manipulating text prompts just like casting spells on a
magic mirror, and the reason behind that is the limited capability
of semantic understanding inherent in current image generation
models. Specifically, existing diffusion models encode the input
text prompt with a pre-trained encoder structure, which is usually
trained on a limited amount of image-caption pairs. State-of-the-art
large language models (LLMs) based on the decoder-only structure
have shown very powerful semantic understanding capability as
their architectures are more suitable for training on very large-
scale unlabeled data. In this work, we propose to enhance text-
to-image diffusion models by borrowing the strength of semantic
understanding from large language models (LLMs), resulting in
a simple yet effective adapter to allow the diffusion models to be

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
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and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
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compatible with the decoder-only structure. In the evaluation, we
conduct not only extensive empirical results but also the supporting
theoretical analysis with various architectures (e.g., encoder-only,
encoder-decoder, and decoder-only). The experimental results show
that the enhanced models with our adapter module are superior
to the stat-of-the-art models in terms of text-to-image generation
quality and reliability.

1 INTRODUCTION
Image generative models have progressed explosively in recent
years, with the prevalence of Generative Adversarial Networks
(GANs) and diffusion models. Text-to-image generation methods
such as Stable Diffusion [24, 27], DALL-E 3 [2], and Imagen [28] are
capable of synthesizing high-quality images by taking textual de-
scriptions (prompts) as the input. One key step of these models is to
understand the user intention and semantic meanings from the text
prompts and encode them to text features for further driving image
content generation with diffusion models. To this end, most of the
existing methods adopt an encoder-based language model struc-
ture (e.g., CLIP [25] or T5 [26]), which were pre-trained on limited
amount of image-caption pairs or texts pairs due to the expensive
data annotation cost, resulted in the unsatisfying performance for
the image generation quality and reliability. As a result, obtaining
a user-desired image with these methods is very hard especially
with a purpose of generating a complex and detail-rich image, and
repetitive trials on manipulating the text prompts are nearly a must
have. For example, as shown in Fig. 1, the state-of-the-art DALL-E

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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CrossAttention

Encoder-Decoder Decoder-only with LLMDiff

SelfAttention Word Only

LLMDiff

LLM
D

iff
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Figure 2: Comparison with other neural network structures employed for computing text encoding in diffusion models. Our
proposed LLMDiff, which leverages a decoder-only structure with casting the transformer-based language model as a diffusion
model, can predict the text encodings for text-to-image generation by integrating layer-wise representations in the language
model. Intuitively, compared with other structures (e.g. encoder-decoder) our LLMDiff is more powerful on exploring the
semantic meanings and dependency among words from the input text prompt. Please refer more details and theoretical
derivations in Sec. 3.4.

3 fails to comprehend the entities and their relationships described
in the complex prompts, resulting in numerous omissions.

On the other hand, we have also witnessed a very fast devel-
opment on the Large Language Models (LLMs), e.g., GPT-4 [22],
PaLM [7] and Llama2 [14], which have show very incredible power
on semantic understanding, reasoning and naturally interacting
with human. These LLMs mainly employ the decoder-only struc-
ture that can be trained on a massive scale of unlabeled textual data.
Unfortunately, bridging the ability of LLMs with current diffusion-
based text-to-image generation framework is unexplored due to
the incompatibility of these two model architectures. Some recent
attempts have made on borrowing the ability of LLMs for enhanc-
ing the text-to-image generation performance with the diffusion
models [11, 18]. Their approaches proposed to enrich or rewrite
the user text prompt through LLMs and still rely on the vanilla
text encoders to guide the image generation process within the
diffusion models, leading to sub-optimal performance.

To tackle this challenge, we propose a novel and general ap-
proach to upgrading various text-to-image diffusion models by bor-
rowing the strength of semantic understanding from large language
models (LLMs). In particular, we reveal that a Transformer-based
language model (e.g. ChatGPT [22]) can be rephrased as the denois-
ing steps in Denoising Diffusion Probabilistic Models (DDPMs) [12].
Viewing LLMs as diffusion models, we have further derived theo-
retical underpinnings for extracting text encodings from the blocks
of LLMs. These findings drive us to attach a simple yet effective
network module to the cross-attention part of the denoising U-Net.
as shown in Fig. 2. And this module enable us to effectively inte-
grate block-wise representations within the language model for
generating the text encoding of the input text prompt, which can
accurately capture the semantic meanings and contextual depen-
dency among words due to the power of pre-trained LLMs. We
name this module as LLMDiff-Adapter as it can be very compatible

plug and play component for connecting LLMs with various text-
to-image diffusion models and gaining conspicuous improvement.
As some examples shown in Fig. 1, the results generated by our
model can better preserve the semantic meanings and user intent
from the input prompts, e.g. well representing the entities and their
relationships for the image generation.

