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ABSTRACT

Full Waveform Inversion (FWI) is a vital technique for reconstructing high-
resolution subsurface velocity maps from seismic waveform data, governed by
partial differential equations (PDEs) that model wave propagation. Traditional
machine learning approaches typically map seismic data to velocity maps by en-
coding seismic waveforms into latent embeddings and decoding them into veloc-
ity maps. In this paper, we introduce a novel framework that reframes FWI as a
joint diffusion process in a shared latent space, bridging seismic waveform data
and velocity maps. Our approach has two key components: first, we merge the
bottlenecks of two separate autoencoders—one for seismic data and one for ve-
locity maps—into a unified latent space using VQ to establish a shared codebook.
Second, we train a diffusion model in this latent space, enabling the simultane-
ous generation of seismic and velocity map pairs by sampling and denoising the
latent representations, followed by decoding each modality with its respective de-
coder. Remarkably, our jointly generated seismic-velocity pairs approximately
satisfy the governing PDE without any additional constraint, offering a new geo-
metric interpretation of FWI. The diffusion process learns to score the latent space
according to its deviation from the PDE, with higher scores representing smaller
deviations from the true solutions. By following this diffusion process, the model
traces a path from random initialization to a valid solution of the governing PDE.
Our experiments on the OpenFWI dataset demonstrate that the generated seismic
and velocity map pairs not only exhibit high fidelity and diversity but also adhere
to the physical constraints imposed by the governing PDE.

1 INTRODUCTION

Figure 1: Overview of WaveDiffusion. WAVEDIFFUSION refines the solution space of the govern-
ing wave equation by a diffusion process. Each peak (colored stars) corresponds to a PDE solution.
The diffusion process transforms latent points in non-solution regions (gray squares) in the valleys
toward accurate solutions consistent with the governing PDE.

Subsurface imaging is crucial for addressing many scientific and industrial challenges, such as un-
derstanding global earthquakes (Virieux et al., 2017; Tromp, 2020), monitoring greenhouse gas
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storage (Li et al., 2021; Wang et al., 2023b), improving ultrasound medical imaging (Guasch et al.,
2020; Lozenski et al., 2024), and aiding oil and gas exploration (Virieux & Operto, 2009; Wang &
Alkhalifah, 2018). Subsurface structure is typically represented by acoustic wave velocity, which
can be inferred from seismic data due to the physical relationship between them governed by a
partial differential equation (PDE)—specifically, the acoustic wave equation (Sheriff & Geldart,
1995; Shearer, 2019). Full waveform inversion (FWI) is a powerful technique for reconstructing
high-resolution subsurface acoustic velocity maps from seismic data. It is framed as a non-linear
optimization problem: given seismic data s, the task is to solve for the velocity map v according to
the governing wave equation (Tarantola, 1984; Warner & Guasch, 2016).

Recently, machine learning-based approaches have been introduced to solve FWI (Wu & Lin, 2019;
Sun & Demanet, 2020; Deng et al., 2022; Mousavi & Beroza, 2022). These methods typically use
neural networks, particularly encoder-decoder architectures, to directly map seismic data to subsur-
face velocity maps, treating the FWI task as an image-to-image translation problem (Richardson,
2018; Feng et al., 2021; Jin et al., 2024). A more recent approach introduced generative diffusion
models to regularize FWI by generating prior distributions for plausible velocity models, which
guide the inversion process (Wang et al., 2023a). This approach treats FWI as a conditional genera-
tion problem, i.e. generating velocity maps using seismic data as condition.

In this paper, we explore a new direction by considering FWI as a joint generative process. In
contrast to prior works that treat FWI as a conditional generation problem (where the velocity map
is generated for a given seismic waveform), we are curious whether the two modalities—seismic
waveform data and velocity map—can be generated simultaneously from a common latent space.
Interestingly, we discovered that not only can these two modalities be jointly generated, but the
generated seismic data and velocity maps also naturally satisfy the governing PDE without requiring
any additional constraints. To achieve this, we propose a method with two key steps: first, we use a
dual autoencoder architecture where both seismic data and velocity maps are encoded into a shared
latent space, capturing the essential relationships between the two modalities. This shared latent
space provides a coarse approximation of the wave equation solution space. Second, we apply
a diffusion process in their common latent space, progressively refining the latent representations
from random initializations. The corresponding decoders then generate seismic data and velocity
maps from the refined latent representations. Our experiments on the OpenFWI dataset (Deng et al.,
2022) empirically confirm that the jointly generated pairs satisfy the governing PDE.

This approach provides a new perspective on solving the governing wave equation. Unlike tra-
ditional FWI, which solves for one modality given the other, our method demonstrates that both
seismic data and velocity maps can be solved simultaneously. This is achieved through a diffusion
process within a shared latent space. Each point in this space corresponds to a seismic-velocity pair
(after decoding), though not all points inherently satisfy the governing PDE. The diffusion model,
however, learns to score each point based on its deviation from the PDE. By following the iterative
denoising process, we trace a path from random initialization (with a lower score) to a valid solution
(with a higher score) that satisfies both modalities of the PDE, as shown in Figure 1. With each
denoising step, the deviation from the PDE decreases, leading to a more accurate solution.

It’s important to note that our goal is not to push the boundaries of FWI performance but to offer
a new perspective by extending FWI from a conditional generation problem to a joint generation
problem. We hope that this approach will inspire deeper exploration and understanding within the
research community, paving the way for new insights in computational imaging.

2 FWI OVERVIEW

Figure 2: Illustration of data-driven FWI: for-
ward simulation of seismic data s via PDE F
and inversion of v via neural networks.

