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Goal: Elucidate the generalization limits of invariant functions by proving

approximation error bounds for model calibration _&Exam les and EXQerlments:

Preliminaries: _
e Denote a map with f: X' — Symmetry mismatch causes

e ( agroup with representations ¢, p” that transform vectors in X, ) miscalibration!
fis invariant if:

f(x) = f(gx) for all g e G,z € X
Invariant Model classH = {h : X — Y x [0, 1]} such that h(x) = (hy, hp)
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For an indicator function 1 () and a probability density ¢(z) let minority label 05 1D S 05 LD
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total decent be defined:

1 — [, k(Gz)dx.

E(3) (MSE: 5.5777)

Classification Error bound is below by: ’ ‘ 5 e LQINZ
/= 03 0.91 &
k(Gx) = o -/G:c q(2)1(f(z) #y))dz. o ol / _515'”(')””5 O'Gog
Invariant ECE Lower Bound Intuition: - o
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Invariant accuracy lower bound forces
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—— Accy(h) = P (Perfect Calibration) —91 | P Y

Accumulated Calibration Error X

Fiber-wise accuracy -

bounds inform ECE : Summary of Contributions:

bounds!

e Bound calibration error for classification and
regression

e Assess the disintegration of uncertainty into
aleatoric and epistemic mass under symmetry
constraints

e Provide illustrative examples and experiments
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Main Result: Invariant ECE Bounds

Theorem 5. Denote the fundamental domain of G in a fiber F, as F},. The total minority dissent on an orbit
in a fiber F, is denoted k,(Gx) and is defined in terms of the renormalized density ¢,(z) = q(x)/ fJ-‘p q(z)dz.

Define the minimum fiber-wise classification accuracy as m = min (1 — ko (Gx)dxr). Then ECE is
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bounded below by [, r(p)(m — p)dp.
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