In the evaluation, we conduct a comparative analysis on different
text-to-image models on the same benchmarks. We compared the
performance of using our proposed LLMDiff-Adapter against other
architectures, e.g. simply connecting the output of decoder-only
LLMs or adopting encoder structure such as CLIP [25] and T5 [26]
through linear layers to the diffusion models. The experimental re-
sults show that our model achieve superior performance among the
competitions in several aspects, including the quality of generated
image details, logical coherence, and comprehensive understand-
ing of the text descriptions. The relevant quantitative results are
also presented for underscoring the effectiveness of our approach
in solving the limitations of current diffusion-based text-to-image
generation methods.

2 RELATEDWORKS
2.1 Text-to-Image Diffusion Models
Recently, diffusion-based image generation models have achieved
remarkable success. These models learn to iteratively denoise a
noisy image and generate the image progressively [12]. Compared
to GAN-based methods, diffusion models are more stable in training
and able to generate more diverse images. With the advent of diffu-
sion models incorporating guidance mechanisms [13, 19], there has
been a notable advancement in the performance of diffusion mod-
els. For the first time, diffusion models beat GANs in conditional
generation tasks. Ever since, the focus of research on text-to-image
synthesis has gradually shifted fromGAN to Diffusion [5, 15, 16, 21].
Some large-scale text-to-image models [2, 10, 27, 31] have achieved
highly accurate and fine-grained controllable semantic generation.
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The recently proposed latent diffusion model (LDM) [27] unprece-
dentedly makes high-resolution and high-quality text-to-image
models become a reality. Based on LDM, DALL-E 3 [2] has ushered
the text-to-image models into unprecedented levels, leveraging
powerful text encoders and high-quality data.

2.2 Large Language Models
In recent years, large-scale language models with billions of pa-
rameters have demonstrated remarkable performance across var-
ious natural language understanding and generation tasks. The
dominant form of language models shifted from BERT-like mod-
els [9, 20] that focus on language understanding to the currently
prevalent generative language models with decoder-only architec-
tures [7, 14, 17, 22]. These decoder-only models have successfully
unified awide spectrum of tasks, showing commendable proficiency
in dialogue interactions. Even in language comprehension tasks,
[4, 8] also shows that CLIP and BERT style text encoders perform
worse than decoder-only LLMs. Moreover, recent models exhibit
the ability of in-context learning [3], enabling them to adaptively
leverage contextual information to accomplish downstream tasks.

2.3 LLMs for Text-to-Image Generation
Existing text-to-image diffusion models are primarily based on
encoder-structured text models like CLIP and T5. However, there
are ongoing efforts of works that seek to explore the potential for
transposing the wealth of knowledge inherent in Large Language
Models (LLMs) into existing diffusion frameworks. Certain research
endeavors, such as [11, 18], have attempted to utilize LLMs to pre-
dict the layout of objects, thereby enhancing the logical coherence
and overall quality of the images produced by diffusion models.
This is achieved by employing LLMs to rewrite the prompts, en-
suring a better alignment between the generated images and the
input text. Another approach [1] attempts to use LLMs to help users
construct better prompts, leveraging the capabilities of LLMs to
generate superior images.

While these pioneering efforts are indeed instrumental in inte-
grating the knowledge of LLMs into diffusion models, they pre-
dominantly employ indirect methods to bridge the gap between
them, and thus, are inherently constrained by the limitations of the
inefficient text encoder. In contrast, we propose a novel method
that directly integrates the output of the LLM into the existing
diffusion model. By completely discarding the text encoder, we aim
to liberate the text-to-image diffusion models from the bottleneck
of language comprehensibility, which may significantly enhance
their performance in controllable image generation.

3 A NEW CONTROLLER FOR TEXT-TO-IMAGE
GENERATION

In this section, we elucidate the theoretical analysis for extract-
ing text encodings from decoder-only LLMs. Initially, we reveal
that Transformer-based LLMs can be rephrased as diffusion model.
Within this view, we pinpoint a specific timestep in the decoder
component of an encoder-decoder LLM to deduce the encoder’s
text encoding distribution from its input and output. This deduction
is then extended to decoder-only models, leading to the conclusion

that text encodings can be estimated from the outputs generated
for sentences and words at each timestep.

3.1 Text-to-Image Diffusion Models
Text-to-image diffusion models typically employ an encoder to en-
code textual inputs 𝑥 with 𝑑-1 tokens as control conditions 𝑐<𝑑 .
Sequentially, those text encodings 𝑐<𝑑 are decoded for image gen-
eration through the diffusion model, i.e., 𝑝 (𝑧𝑡−1 |𝑧𝑡 , 𝑐<𝑑 ), where 𝑧𝑡
is the latent at timestep 𝑡 , or for text generation via a text decoder,
i.e., 𝑝 (𝑥𝑑 |𝑐<𝑑 ), where 𝑥𝑑 is the 𝑑-th predicted token.