Full Waveform Inversion (FWI) is a crucial tech-
nique for constructing high-resolution velocity
maps of the subsurface from seismic data. The
fundamental goal of FWI is to recover the ve-
locity model v(x) that governs the propagation
of seismic waves, using observed seismic data
s(xr, t). In this work, seismic data refers to
acoustic seismic data, which represents a simpli-
fied assumption of wave phenomena in the elastic
Earth.
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FWI is traditionally framed as an iterative optimization problem, where synthetic seismic data is
generated through forward modeling and compared against observed data to update the velocity
model iteratively. The synthetic data is typically computed by solving a partial differential equation
(PDE) known as the wave equation. For the acoustic wave equation, this can be expressed as:

∂2u(x, t)

∂t2
= v2(x)∇2u(x, t) + f(xs, t) (1)

where u(x, t) represents the seismic wavefield, v(x) is the subsurface velocity, ∇2 is the Laplacian
operator, and f(xs, t) is the source term. The objective of FWI is to minimize the misfit between
observed seismic data sobs and synthetic data ssyn, generated by solving the wave equation. The
typical data misfit objective function is:

LFWI(v) =
1

2

T∑
t=1

∥sobs(xr, t)− ssyn(xr, t; v)∥2 (2)

where sobs and ssyn represent the observed and synthetic seismic data at receiver locations xr, respec-
tively. The optimization process involves calculating the gradient of this loss function with respect
to the velocity model using methods like the adjoint state method (Plessix, 2006). However, this
iterative process is computationally expensive and often suffers from issues related to non-linearity
and non-uniqueness in the inversion problem.

Recent advances in machine learning have introduced data-driven approaches for solving the FWI
problem. These methods avoid the need for iterative PDE solvers by training neural networks to map
seismic data directly to velocity maps. Approaches like InversionNet (Wu & Lin, 2019) treat the FWI
problem as an image-to-image translation task, where convolutional encoder-decoder architectures
are employed to generate velocity maps from seismic data in a single forward pass. This dramatically
reduces computational costs compared to traditional methods.

However, while these machine learning-based models provide computational efficiency, they lack
the physical grounding of traditional methods and often consider FWI as a conditional generation
problem. As a result, they do not guarantee that the generated velocity maps satisfy the governing
wave equation, potentially leading to physically inconsistent solutions.

3 WAVEDIFFUSION: OUR METHOD

In this section, we introduce WAVEDIFFUSION, an extension of FWI that moves beyond solving for
velocity given seismic data, enabling the simultaneous solution of both modalities. Our approach
involves two key steps: (1) a dual autoencoder architecture with vector quantization (VQ) that maps
seismic data and velocity maps into a common latent space, and (2) a diffusion model applied in this
common latent space, followed by two decoders that generate both modalities simultaneously. This
method provides a new perspective on addressing the underlying PDE.

3.1 MOTIVATION FOR JOINT GENERATION

Existing machine learning-based approaches typically focus on translating one modality (seismic
data) into another (velocity map) using encoder-decoder architectures. Mathematically, these meth-
ods provide only a partial solution to the governing PDE, as they rely on the availability of one
modality. In contrast, our method tackles the more challenging problem: can both modalities be
solved simultaneously?

Inspired by the success of diffusion models in generating multimodal outputs, such as images, audio,
and video, we demonstrate that the joint distribution of seismic data and velocity maps can be mod-
eled using a diffusion framework. This allows the two modalities to be generated simultaneously.
Following the structure of latent diffusion models (Rombach et al., 2022), our approach involves
two main steps: (1) a dual autoencoder with vector quantization and (2) a joint diffusion process for
refining the latent representations.

3.2 PREPARING A SHARED LATENT SPACE WITH A DUAL AUTOENCODER

The WAVEDIFFUSION framework utilizes a dual autoencoder with vector quantization to construct
a shared latent space as a preparatory step for the joint diffusion process. As illustrated in Figure 3,
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the architecture features two encoder-decoder branches—one dedicated to seismic data and the other
to velocity maps. Each encoder independently processes its input into a latent vector, which is then
merged into a shared latent space z. This design builds upon existing approaches for multi-modal
data representation (Feng et al., 2023; Chung et al., 2024).

Vector quantization discretizes the shared latent space, creating a compact and structured represen-
tation of the dependencies between seismic and velocity data. While this coarse latent representation
does not yet adhere to the governing wave equation, it provides a foundation for refinement through
the joint diffusion process, which is the central contribution of this work.

We emphasize that the dual autoencoder is not the focus of this framework and can be substituted
with any architecture capable of producing a combined latent space for seismic data and velocity
maps. For instance, the one-encoder-two-decoders architecture in Section 4.6 or an autoencoder
incorporating KL divergence could also serve this purpose. The autoencoder primarily facilitates the
setup for the joint diffusion process, which is the key innovation in achieving physically consistent
seismic-velocity generation.

Figure 3: Dual autoencoder architecture:
The autoencoder has two branches of encoders-
decoders. The blue "VQ" block is the VQ layer.
The orange block z is the common latent space
shared by seismic data and velocity maps, repre-
senting the coarse solution space of the PDE.

Figure 4: Joint Diffusion architecture: Gaus-
sian noise is gradually added to the shared latent
space z for t steps in the forward stage and pro-
gressively removed in the backward stage until
the seismic-velocity pairs are consistent with the
wave equation.

3.3 JOINT DIFFUSION PROCESS

Latent Diffusion: The joint diffusion process refines the coarse approximations produced by the
autoencoder model by operating on the shared latent space z of the two modalities. Gaussian noise
is added during the forward process, progressively perturbing the latent vector. During the backward
process, the noise is removed, guiding the model toward physically valid solutions (Figure 4). This
iterative refinement ensures that the generated seismic-velocity pairs satisfy the wave equation.

1. Forward Process: Gaussian noise is added to the latent vector z, creating a noisy repre-
sentation: zt = z + ϵt, where ϵt is the noise applied at step t.

2. Backward Process: The noisy latent vector is progressively denoised through zt−1 =
L(zt). Each backward step removes noise and refines the latent vector toward a valid
solution that satisfies the wave equation.

Sampling New Solutions: After learning the backward denoising steps, new seismic-velocity pairs
can be generated that satisfy the wave equation by sampling latent vectors from a Gaussian distribu-
tion and refining them using the learned backward steps.

1. Sample a latent vector zt from a standard Gaussian distribution: zt ∼ N (0, I).

2. Pass zt through the backward denoising steps: zt−1 = L(zt), zt−2 = L(zt−1), . . . , z0.

3. Decode z0 back into seismic data and velocity maps: x̂s = Ds(z0), x̂v = Dv(z0).

3.4 KEY INSIGHT: FROM COARSE TO FINE APPROXIMATION

Coarse and Fine Approximation Discovery: The autoencoder provides coarse approximations
of the PDE solutions, producing seismic-velocity pairs that are plausible but do not fully satisfy
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the wave equation (Figure 5 row 1). In contrast, the joint diffusion process refines these coarse
approximations into physically valid solutions (Figure 5 row 2), demonstrating that the autoencoder
captures general relationships between the modalities, while the diffusion refines them to satisfy the
wave equation.

Figure 5: Comparison between generated and original
samples: Examples of generated pairs by the (row 1) au-
toencoder and (row 2) joint diffusion. We visually com-
pare them to (row 3) an original OpenFWI example. The
autoencoder-generated samples lack the physical relation-
ship governed by the wave equation, while the joint diffu-
sion generation refines them to better satisfy the PDE.

Deviation Evaluation: To quantita-
tively assess how well the generated
seismic-velocity pairs adhere to the
governing wave equation, we evalu-
ate the deviation between the gener-
ated seismic data and the synthetic
ground truth seismic data simulated
using a finite difference (FD) solver
using the jointly generated velocity
map. Specifically, we analyze the L2
distance at each forward and back-
ward diffusion step.

In diffusion, Gaussian noise is incre-
mentally added to the latent vector z
during the forward process, and pro-
gressively denoised during the back-
ward process. For each noisy latent
vector zt at diffusion step t, we de-
code the seismic data x̂s and velocity
map x̂v using the respective decoders.
We then simulate synthetic seismic data xs(x̂v) using a finite difference operator on the decoded
velocity map x̂v. The L2 distance ∥x̂s − xs(x̂v)∥2 measures the deviation between the generated
seismic data x̂s and the FD-simulated synthetic seismic data xs(x̂v). This evaluation is repeated for
every forward and backward diffusion steps to track how the deviation changes as noise is added
and removed.

Figure 6: Deviation from the governing PDE. The L2 dis-
tance is calculated between (a) generated seismic data x̂s
and (b) synthetic seismic data xs(x̂v) simulated from the
generated velocity map using a finite difference solver.

As noise is introduced during the
forward process, the generated seis-
mic data diverges from the physically
valid solutions. Conversely, during
the backward diffusion process, the
model removes noise, progressively
reducing the L2 distance and refin-
ing the seismic-velocity pairs toward
solutions that better satisfy the wave
equation. The statistical evaluation
of 10000 generated pairs is shown in
Figure 6, which illustrates how the
deviation increases with noise in the
forward process and decreases during

denoising, confirming that the diffusion process scores the latent space based on how well the gener-
ated pairs adhere to the wave equation. Larger deviations from the PDE result in higher loss scores.
During the backward diffusion process, these scores decrease as the generated pairs are refined into
physically valid solutions (Figure 6 right).

Transforming PDE into SDE: The process of refining the latent space through diffusion can be
interpreted as transforming the deterministic task of solving a PDE into a stochastic differential
equation (SDE). As in Song et al. (2020), this SDE path allows exploration of a subspace of possible
solutions, refining from coarse approximations to fine, physically consistent solutions.

4 EXPERIMENTS

In this section, we present the experimental evaluation of the proposed WAVEDIFFUSION frame-
work. We conduct experiments on the OPENFWI dataset to evaluate the model’s performance in
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generating physically consistent seismic data and velocity maps. We assess the model’s FID scores,
analyze its ability to generate data that adheres to the governing PDE. Then we compare the re-
sults of training the state-of-the-art models such as InversionNet using the jointly generated dataset
against the original OPENFWI benchmark. We further introduce an experiment to demonstrate how
the joint diffusion model compares to separately trained diffusion models in generating seismic and
velocity modalities. At last, we introduce how to use our joint diffusion model to perform a conven-
tional FWI when only target seismic data is given.

4.1 DATASET AND TRAINING SETUP

We evaluate the performance of our WAVEDIFFUSION framework using the OPENFWI dataset, a
benchmark collection of 10 subsets of realistic synthetic seismic data paired with subsurface velocity
maps, specifically designed for FWI tasks. For our experiments, we focus on three representative
subsets from the full dataset:

• CurveVel_B (CVB): Subsurface structures with curved velocity layers.
• FlatVel_B (FVB): Subsurface structures with flat velocity layers.
• FlatFault_B (FFB): Flat layers intersected by faults.

We conducted two sets of training experiments:

1. Individual subset training: We trained the autoencoder and joint diffusion models sep-
arately on each of the three subsets (CVB, FVB, FFB) to evaluate their performance on
individual geological structures.

2. Combined dataset training: We also trained the models on a combination of multiple
datasets from OPENFWI to assess the model’s generalization capability across a wider
variety of geological structures.

Network details and training hyperparameters can be found in Appendix A.1.

4.2 EVALUATING AUTOENCODER RESULTS

The autoencoder model serves as the first stage of our WAVEDIFFUSION framework, producing
coarse approximations of seismic data and velocity maps. When evaluated on the CVB subset, the
autoencoder yielded an FID score of 14,207.14 for the generated velocity maps and 871.31 for the
generated seismic data using an Inception-v3 model pre-trained on ImageNet (Szegedy et al., 2016).
Similar results were observed for the other autoencoder models trained on the remaining subsets and
the combined dataset. Visualization examples are shown in Figure 5 row 1. These high FID scores
suggest that the autoencoder, while generating plausible structural shapes, does not adhere closely
to the true data distribution. The large disparity between seismic and velocity FID scores indicates
that the generated modalities deviate more from the physical relationships governed by the wave
equation as coarse approximations of the PDE solutions.

4.3 JOINT DIFFUSION RESULTS AND ANALYSIS

Table 1: FID scores for various datasets. The FID scores across
the two modalities velocity maps v and seismic data s with differ-
ent training datasets.