Typically, the text encoder utilized by diffusion models is derived
from pre-trained models such as encoder-only or encoder-decoder
LLMs. However, despite their impressive generative performance,
decoder-only LLMs are not applicable to text-to-image generation.
This is because these models directly generate tokens, making it
infeasible to get text features 𝑐 directly.

3.2 LLMs as Diffusion Models
We revisit the transformer-based LLMs from a probabilistic per-
spective, to help to derive the formal modeling of text encodings for
text-to-image generation. Considering that LLMs in a transformer
architecture have a sequence of transformer blocks with the same
structure, it is intuitive to model the forward process in a diffusion-
like manner. Take an encoder-only LLM, CLIP, for example. Each
input token is first fed into an embedding layer. For similarity, the
output of the embedding layer for the 𝑑-th token is taken as the in-
put, denoted as 𝑥𝑇

𝑑
. Then, it goes through𝑇 transformer blocks that

perform the causal attention masks in self-attention, which can be
represented as 𝑝𝜃𝑡 (𝑥𝑡−1𝑑

|𝑥𝑡
𝑑
, 𝑥𝑡

<𝑑
) for the 𝑡-th block parameterized

𝜃𝑡 . This process is akin to the denoising process of DDPM with
conditioning. So, the transformer-based LLMs can be viewed as
diffusion models. Thus, we can leverage the dynamical properties
and theoretical frameworks of diffusion models to analyze various
structures of LLMs with a causal mask.

Moreover, the prediction of the model can be formulated as:

𝑝𝜃 (𝑐𝑑 |𝑥≤𝑑 ) = 𝑝 (𝑥𝑇
𝑑
)

𝑇∏
𝑡=1

𝑝𝜃𝑡 (𝑥𝑡−1𝑑
|𝑥𝑡
𝑑
, 𝑥𝑡

<𝑑
) (1)

3.3 Text Encodings from Encoder-Decoder LLMs
For an encoder-decoder LLM, the encoder model processes con-
textual text, encoding it into a feature representation, i.e., text en-
codings 𝑐<𝑑 . Subsequently, the decoder model utilizes these text
features to generate words with 𝑝𝜃𝑡 (𝑥𝑡−1𝑑

|𝑥𝑡
𝑑
, 𝑐<𝑑 ). Thus, each block

in the decoder utilizes the same condition 𝑐<𝑑 . Using the input 𝑥𝑡𝑑
and output 𝑥𝑡−1

𝑑
of any block, the encoding 𝑐<𝑑 from the encoder

is estimated through Bayes’ theorem:

𝑝 (𝑐<𝑑 |𝑥𝑡−1𝑑
, 𝑥𝑡

𝑑
) =

𝑝 (𝑥𝑡−1
𝑑

, 𝑥𝑡
𝑑
|𝑐<𝑑 )𝑝 (𝑐<𝑑 )

𝑝 (𝑥𝑡−1
𝑑

, 𝑥𝑡
𝑑
)

(2)

3.4 Text Encodings from Decoder-only LLMs
For a decoder-only LLM, it is not directly available for textual fea-
tures, i.e., text encodings 𝑐 in encoder-decoder LLMs. Functioning as
a generative model, it can be conceptualized as predicting the next
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token based on conditions from the preceding tokens. Those con-
textual conditions are changing, not shared like encoder-decoder
LLMs. Namely, when predicting the 𝑑-th word, the preceding 𝑑-1
words collectively serve as its contextual condition,

𝑝𝜃 (𝑥𝑑 |𝑥<𝑑 ) = 𝑝 (𝑥𝑇
𝑑
)

𝑇∏
𝑡=1

𝑝𝜃𝑡 (𝑥𝑡−1𝑑
|𝑥𝑡
𝑑
, 𝑥𝑡

<𝑑
) (3)

Accordingly, given the input 𝑥𝑡
𝑑
and output 𝑥𝑡−1

𝑑
of transformer

blocks, the estimation of 𝑝 (𝑥𝑡
<𝑑
|𝑥𝑡−1
𝑑

, 𝑥𝑡
𝑑
) can be derived as follows,

𝑝𝜃𝑡 (𝑥𝑡<𝑑 |𝑥
𝑡−1
𝑑

, 𝑥𝑡
𝑑
) =

𝑝 (𝑥𝑡−1
𝑑

, 𝑥𝑡
𝑑
|𝑥𝑡
<𝑑
)𝑝 (𝑥𝑡

<𝑑
)

𝑝 (𝑥𝑡−1
𝑑

, 𝑥𝑡
𝑑
)