Metrics \ Dataset CVB FVB FFB 3 sets 10 sets
Velocity FID 186.86 357.74 447.71 612.18 733.00
Seismic FID 30.66 88.01 34.05 74.58 128.64

The joint diffusion model
is used to refine the coarse
autoencoder generations into
physically consistent seismic-
velocity pairs. We evaluated
the FID scores of both modal-
ities generated by the joint
diffusion model across the three individual subsets and combined datasets. As shown in Table 1,
the best performance was achieved in the CVB subset, with an FID of 186.86 for velocity and 30.66
for seismic data. As the geological complexity increases (e.g., FFB), the FID scores rise, especially
for the velocity modality, indicating the challenges posed by these more complex configurations.

We further evaluated the deviation from the governing PDE by tracking FID scores during the for-
ward diffusion and backward denoising processes (Table 2). As noise is added in the forward pro-
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cess, the FID scores increase significantly, peaking at 1000 timesteps (100% noise). On the other
hand, as noise is progressively removed in the backward process, the FID scores decrease accord-
ingly, reaching low values at the final step. This trend demonstrates how noise level is related to
the deviation, and shows the model’s ability to refine noisy representations into physically valid
solutions through the denoising process.

Table 2: FID score vs. noise level: The FID scores for the two modalities along the forward and
backward diffusion processes on the CVB dataset.

Metrics \Process Forward: adding noise Backward: removing noise
Noise Level (%) 0 20 50 100 100 50 20 0

Velocity FID 30.79 1135.82 3634.96 19393.46 19405.06 3569.01 620.33 186.86
Seismic FID 17.63 23.87 128.98 360.20 359.53 148.07 48.72 30.66

Figure 7: Visualization of deviation from PDE during diffusion: Seismic data comparison of the
CVB example at different timesteps during the forward (left half) and backward diffusion processes
(right half). The top three rows show seismic channels x̂s generated by the joint diffusion model,
while the fourth row shows the generated velocity map x̂v. Rows 5-7 show the synthetic seismic
data xs(x̂v), simulated using a finite difference PDE solver on the generated x̂v. The last row shows
the deviation from the governing PDE, visualized as the channel-stacked difference between xs(x̂v)
and x̂s. Noise increases the deviation from the PDE during the forward diffusion, and the reverse
process reduces discrepancies.

Figure 7 presents the results on the CVB dataset during the forward (adding noise) and backward
(removing noise) diffusion processes. In the left half of Figure 7, during the forward diffusion
process, as noise is added, the seismic data x̂s generated by the joint diffusion model diverges more
from the synthetic seismic data xs(x̂v), which is simulated using the generated velocity maps x̂v.
This divergence, shown as the channel-stacked difference between xs(x̂v) and x̂s in the last row,
reflects the increasing deviation from the governing PDE as the noise level rises. In contrast, the
right half of Figure 7 shows the backward denoising process, where noise is progressively removed,
and x̂s becomes more aligned with xs(x̂v), confirming the model’s ability to refine the generated
samples toward physically consistent solutions.

Similar trends can be observed in the separate FVB and FFB subset experiments and the com-
bined datasets experiments, that in the forward diffusion, the generated modalities diverged from
the ground truth, and the backward denoising converged back to PDE solutions. These results are
included in the supplementary materials, further demonstrate the effectiveness of the joint diffusion
model in generating realistic seismic data and velocity maps that adhere to the wave equation.

Results for the FVB and FFB single subsets can be found in Appendix A.2. Experiments with
combined multiple datasets can be found in Appendix A.3.
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4.4 COMPARISON WITH INVERSIONNET

Table 3: Comparison of InversionNet
performance on FFB dataset. Perfor-
mance of InversionNet trained with differ-
ent datasets, comparing the jointly gener-
ated and original OPENFWI data.

Setup RMSE MAE SSIM
PureGen 0.2623 0.1825 0.6484
Gen+1% 0.2396 0.1654 0.6614
1%Only 0.3191 0.2436 0.5587

OpenFWI 0.1723 0.1106 0.7186

Figure 8: InversionNet performance visualiza-
tion. The InversionNet predictions using the (col-
umn 1) WaveDiffusion generated samples, (col-
umn 2) WaveDiffusion generated plus 1% Open-
FWI original samples, and (column 3) 1% Open-
FWI original samples, compared to ground truth
(column 4) on the FFB subset.

We evaluated the performance of Inversion-
Net on the FFB dataset to assess how well the
WAVEDIFFUSION-generated samples supple-
ment the original OPENFWI dataset. The results in Table 3 compare the performance under three
training setups:

PureGen: InversionNet trained on WAVEDIFFUSION-generated samples shows reasonable perfor-
mance but falls short of the OPENFWI baseline, indicating a slight gap in the generated data’s
fidelity.

Gen+1%: Combining WAVEDIFFUSION-generated samples with 1% of the original OPENFWI
dataset significantly improves performance, with metrics approaching the baseline. This highlights
the effectiveness of augmenting generated data with even a small amount of real data.

1%Only: Training on only 1% of the original dataset results in the poorest performance, underscor-
ing the inadequacy of such a small dataset for effective training.

These results demonstrate that while generated samples can effectively supplement small datasets,
the inclusion of even a small portion of real data is crucial for achieving optimal results. Full results
for other datasets (CVB and FVB) and additional comparisons are provided in the Appendix A.7.

4.5 SEPARATE VS. JOINT DIFFUSION

Table 4: FID score comparison between sepa-
rate and joint generations. Evaluations on seis-
mic data s and velocity maps v across CVB, FFB,
and FVB datasets.

Modality Setup CVB FVB FFB

Velocity Joint 186.86 357.74 447.71
Separate 411.40 360.90 385.32

Seismic Joint 30.66 88.01 34.05
Separate 131.48 179.69 117.63

Figure 9: Visualization of separate vs. joint
diffusion. Row 1: Separate models; Row
2: Joint model. Column 4 shows deviations
from the governing PDE.

We compared the joint diffusion model with sepa-
rate diffusion models, where seismic data and veloc-
ity maps were generated independently. In the sepa-
rate models, the autoencoders lacked a shared latent
space and used single-branch architectures. Both approaches were trained on the CVB, FFB, and
FVB datasets. Table 4 and Figure 9 summarize the results.

The joint diffusion model consistently outperforms the separate models in FID scores across all
datasets. For instance, on the CVB subset, joint diffusion achieves FID scores of 30.66 (seismic)
and 186.86 (velocity), compared to 131.48 and 411.40, respectively, for the separate models. Sim-
ilar trends are observed on FFB and FVB datasets, demonstrating the superior quality of the joint
diffusion outputs.

Beyond visual quality, the joint model ensures physical consistency with the wave equation, which
the separate models fail to achieve. Figure 9 highlights this distinction: the separate models show
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significant deviations from the governing PDE, while the joint diffusion model generates seismic-
velocity pairs that are both visually realistic and physically valid. This underscores the strength of
the WAVEDIFFUSION framework in maintaining fidelity and physical correctness.

4.6 FWI OF TARGET SEISMIC DATA

This experiment demonstrates the capability of our joint diffusion model for FWI tasks where only
seismic data is available, a realistic scenario in which direct access to velocity maps is infeasible.

We adapt the autoencoder to a one-in-two-out architecture, removing the velocity encoder and using
only the seismic encoder. This ensures the latent space z is fully derived from the seismic input.
The latent vector z is processed through two separate VQ layers and decoders to reconstruct both
seismic data and velocity maps.

The joint diffusion phase refines z to produce accurate inverted velocity maps, satisfying the physical
constraints of the governing PDE while maintaining consistency with the seismic input. As shown
in Figure 10, the model successfully reconstructs high-quality velocity maps (top row columns 2 &
4) and seismic data (bottom row columns 2 & 4) solely from seismic inputs (bottom row columns 1
& 3), even in the absence of target velocity maps (top row columns 1 & 3).

Table 5 compares our WAVEDIFFUSION model’s performance on the CVB dataset with benchmarks
from the OPENFWI paper. While VelocityGAN achieves slightly better RMSE, MAE, and SSIM
scores, WAVEDIFFUSION performs competitively, showcasing its robustness and applicability for
FWI tasks.

Furthermore, the model demonstrates resilience to noisy input seismic data, producing high-quality,
noise-free inverted velocity maps. This denoising capability, discussed in Appendix A.5, highlights
the versatility of WAVEDIFFUSION for practical FWI applications, even under challenging data
conditions.

Table 5: Performance comparison of FWI
between WAVEDIFFUSION and OPEN-
FWI. RMSE, MAE, and SSIM are reported
for seismic-to-velocity inversion on the CVB
dataset.

Network RMSE MAE SSIM
WaveDiffusion (ours) 0.2958 0.1824 0.6290
InversionNet 0.2801 0.1497 0.6727
VelocityGAN 0.2611 0.1268 0.7111
UPFWI 0.3179 0.1777 0.6614

5 RELATED WORKS

Figure 10: FWI Results of Target Seismic
Data. Top row: target velocity (column 1, 3)
and inverted velocity (column 2, 4, respec-
tively). Bottom row: input seismic data (col-
umn 1, 3) and inverted seismic data (column
2, 4, respectively).In this section, we review three major approaches

relevant to our work: traditional physics-based FWI
methods, machine-learning-based FWI approaches, and the use of generative models in FWI.

5.1 TRADITIONAL PHYSICS-BASED FWI

Traditional FWI methods aim to reconstruct subsurface velocity models by iteratively minimizing
the difference between observed and simulated seismic data, typically using gradient-based opti-
mization methods. The key challenge lies in solving the wave equation, which governs wave prop-
agation through the Earth. While effective, these methods are computationally expensive and sensi-
tive to factors such as the quality of the initial velocity model, noise in the data, and cycle-skipping
issues—where the inversion algorithm converges to incorrect solutions due to poor starting models
or insufficient low-frequency data (Tarantola, 1984; Virieux & Operto, 2009). Techniques such as
adaptive waveform inversion (Warner & Guasch, 2016) and multiscale FWI (Bunks et al., 1995)
have been developed to reduce the risk of cycle-skipping and improve convergence by progressively
introducing higher-frequency data. These techniques remain the treatment of FWI as a conditional
generation problem using physical equations as the engine (Virieux et al., 2017; Warner & Guasch,
2016).

9
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5.2 DATA-DRIVEN APPROACHES TO FWI

In recent years, machine learning approaches have been increasingly explored for FWI. Convolu-
tional Neural Networks (CNNs) have shown promise in learning image-to-image mappings from
seismic data to velocity models, bypassing the need for iterative solvers. Encoder-decoder archi-
tectures, such as those used in InversionNet (Wu & Lin, 2019) and VelocityGAN (Zhang et al.,
2019), have demonstrated the ability to predict velocity maps from seismic data while reduces com-
putational costs by learning implicit relationships between the two modalities. Richardson’s work
(Richardson, 2018) further illustrated that deep learning models could predict velocity models effi-
ciently. However, these approaches are still treating the FWI problem as an image-to-image trans-
lation task or a conditional generation problem (Zhu et al., 2019; Wang et al., 2023a). Recent work
on neural operators (Li et al., 2020; 2023) offers a more flexible approach by learning operators that
map between the two modalities in a revered direction, i.e. predicting seismic data given velocity
maps. Though these neural operator methods have shown powerful capacity in mapping the two
modalities, they are still constrained by their image-to-image mappings setup and cannot solve for
multiple modalities simultaneously that satisfy the governing PDE.

5.3 GENERATIVE MODELS IN FWI

Generative models, particularly Generative Adversarial Networks (GANs) and their variants, have
emerged as alternatives to traditional CNN-based methods for FWI. These models aim to learn
the latent representations of seismic data and velocity models, enabling the generation of synthetic
training data or even direct inversion (Goodfellow et al., 2020). Vector Quantized GANs (VQ-
GANs) (Esser et al., 2021), in particular, have been explored for their ability to generate high-quality
modalities, such as images, audios, videos, etc. Such models can be tuned for imaging one physical
modality (e.g. velocity map) given another (e.g. seismic data) (Zhang et al., 2019).