=
𝑝 (𝑥𝑡−1

𝑑
|𝑥𝑡≤𝑑 )𝑝 (𝑥

𝑡
𝑑
|𝑥𝑡
<𝑑
)𝑝 (𝑥𝑡

<𝑑
)

𝑝 (𝑥𝑡−1
𝑑
|𝑥𝑡
𝑑
)𝑝 (𝑥𝑡

𝑑
)

=
𝑝 (𝑥𝑡−1

𝑑
|𝑥𝑡≤𝑑 )𝑝 (𝑥

𝑡
<𝑑
|𝑥𝑡
𝑑
)

𝑝 (𝑥𝑡−1
𝑑
|𝑥𝑡
𝑑
)

∝ 𝑝 (𝑥𝑡−1
𝑑
|𝑥𝑡
𝑑
, 𝑥𝑡

<𝑑
)︸              ︷︷              ︸

block prediction of sentence

/ 𝑝 (𝑥𝑡−1
𝑑
|𝑥𝑡
𝑑
)︸       ︷︷       ︸

block prediction of single words

(4)

where 𝑝 (𝑥𝑡−1
𝑑
|𝑥𝑡
𝑑
, 𝑥𝑡

<𝑑
) is the generative LLM’s prediction for 𝑥𝑡

𝑑
.

Most existing LLMs employ a causal mask as the attention mask.
Consequently, 𝑝 (𝑥𝑡−1

𝑑
|𝑥𝑡
𝑑
) can be obtained by feeding 𝑥𝑡

𝑑
alone into

the LLM, i.e., 𝑝 (𝑥𝑡−1
𝑑
|𝑥𝑡
𝑑
) = 𝑝 (𝑥𝑡−1

𝑑
|𝑥𝑡
𝑑
, ∅).

However, it is still intractable to compute the text encodings 𝑐
from decoder-only LLMs. Notably, 𝑥𝑡

<𝑑
is taken as the condition of

the next token prediction, playing the similar role of 𝑐<𝑑 in encoder-
decoder LLMs. Thus, there exists a 𝑐<𝑑 for decoder-only LLMs,
which is the unbiased estimator of 𝑥<𝑑 . Given that the decoder-only
LLM can be viewed as diffusion model, we can estimate the score
function of 𝑝 (𝑐<𝑑 |𝑥𝑡−1𝑑

, 𝑥𝑡
𝑑
) through 𝑝𝜃𝑡 (𝑥𝑡<𝑑 |𝑥

𝑡−1
𝑑

, 𝑥𝑡
𝑑
), thereby ob-

taining the text encoding 𝑐<𝑑 . In accordance with Eqn. (4), the score
function of 𝑝𝜃𝑡 (𝑐<𝑑 |𝑥𝑡−1𝑑

, 𝑥𝑡
𝑑
) can be approximated as follows:

∇𝑐 log 𝑝𝜃𝑡 (𝑐<𝑑 |𝑥𝑡𝑑 , 𝑥
𝑡−1
𝑑
) ≈

𝑔(𝑡) (∇𝑥 log 𝑝𝜃𝑡 (𝑥𝑡−1𝑑
|𝑥𝑡
𝑑
, 𝑥𝑡

<𝑑
) − ∇𝑥 log𝑝𝜃𝑡 (𝑥𝑡−1𝑑

|𝑥𝑡
𝑑
)),

(5)

where 𝑔(𝑡) is a scalar function that is dependent on the time step
𝑡 . Furthermore, from Eqn. (1), by modeling an LLM as a diffusion
process, the score function for 𝑝 (𝑐<𝑑 |𝑥) can be approximated as:

∇𝑐 log𝑝𝜃𝑡 (𝑐<𝑑 |𝑥𝑡𝑑 , 𝑥
𝑡−1
𝑑
) ≈

𝑔(𝑡)
(
log𝑝𝜃𝑡 (𝑥𝑡𝑑 |𝑥

𝑡+1
≤𝑑 ) − log𝑝𝜃𝑡 (𝑥

𝑡−1
𝑑
|𝑥𝑡≤𝑑 )

)
−𝑔(𝑡)

(
log𝑝𝜃𝑡 (𝑥𝑡𝑑 |𝑥

𝑡+1
𝑑
) − log𝑝𝜃𝑡 (𝑥𝑡−1𝑑

|𝑥𝑡
𝑑
)
)
.

(6)

Taking into account the stochastic nature of generative language
models during sampling, we can use this score function to perform
Langevin dynamics sampling to obtain the final text encoding for
image generation:

𝑐𝑡−1
<𝑑

= 𝑐𝑡
<𝑑
+ ∇𝑐 log𝑝𝜃𝑡 (𝑐<𝑑 |𝑥𝑡𝑑 , 𝑥

𝑡+1
𝑑
) +

√︁
2ℎ(𝑡)𝜖𝑡 , (7)

where ℎ(𝑡) is a learnable function, and 𝜖𝑡 ∼ N(0, 𝐼 ).