Recent work has focused on Latent Diffusion Models (LDMs) (Ho et al., 2020; Dhariwal & Nichol,
2021; Rombach et al., 2022), which refine latent space representations through a diffusion process.
LDMs iteratively denoise latent variables, progressively improving the quality of generated samples.
While these models can produce realistic-looking data, they often generate new samples of one
single modality at a time. Thus, it is difficult for them to generate multiple modalities using one
generative model as they lack the physical consistency to the governing PDEs that describe the
relationship between these modalities. Diffusion models have been applied to FWI by Wang et al.
(Wang et al., 2023a), who used them to generate prior distributions for plausible velocity models as
a regularization term. Their method still treats seismic data and velocity maps separately, limiting
its ability to generate physically consistent seismic-velocity pairs.

6 CONCLUSION

In this paper, we introduced WAVEDIFFUSION, a novel framework that redefines FWI as a joint gen-
erative process for seismic-velocity pairs within a shared latent space. Unlike existing approaches
that either solve for one modality given the other or treat FWI as a conditional generation problem,
our method simultaneously solves for both modalities. This is achieved through a joint diffusion
process on a shared latent space, established via a dual autoencoder, which progressively refines
latent representations to satisfy the governing PDE. By tracing a path from random initializations to
valid PDE solutions, WAVEDIFFUSION offers a new geometric perspective on the FWI problem.

Experiments on the OpenFWI dataset validate the effectiveness of WAVEDIFFUSION, demonstrating
its ability to generate high-quality seismic-velocity pairs that exhibit strong fidelity and adhere to
the physical constraints of the wave equation. Moreover, our framework can be directly applied to
conventional FWI tasks by using a one-in-two-out configuration, where only seismic data is input
to the encoder. Additionally, training an existing FWI model, such as InversionNet, on WAVEDIF-
FUSION-generated samples improves performance, particularly in scenarios with limited real data
availability. These results highlight the versatility and practicality of WAVEDIFFUSION in advancing
FWI research.
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A APPENDIX

A.1 NETWORK DETAILS AND TRAINING HYPERPARAMETERS

In this appendix section, we provide details on the network architectures and training hyperparame-
ters used for the autoencoder and joint diffusion models in our experiments.

A.1.1 AUTOENCODER MODEL

The autoencoder uses separate convolutional encoder-decoder branches that are constructed by
ResNet blocks (He et al., 2016) for seismic and velocity data. The channel multipliers of the ResNet
blocks are set to [1, 2, 2, 4, 4] for velocity maps and [1, 2, 2, 4, 4, 4, 4, 8, 8] for seismic data. The
resolution for velocity maps is 64, while for seismic data it is [1024, 64]. The latent dimension z is
[16, 16], and the number of residual blocks is set to 3. The model was trained with a base learning
rate of 4.5×10−4. It uses an embedding dimension of 32 and an embedding codebook size of 8192.
The autoencoder employs a perceptual loss combined with a discriminator. The discriminator starts
training at step 50001 with a discriminator weight of 0.5 and a perceptual weight of 0.5.

A.1.2 JOINT DIFFUSION MODEL

The Joint Diffusion model is based on the LatentDiffusion architecture. The backbone net-
work in the Joint Diffusion model is a UNet-based architecture. The UNet takes 32 input and output
channels, and the model channels are set to 128. The attention resolutions are [1, 2, 4, 4], corre-
sponding to spatial resolutions of 32, 16, 8, and 4. The model uses 2 residual blocks and channel
multipliers of [1, 2, 2, 4, 4]. It also employs 8 attention heads with scale-shift normalization enabled
and residual blocks that support upsampling and downsampling. The model is trained with a base
learning rate of 5.0 × 10−5 and uses 1000 diffusion timesteps. The loss function applied is L1.
The diffusion process is configured with a linear noise schedule, starting from 0.0015 and ending at
0.0155.

A LambdaLinearScheduler is used to control the learning rate, with 10000 warmup steps. The initial
learning rate is set to 1.0× 10−6, which increases to a maximum of 1.0 over the course of training.

A.1.3 TRAINING HYPERPARAMETERS

Both the autoencoder and Joint Diffusion models were trained using the Adam optimizer, with
β1 = 0.9 and β2 = 0.999. The models were trained with a batch size of 256 for 1000 epochs. The
learning rate follows an exponential decay schedule with a decay rate of 0.98. Gradient clipping was
applied with a threshold of 1.0. Early stopping was implemented when the validation loss plateaued
for 10 consecutive epochs.

Training required approximately 1000 GPU hours for the autoencoder (per dataset) and 2000 GPU
hours for the joint diffusion model.

Seismic data and velocity models were resized from [5,70,1000]/[1,70,70] to [3,64,1024]/[1,64,64]
(channel, height, depth) for consistency with our architecture. Both were normalized to [-1,1] to
ensure compatibility and stability.

A.2 FVB AND FFB RESULTS

In addition to the CVB dataset, we conducted similar experiments on the FVB and FFB subsets.
These subsets were chosen to evaluate the joint diffusion model’s performance in more straightfor-
ward geological scenarios—flat velocity layers and flat layers with faults.

The results from both FVB and FFB mirrored the trends observed with CVB, as shown in Figures 11
and 12, respectively. Specifically, during the forward diffusion process, the seismic data generated
by the joint diffusion model increasingly diverged from the finite difference simulation data as noise
was introduced. Conversely, during the reverse denoising process, the generated seismic data con-
verged towards the “ground truth" seismic data. This consistent behavior across different geological
settings further validates the effectiveness of the joint diffusion in refining the latent space to satisfy
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the wave equation constraints. Detailed results and visualizations for the FVB and FFB subsets are
provided in the supplementary materials.

Figure 11: Visualization of deviation from PDE during diffusion on FVB: Seismic data compar-
ison of the FVB example at different timesteps during the forward diffusion (left half) and reverse
denoising processes (right half). The top three rows show seismic channels x̂s generated by the joint
diffusion model, while the fourth row shows the generated velocity map x̂v. Rows 5-7 show the syn-
thetic seismic data xs(x̂v), simulated using a finite difference PDE solver on the generated x̂v. The
last row shows the deviation from the governing PDE, visualized as the channel-stacked difference
between xs(x̂v) and x̂s. Noise increases the deviation from the PDE during the forward diffusion,
and the reverse process reduces discrepancies.

A.3 COMBINED DATASET RESULTS

To assess the generalization capability of WaveDiffusion model across various geological structures,
we trained the autoencoder and joint diffusion on a combined dataset that includes all the subsets.

The results on this combined dataset were consistent with those observed in the individual sub-
sets, shown in Figure 13. The joint diffusion model effectively generated seismic data and velocity
maps that adhered to the wave equation, regardless of the underlying geological configuration. The
diffusion process successfully captured the shared latent space across different geological settings,
though the features of different subsets are fused to some extent due to the shared latent space.

A.4 JOINT GENERATION EXAMPLES

We present additional examples generated using the trained WAVEDIFFUSION model, emphasizing
its ability to preserve symmetry and structural consistency across different datasets, particularly the
FlatVel_B (FVB) subset.

As shown in the top two rows of Figure 14 (FVB subset), the seismic data inputs exhibit perfect
symmetry with respect to a central vertical plane. Correspondingly, the generated velocity maps
maintain this symmetry, demonstrating the model’s ability to respect the geometric properties in-
herent in the input data. These results underscore the robustness of the WAVEDIFFUSION model in
preserving geometric consistency and generating symmetric solutions, which is crucial for inversion
tasks that rely on such properties.

Beyond the FVB subset, the middle and lower rows in Figure 14 present results from additional
datasets, including the FFB and CVB subsets. These examples showcase the diversity and fidelity
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Figure 12: Visualization of deviation from PDE during diffusion on FFB: Seismic data compar-
ison of the FFB example at different timesteps during the forward diffusion (left half) and reverse
denoising processes (right half). The top three rows show seismic channels x̂s generated by the joint
diffusion model, while the fourth row shows the generated velocity map x̂v. Rows 5-7 show the syn-
thetic seismic data xs(x̂v), simulated using a finite difference PDE solver on the generated x̂v. The
last row shows the deviation from the governing PDE, visualized as the channel-stacked difference
between xs(x̂v) and x̂s. Noise increases the deviation from the PDE during the forward diffusion,
and the reverse process reduces discrepancies.

of the generated seismic-velocity pairs. The velocity maps capture layered structures and variations
consistent with seismic data inputs, highlighting the model’s capacity to handle a wide range of
input patterns while maintaining physical and structural coherence.

Overall, the examples in Figure 14 demonstrate the effectiveness of our approach across different
data distributions, confirming that the joint diffusion model can generalize well and produce reliable
results for seismic data-velocity map generation tasks.

A.5 NOISY INPUT OF BOTH MODALITIES

In this experiment, we tested the joint diffusion model’s capability to handle noisy inputs and com-
pared it with the reconstruction ability of the autoencoder alone. We started with clean seismic
data-velocity pairs, representing the ideal (target) outputs for this experiment, as shown in the first
column of Figure 16. Gaussian noise was then applied to both the seismic and velocity images,
creating noisy versions of the input data (second column), simulating real-world scenarios where
data may be degraded.

These noisy images were then fed into the encoders, producing a latent vector z that was deviated
from its true position in latent space due to the added noise. This noisy z vector was first processed
through the VQ layer and decoded directly, without applying the diffusion process. The results,
shown in the third column, reveal that the autoencoder-only reconstruction suffers from noticeable
distortions in both the seismic events and velocity layers. Artifacts, especially in the velocity recon-
structions, indicate that the autoencoder alone is insufficient for restoring noisy inputs accurately.

To further improve the reconstruction, we passed the noisy latent z vector into the joint diffusion
model. In this step, the joint diffusion process progressively denoised z through a series of steps,
gradually refining it back toward the true latent representation. After denoising, the refined z vector
was decoded through the VQ and decoder, yielding final reconstructed images shown in the last
column. These results demonstrate that the joint diffusion model effectively removes noise, restoring
both the seismic events and the velocity layers to their correct shapes without artifacts.
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Figure 13: Visualization of deviation from PDE during diffusion on combined datasets: Seis-
mic data comparison of the combined OpenFWI datasets example at different timesteps during the
forward diffusion (left half) and reverse denoising processes (right half). The top three rows show
seismic channels x̂s generated by the joint diffusion model, while the fourth row shows the generated
velocity map x̂v. Rows 5-7 show the synthetic seismic data xs(x̂v), simulated using a finite differ-
ence PDE solver on the generated x̂v. The last row shows the deviation from the governing PDE,
visualized as the channel-stacked difference between xs(x̂v) and x̂s. Noise increases the deviation
from the PDE during the forward diffusion, and the reverse process reduces discrepancies.

This experiment highlights a key discovery: the joint diffusion model is not only capable of inversion
but also robust in denoising. By refining the noisy latent representation, the diffusion process ensures
that the reconstructed outputs match the target seismic-velocity pairs, even when the input data
contains significant noise. This ability to correct and clean degraded data underscores the model’s
value in practical applications involving noisy seismic measurements.

A.6 INVERSION COMPARISON TO VELOCITYGAN AND UPFWI

Table 6: Comparison of VelocityGAN and UPFWI. Metrics include RMSE, MAE, and SSIM for
different setups and datasets.