4 LLMDIFF ADAPTER
4.1 Decoder-only LLMs as Diffusion Controller
As discussed in Sec. 3, we can derive text encodings suitable for
controlling diffusion image generation models from decoder-only

Algorithm 1: Text encoding from decoder-only LLMs
Input: Text input 𝒙 with length 𝐷 , embedding layer 𝜔 .

1 𝒄 = 𝜔 (𝒙) ∼ 𝑝 (𝒄𝑇 ) ; // Initial the text diffusion process.

// denoise steps.

2 for 𝑡 = 𝑇 to 1 do
3 for 𝑑 = 1 to 𝐷 do

// estimate ∇𝑥 log𝑝𝜃𝑡 (𝑥𝑡−1𝑑
|𝑥𝑡

𝑑
, 𝑐<𝑑 ).

4 𝑠𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ← 𝑔(𝑡)𝑆𝜃𝑡 (𝑥𝑡−1𝑑
, 𝑥𝑡

𝑑
, 𝑥𝑡

<𝑑
);

// estimate ∇ log𝑝𝜃𝑡 (𝑥𝑡−1𝑑
|𝑥𝑡

𝑑
).

5 𝑠𝑤𝑜𝑟𝑑 ← 𝑔(𝑡)𝑆𝜃𝑡 (𝑥𝑡−1𝑑
, 𝑥𝑡

𝑑
);

6 ∇ log 𝑝𝜃𝑡 (𝑐<𝑑 |𝑥𝑡𝑑 , 𝑥
𝑡−1
𝑑
) ← 𝑠𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 − 𝑠𝑤𝑜𝑟𝑑 ;

7 end
8 𝜖𝑡 ∼ N(0, 1);
9 𝒄 ← 𝒄 + ∇ log 𝑝𝜃𝑡 (𝑐<𝑑 |𝑥𝑡𝑑 , 𝑥

𝑡−1
𝑑
) +

√︁
2ℎ(𝑡)𝜖𝑡 ;

10 end
Output: 𝒄

LLMs utilizing Langevin dynamics:

𝑐<𝑑 = 𝑐𝑇
<𝑑
+

𝑡=0∑︁
𝑇−1

(
∇𝑐 log𝑝𝜃𝑡 (𝑐<𝑑 |𝑥𝑡𝑑 , 𝑥

𝑡+1
𝑑
) +

√︁
2ℎ(𝑡)𝜖𝑡

)
. (8)

Leveraging the residual structure of existing transformer blocks and
by combining Eqns. (5) and (6), we can transform these transformer
blocks to derive the model for predicting scores: 𝑆𝜃𝑡 (𝑥𝑡−1𝑑

, 𝑥𝑡≤𝑑 ) ≈
∇𝑥 log𝑝 (𝑥𝑡−1𝑑

|𝑥𝑡
𝑑
, 𝑥𝑡

<𝑑
), 𝑆𝜃𝑡 (𝑥𝑡−1𝑑

, 𝑥𝑡
𝑑
) ≈ ∇𝑥 log𝑝 (𝑥𝑡−1𝑑

|𝑥𝑡
𝑑
). Accord-

ingly, the estimation of 𝑐 is implemented by Algorithm 1. Based
on this text encoding, we can construct an adapter to integrate
decoder-only LLMs into existing diffusion models. In contrast to the
primary practice of merely employing LLMs for text optimization
and subsequently encoding texts via a text encoder with inherent
performance limitations, text encodings derived from LLMs to con-
trol the generation process of diffusion models can be a superior
alternative for diffusion model training from scratch or adaption
in a pre-trained diffusion model. In the following, we will elabo-
rate an effective adaptor in a pre-trained diffusion model for image
generation.

4.2 LLMDiff Adapter: Bridging Decoder-Only
LLMs and Pre-trained Diffusion Models

To leverage the pre-trained knowledge of existing diffusion models
more effectively, we propose an LLMDiff Adapter incorporating text
encoding from generative decoder-only LLMs into a pre-trained
text-to-image diffusion model, as illustrated in Fig. 3. The original
cross-attention module is aligned with the preceding text encoder,
and it is what actually imposes a bottleneck on the comprehen-
sion of user prompts. However, it still holds a wealth of knowledge
and insights for text-to-image generation, learned during the pre-
training phase. Therefore, we keep the original cross-attention
module intact and align it with the encoding derived from LLMs
through linear layers. This enables effective utilization of the knowl-
edge of large-scale pre-trained models, preserving basic generation
capabilities.