Dataset Setup VelocityGAN UPFWI
RMSE MAE SSIM RMSE MAE SSIM

CVB

PureGen 0.4556 0.2971 0.5186 0.4616 0.3182 0.5007
Gen+1% 0.3098 0.1778 0.6240 0.3935 0.2424 0.6177
1%Only 0.4842 0.3650 0.3583 0.4887 0.3612 0.3945

OpenFWI 0.2611 0.1268 0.6962 0.3179 0.1777 0.6614

FFB

PureGen 0.2545 0.1678 0.6799 0.2847 0.1873 0.6541
Gen+1% 0.1635 0.0917 0.6878 0.1880 0.1011 0.6816
1%Only 0.3130 0.2416 0.5297 0.3150 0.2315 0.5360

OpenFWI 0.1553 0.0925 0.7552 0.2220 0.1416 0.6937

Table 6 summarizes the performance of VelocityGAN and UPFWI trained on WAVEDIFFUSION-
generated samples under different setups, evaluated on the CVB and FFB datasets.
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Figure 14: Generated Examples from Various Subsets. Examples from the FVB, FFB, and CVB
subsets. The first two rows show symmetric seismic data inputs and corresponding velocity maps
(FVB subset), illustrating the model’s ability to preserve symmetry. The middle and bottom rows
display more diverse examples from FFB and CVB subsets, highlighting the model’s generalization
capability.

Figure 15: Generated Examples from CVB Subset Using the One-in-two-out Joint Diffusion.
Three examples from the CVB subset. Each row shows one velocity (column 1) and the correspond-
ing seismic data (columns 2-4) generations.
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Figure 16: Reconstructions with Noisy Inputs. From left to right: target clean images, Gaussian
noisy inputs, autoencoder reconstructed images from noisy inputs, and joint diffusion reconstruc-
tions. When noisy data is input, the autoencoder only reconstructs deformed images with artifacts,
while the diffusion process refines the noisy inputs back to their target images.

Table 7: Comparison of InversionNet performance on CVB and FVB datasets. Performance
metrics for different training setups.

Dataset Setup RMSE MAE SSIM

CVB

PureGen 0.4798 0.3078 0.5204
Gen+1% 0.3258 0.1976 0.6293
1%Only 0.4915 0.3833 0.3625

OpenFWI 0.2801 0.1624 0.6661

FVB

PureGen 0.2766 0.1723 0.6895
Gen+1% 0.1737 0.0893 0.8532
1%Only 0.4045 0.2884 0.4967

OpenFWI 0.0909 0.0417 0.9402

Gen+1%: Adding 1% real data to the generated samples significantly boosts performance for both
solvers, with VelocityGAN achieving an SSIM of 0.6240 and UPFWI reaching 0.6177 on the CVB
dataset. This highlights the value of combining generated and real data.

PureGen and 1 %Only: Models trained solely on generated samples (PureGen) or 1% real data
(1%Only) show limited performance, with SSIM scores below 0.53. This demonstrates the impor-
tance of real data for improving generalization.

Comparison on OpenFWI: When trained on the full OPENFWI dataset, both VelocityGAN and
UPFWI achieve strong results, with VelocityGAN slightly outperforming UPFWI in SSIM across
both datasets.

A.7 ADDITIONAL INVERSIONNET COMPARISONS

The full comparison of InversionNet performance across CVB and FVB datasets under the same
experimental setups is shown in Table 7. Below are the key observations:

CVB: InversionNet trained on PureGen samples performs moderately well but trails behind the
OPENFWI baseline. Combining generated samples with 1% of real data (Gen+1%) results in no-
table improvement, outperforming the 1%Only setup by a significant margin.

FVB: On the FVB dataset, PureGen samples demonstrate competitive results, and the Gen+1%
setup achieves near-baseline performance. The 1%Only setup, in contrast, shows significantly worse
results, highlighting the limitations of minimal data availability.
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The visual comparisons for the CVB and FVB datasets are shown in Figure 17.

Figure 17: InversionNet performance visualization. Predictions using (column 1) WaveDiffusion
generated samples, (column 2) WaveDiffusion generated + 1% OpenFWI samples, and (column 3)
1% OpenFWI samples compared to ground truth (column 4) across CVB, FFB, and FVB datasets.

A.8 PERFORMANCE COMPARISON OF FWI WITH NOISY SEISMIC DATA

This experiment evaluates the robustness of WAVEDIFFUSION in inverting noisy seismic data com-
pared to InversionNet and VelocityGAN. By introducing Gaussian noise (mean=0, std=0.05) to clean
seismic data, we simulate a realistic scenario that reflects challenges in field data acquisition.

Our WAVEDIFFUSION model was tasked with recovering both velocity maps and noise-free seismic
data from the noisy seismic inputs. In contrast, InversionNet and VelocityGAN were tested only on
recovering velocity maps. Importantly, none of the models were trained on noisy data, making this
a stringent test of robustness.

The results in Table 8 and Figure 18 highlight the significant advantage of WAVEDIFFUSION over the
baselines. WAVEDIFFUSION achieves the lowest MAE and RMSE and the highest SSIM, demon-
strating its ability to effectively handle noisy data.

Table 8: Performance Metrics for Noisy Seismic Data Inversion. Evaluation based on Gaussian
noisy seismic data as input and velocity maps as output on the CVB dataset.

Model MAE RMSE SSIM
InversionNet 0.9069 1.0701 0.2604
VelocityGAN 0.4913 0.6916 0.3231
WaveDiffusion (Ours) 0.2227 0.3776 0.6142

Despite being trained only on clean data, WAVEDIFFUSION demonstrates exceptional robustness
to noisy inputs. Its joint diffusion process effectively denoises the seismic data during inversion,
recovering high-fidelity velocity maps and seismic data that align with the physical constraints of
the wave equation.

In contrast, both InversionNet and VelocityGAN fail to handle noisy seismic data, as evidenced
by significantly higher errors (MAE and RMSE) and lower structural similarity (SSIM). This lim-
itation stems from their image-to-image mapping architectures, which lack an inherent denoising
mechanism.

These results underline the practical utility of WAVEDIFFUSION in real-world scenarios where data
noise is inevitable. By refining noisy latent representations through diffusion, our model not only
recovers accurate velocity maps but also reconstructs noise-free seismic data, setting it apart from
traditional mapping-based methods.
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Figure 18: FWI with Noisy Seismic Data Input. From left to right: target clean images, WAVED-
IFFUSION FWI results from noisy inputs, InversionNet results, and VelocityGAN results. Inversion-
Net and VelocityGAN fail to handle noisy inputs, while WAVEDIFFUSION robustly refines the noisy
seismic data to generate accurate velocity maps and noise-free seismic data.
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