Simultaneously, an additional cross-attention module is intro-
duced to learn how to better generate images based on the text
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Figure 3: Our LLMDiff-Adapter framework, wherein the parameters of both the LLM and the diffusion U-Net (including the
original cross-attention module) are frozen during training. The newly added cross-attention module employs two adaptive-
weight parameters to incorporate with the original one, which is dynamically adjusted during training.

encoding derived from LLMs. The outputs of these two modules
are combined through a set of learnable weight factors: 𝑎1, 𝑎2, 𝑏1,
and 𝑏2, and the overall computation can be formulated as follows:

𝑓 = 𝑎𝑡𝑡𝑛
(
𝜏𝑞 (𝑞), 𝜏𝑘 (𝜙 (𝒄)), 𝜏𝑣 (𝜙 (𝒄))

)
𝑎1𝑒

𝑏1+

𝑎𝑡𝑡𝑛
(
𝜏𝑞 (𝑞), 𝜏𝑘 (𝒄), 𝜏𝑣 (𝒄)

)
𝑎2𝑒

𝑏2 ,
(9)

where 𝜏 is the linear layer of the original cross-attention module,
𝜏 is that in additional cross-attention module, and 𝜙 is the linear
layer to align the LLMs with the original cross-attention module.
For training stability, the initial values of 𝑎1 and 𝑏1 are set to 1 and
0, respectively, while 𝑎2 and 𝑏2 start at 0.

During the model learning, the newly added cross-attentionmod-
ule gradually refines the outputs, effectively adapting the knowl-
edge of generative LLMs to the diffusion model. Our Adapter is
trained with the MSE loss for diffusion models:

L = ∥𝜖𝜃 (𝑧𝑡 , 𝒄) − 𝜖 ∥2, (10)

where 𝜖𝜃 is the diffusion U-Net, 𝑧𝑡 is the latent feature map at
timestep 𝑡 , and 𝜖 ∼ N(0, 𝐼 ).

5 EXPERIMENTS
5.1 Experimental Settings
Dataset. We utilized a subset of data collected from GRIT [23] and
midjourney-v5-202304-clean [30]. Simple filtering was applied to
the image resolution and texts, with the total amount of data used
for training approximating 1 million. To ensure a fair comparison,
our model was trained alongside existing text-encoder-based mod-
els (including SD1.5 [27], SDXL [24], and T5-based SD1.5 models)
using the same dataset and similar Adapters.
Base models. Our experiments are conducted based on pre-trained
Stable Diffusion (SD) 1.5 model [27], utilizing two Large Language
Models (LLMs), Phi1.5 [17] and Vicuna1.5-7B [6]. The number of
parameters of Phi1.5 is close to that of the text encoders of CLIP
and T5, thereby ensuring a fair comparison of performance.
Implementation details.Our LLMDiff Adapter has approximately
45M parameters. We utilize AdamW optimizer with a learning rate
of 1e-5 for the Adapter training. The size of input images is 512x512,
in conjunction with the Aspect Ratio Bucket, which automatically

Table 1: Quantitative analysis of our LLMDiff Adapter com-
pared with existing methods.

Method SigLIP Score ↑ Quality↑ Complexity↑ Beauty↑

SD1.5 4.6 74.1 23.2 88.9
SDXL 6.2 76.5 23.9 90.6

SD1.5 +(T5-XL) 7.4 74.9 22.5 90.9
Ours (phi1.5) 5.8 76.3 24.9 91.0

Ours (Vicuna-7B) 8.5 78.6 24.7 92.9

groups images of different aspect ratios into different batches and
seeks to avoid image cropping as much as possible. The weighted
coefficients of the two cross attentions are initialized as follows:
𝑎1 = 1, 𝑏1 = 0, 𝑎2 = 0.1, 𝑏2 = 0. LLM itself does not require fine-
tuning and we use a batch size of 256 for training on 8 NVIDIA
A100 GPUs with 40GB VRAM.
Metrics. We assess the models from three dimensions. (1) For
controllability, we evaluate the degree of matching between the
generated images and the given text via the CLIP Score. However,
since the SD model itself is based on CLIP, for fairness, we employ
the SigLIP-L-384 [32] model to calculate the SigLIP Score:

𝑆𝑐𝑜𝑟𝑒 (𝐼 , 𝐿) = 100 × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝛼𝑐𝑜𝑠 (𝑓𝑖𝑚𝑔 (𝐼 ), 𝑓𝑡𝑒𝑥𝑡 (𝐿)) + 𝛽), (11)

where 𝐼 is the input image, 𝐿 is the input text, 𝑓𝑖𝑚𝑔 is the image
encoder, and 𝑓𝑡𝑒𝑥𝑡 is the text encoder. 𝛼 and 𝛽 are the learned
parameters from SigLIP model. (2) For image quality, we utilize
CLIP-IQA [29] to evaluate the quality of the images from the aspects
of image details and overall image quality. (3) As for the logicality
of images, we employ the user study. For each model, we construct
15 prompts from multiple perspectives, including action logic, color
matching, and the number of objects, etc. Each prompt generates
10 images, and human evaluators judge whether the core logic of
these prompts is reflected in the images.

5.2 Quantitative Analysis
For a quantitative analysis of our method, we use the SigLIP Score
to evaluate how well the generated images match the given text.
Furthermore, we use CLIP-IQA to analyze the image’s Quality,
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one white rabbit is standing
on a wooden bench near the

garden, with two blue cat
next to it and one cat is
looking at that rabbit.

A beautiful butterfly with
iridescent wings, its upper wings

is shades of blue and purple,
while the lower wings is shades

of green and yellow, with
sparkling diamonds on its body.

In a city turned into a
wasteland after the Great War,
a robot stands on the road next
to a rat-headed robot with a rat

at its feet.

One blue bird with pink mouth
is standing on the side of a
road, and one pink cat is

looking by that bird.

In the room, there is a transparent glass vase filled
with beautiful pink roses. Three lemons are placed
next to the vase on a table. The table is a next to a

green couch. The couch is adorned with two pillows,
One is pink and the other has a green and gray

pattern. The floor is covered with wooden flooring. The
walls are painted with latex paint. The ceiling is made

of plaster and has a line-shaped design. The room has
a large window, providing ample natural light.

Figure 4: In comparison with existing approaches, LLMDiff exhibits superior capabilities in both language comprehension and
action understanding. Furthermore, it is proficient in generating images with high-quality details.

Complexity, and Beauty, thereby assessing whether the overall
quality of the generated image is better.

In Tab. 1, our proposed method based on Vicuna-7B achieved a
SigLIP Score of 8.5, which is 31% higher than the best existing SDXL
model of 6.2. Meanwhile, the model based on phi-1.5 has a 26% im-
provement compared to the SD1.5 used as our baseline, approaching
the level of SDXL. These results suggest that our LLMDiff Adapter

can effectively combine the existing LLM and Diffusion models. Al-
lowing the powerful text comprehension capabilities of the LLM to
be utilized in the text-to-image diffusion model, thereby generating
images with sufficient controllability. The more powerful the LLM,
the stronger the controllability it brings.

Regarding the quality of the generated images in Tab. 1, our
method surpasses existing methods in multiple aspects such as
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6 apples and a bunch of
grapes on a plate on the table.

7 apples and a bunch of
grapes on a plate on the table.

A picture of the city as seen by
a cat falling from a great height.

A glass ball falls from a height
and hits the ground very hard.

A pig that can fly.

Figure 5: Model evaluation on the capability of causal and logical reasoning for text-to-image generation.

overall image quality, complexity of details, and aesthetic appeal of
the image. The Quality score reached 78.6, improving by 2.7% com-
pared to the currently best SDXL model. In terms of the complexity
of the generated image features, the Complexity score reached 24.7,
with an improvement of 3.3% compared to SDXL. The aesthetic
appeal score of the image also reached 92.9, surpassing the existing
SDXL by 2.5%. By controlling the generation process of the Diffu-
sion model through the LLM model, we can not only improve the
alignment between the image and the text, but also enhance the
quality, detail, and aesthetic appeal of the generated images.

5.3 Qualitative Evaluation
Our model is evaluated qualitatively from several aspects, encom-
passing its capacity to comprehend actions, entity relationships,
spatial structures, and complex descriptions. As depicted in Fig. 4,
our approach, powered by the robust semantic comprehension ca-
pabilities of LLMs, yields a more precise and controllable outcome
in the portrayal of multiple entities and their inter-relationships.
For instance, in the first column of Fig. 4, our method accurately

generates an image of a white rabbit seated on a wooden bench
with two blue cats next to it, demonstrating a refined understand-
ing of entity quantity and color correspondence. Furthermore, it
exhibits a precise comprehension of the action wherein only one
cat is looking at that white rabbit. In contrast, existing methods
struggle to understand inter-entity relationships, like actions.

The third column further underscores our method’s ability to
accurately generate distinct entities as specified in the description,
without any feature confusion. Instead, existing models tend to
prioritize keyword comprehension and struggle to understand the
holistic context of the sentence. We described three entities: a robot,
a robot with a rat head, and a rat. A keyword-based approach risks
overlooking some entities due to keyword overlap. Existing models
leveraging text encoders like those of CLIP or T5 fail to accurately
understand these inter-entity relationships and fail to generate
images precisely when entity descriptions have keyword overlaps.

When it comes to generating complex scenes from extensive
text descriptions, prevailing methods struggle to accurately com-
prehend the provided long text, resulting in generated scenes that
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often diverge from the description, omitting numerous features.
Our method, instead, integrates the power of LLMs into the diffu-
sion model, exploiting LLMs’ powerful long-text comprehension
capabilities to precisely delineate each part of the scene, as well as
the inter-entity relationships. For instance, as indicated in the last
column of Fig. 4, our method can accurately render the complex
indoor scene described in the extensive text, encompassing the pink
rose, three lemons, a sofa with pillows, and the interior decoration.
In contrast, existing methods fall short in accurately generating
these complex features, typically producing simpler room scenes
with a dearth of detailed features.

Furthermore, our method exhibits promising abilities in generat-
ing various meaningful detailed features. Our approach is based on
the SD1.5 model, but when combined with the remarkable compre-
hension capabilities of LLM, our LLMDiff Adapter can significantly
enhance the overall texture and detail quality of the generated im-
ages. The features generated by SD1.5 are typically fragmented,
encompassing indistinguishable local features that are challenging
to understand. In contrast, our method is capable of generating
features with better coherence and more meaningful local features,
particularly in complex scenes described by long texts.

5.4 Analysis of Reasoning Ability
Existing text-to-image generation models tend to produce visually
highly similar image details with the given texts. They are struggle
to generate image details that texts does not explicitly indicate, but
is necessary for commonsense or reasoning. In our experiments,
this is also taken into consideration for model evaluation, in Fig. 5.

In the first two columns of Fig. 5, our model can accurately un-
derstand the number of entities in the description, which is a great
challenge for current diffusion models based on text encoders. With
the help of LLM’s understanding of quantifiers and entity relation-
ships, we can enable the diffusion model to accurately generate the
number of entities given in the description text.

In the third column of Fig. 5, the model is tasked with generating
an image from the perspective of what a cat would see when it falls
from a great height. The subject is not the cat itself, but rather the
scene as viewed by the cat. This requires the model have enough
capacity of logical reasoning. A model that primarily relies on
keywords to interpret sentences can easily produce an image of a
cat falling from a great height. Conversely, our method, grounded
in LLMs, comprehends user intent well and generates the scene as
perceived by the cat, not an image of the falling cat, despite the
presence of the keyword “cat" in our description.

The fourth column illustrates how our model effectively lever-
ages the LLM’s capability to infer the physical rules. The task is
to generate an image of a glass ball falling from a great height. In
accordance with physical rules, the glass ball will inevitably shatter
upon impact, making a lot of internal cracks that should propa-
gate upwards from the point of impact, surrounded by fragments
produced by the shattering of the glass ball. Existing methods lack
this reasoning ability: the glass balls they generate remain intact,
contradicting objective physical rules. Our method, instead, is able
to draw these inferences accurately, generating the features implied
in the description, including a shattered glass ball and a glass ball
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Figure 6: The scale factor of newly added attentions and the
original attentions in each cross-attention module of U-Net.

that begins to fracture from the bottom due to the impact. These
are what text-encoder-based diffusion models fail to comprehend.

The last column reveals our model’s capacity to utilize LLM’s
inherent imagination ability and understanding of functions. The
goal is to create a pig that can fly, focusing on its inherent ability to
fly rather than its state or actions. It is expected that the generated
image should depict an animal with a pig’s primary features but
a body structure adapted for flight. Existing models all generate a
pig flying in the sky, and particularly, SD models simply draw a pig
floating in the sky, without any imagination about the function of
flying. Our model, instead, infers the user’s intention from the text
and conceptualizes the ability to fly based on LLM’s knowledge base.
It borrows structure characteristics from common flying animals,
like birds, and integrates them into the pig. The pig’s ears evolve
into larger structures resembling wings, and it reduces to two feet
and a smaller size, which are typical bird traits. Our model thus
imagines a pig with flying capabilities rooted in real-world logic
and pig features, rather than forcibly attaching wings.

5.5 Analysis of Scaling Factors
According to the results in Fig. 6, which shows the weight distribu-
tion across various layers in the new and original cross-attentions,
a substantial portion of the original knowledge within the model is
preserved. The preservation is less in layers with a higher number
of parameters, while layers at both ends, which have fewer param-
eters, retain more. The newly added rectification module primarily
operates in the decoder part of the U-Net.

6 CONCLUSION AND LIMITATIONS
We viewed generative LLMs with a transformer-based decoder-only
structure as a diffusion model, thereby we can sample implicit text
encodings for image generation. We have designed the LLMDiff
Adapter to incorporate these encodings into a text-to-image diffu-
sion model, enhancing the model’s controllability and reasoning
abilities pertaining to commonsense, logic, and physics. The gen-
erated images are more realistic, with improved detail and quality.
Moreover, our method outperforms existing text-encoder-based
methods in various quantitative metrics.
Limitations. Our method requires the output from each Trans-
former block of the LLM, and thereby is incompatible with closed-
source models like GPT-4 and Claude 2.
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