
Supplementary materials: Rethinking Counterfactual
Explanations as Local and Regional Counterfactual

Policies

Anonymous Author(s)
Affiliation
Address
email

Contents1

A Regional RF detailed 22

B Additional experiments 33

C Simulated annealing to generate counterfactual samples using the Counterfactual Rules 34

D Parameters detailed 55

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

A Regional RF detailed6

In this section, we give a simple application of the Regional RF algorithm to better understand how7

it works. Recall that the regional RF is a generalization of the RF’s algorithm to give prediction8

even when we condition given a region, e.g., to estimate E(f(X) |XS ∈ CS(x),X S̄ = xS̄) with9

CS(x) =
∏|S|

i=1[ai, bi], ai, bi ∈ R̄ a hyperrectangle. The algorithm works as follows: we drop the10

observations in the initial trees, if a split used variable i ∈ S̄, a fixed value-based condition, we used11

the classic rules i.e., if xi ≤ t, the observations go to the left children, otherwise the right children.12

However, if a split used variable i ∈ S, regional-based condition, we used the hyperrectangle13

CS(x) =
∏|S|

i=1[ai, bi]. The observations are sent to the left children if bi ≤ t, right children if ai > t14

and if t ∈ [ai, bi] the observations are sent both to the left and right children.15

To illustrate how it works, we use a two dimensional variables X ∈ R2, a simple decision tree f16

represented in figure 1, and want to compute for x = [1.5, 1.9], E(f(X)|X1 ∈ [2, 3.5],X0 = 1.5).17

We assume that P (X1 ∈ [2, 3.5] |X0 = 1.5) > 0 and denoted T1 as the set of the values of the splits18

based on variables X1 of the decision tree. One way of estimating this conditional mean is by using19

Monte Carlo sampling. Therefore, there are two cases :20

Figure 1: Representation of a simple decision tree (right figure) and its associated partition (left
figure). The gray part in the partition corresponds to the region [2, 3.5]× [1, 2]

• If ∀t ∈ T1, t ≤ 2 or t > 3, then all the observations sampled s.t. X̃i ∼ L(X |X1 ∈21

[2, 3.5],X0 = 1.5) follow the same path and fall in the same leaf. The Monte Carlo22

estimator of the decision tree E(f(X)|X1 ∈ [2, 3.5],X0 = 1.5) is equal to the output of23

the Regional RF algorithm.24

– For instance, a special case of the case above is: if ∀t ∈ T1, t ≤ 2, and we sample using25

L(X |X1 ∈ [2, 3.5],X0 = 1.5), then all the observations go to the right children26

when they encounters a node using X1 and fall in the same leaf.27

• If ∃ t ∈ T1 and t ∈ [2, 3.5], then the observations sampled s.t. X̃i ∼ L(X |X1 ∈28

[2, 3.5],X0 = 1.5) can fall in multiple terminal leaf depending on if their coordinates29

x1 is lower than t. Following our example, if we generate samples using L(X |X1 ∈30

[2, 3.5],X0 = 1.5), the observations will fall in the gray region of figure 1, and thus can31

fall in node 4 or 5. Therefore, the true estimate is:32

E(f(X)|X1 ∈ [2, 3.5],X0 = 1.5)

= p(X1 ≤ 2.9 |X0 = 1.5) ∗ E[f(X) |X ∈ L4] + p(X1 > 2.9 |X0 = 1.5) ∗ E[f(X) |X ∈ L5]
(A.1)

2

Concerning the last case (t ∈ [2, 3.5]), we need to estimate the different probabilities p(X1 ≤33

2.9 |X0 = 1.5), p(X1 > 2.9 |X0 = 1.5) to compute E(f(X)|X1 ∈ [2, 3.5],X0 = 1.5), but34

these probabilities are difficult to estimate in practice. However, we argue that we can ignore these35

splits, and thus do no need to fragment the query region using the leaves of the tree. Indeed, as we36

are no longer interest in a point estimate but regional (population mean) we do not need to go to37

the level of the leaves. We propose to ignore the splits of the leaves that divide the query region.38

For instance, the leaves 4 and 5 split the region [2, 3.5] in two cells, by ignoring these splits we39

estimate the mean of the gray region by taking the average output of the leaves 4 and 5 instead of40

computing the mean weighted by the probabilities as in Eq. A.1. Roughly, it consists to follow41

the classic rules of a decision tree (if the region is above or below a split) and ignore the splits42

that are in the query region, i.e., we average the output of all the leaves that are compatible with43

the condition X1 ∈ [2, 3.5],X0 = 1.5. We think that it leads to a better approximation for two44

reasons. First, we observe that the case where t is in the region and thus divides the query region45

does not happen often. Moreover, the leaves of the trees are very small in practice, and taking the46

mean of the observations that fall in the union of leaves that belong to the query region is more47

reasonable than computing the weighted mean and thus trying to estimate the different probabilities48

p(X1 ≤ 2.9 |X0 = 1.5), p(X1 > 2.9 |X0 = 1.5).49

B Additional experiments50

In table 1, we compare the Correctness (Acc), Plausibility (Psb), and Sparsity (Sprs) of the different51

methods on additonal real-world datasets: FICO [FICO, 2018], NHANESI [CDC, 1999-2022].52

We observe that the L-CR, and R-CR outperform the baseline methods by a large margin on Correct-53

ness and Plausibility. The baseline methods still struggle to change at the same time the positive and54

negative class. In addition, AReS and CET give better sparsity, but their counterfactual samples are55

less plausible than the ones generated by the CR.56

Table 1: Results of the Correctness (Acc), Plausibility, and Sparsity (Sprs) of the different methods.
We compute each metric according to the positive (Pos) and negative (Neg) class.

FICO NHANESI
Acc Psb Sps Acc Psb Sps

Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg
L-CR 0.98 0.94 0.98 0.99 5 5 0.99 0.98 0.98 0.97 5 6
R-CR 0.90 0.94 0.98 0.99 9 8.43 0.86 0.95 0.96 0.99 7 7
AReS 0.34 0.01 0.85 0.86 2 1 0.06 1 0.87 0.92 1 1
CET 0.76 0 0.76 0.60 2 2 0 0.40 0.82 0.56 0 5

C Simulated annealing to generate counterfactual samples using the57

Counterfactual Rules58

1 import numpy as np59

260

3 def generate_candidate(x, S, x_train , C_S , n_samples):61

4 """62

5 Generate sample by sampling marginally between the features value63

of the training observations.64

6 Args:65

7 x (numpy.ndarray)): 1-D array , an observation66

8 S (list): contains the indices of the variables on which to67

condition68

9 x_train (numpy.ndarray)): 2-D array represent the training69

samples70

10 C_S (numpy.ndarray)): 3-D (# variables x 2 x 1) representing71

the hyper -rectangle on which to condition72

11 n_samples (int): number of samples73

12 Returns:74

13 The generated samples75

3

14 """76

15 x_poss = [x_train [(C_S[i, 0] <= x_train[:, i]) * (x_train[:, i] <=77

C_S[i, 1]), i] for i in S]78

16 x_cand = np.repeat(x.reshape(1, -1), repeats=n_samples , axis =0)79

1780

18 for i in range(len(S)):81

19 rdm_id = np.random.randint(low=0, high=x_poss[i]. shape[0],82

size=n_samples)83

20 x_cand[:, S[i]] = x_poss[i][rdm_id]84

2185

22 return x_cand86

2387

2488

25 def simulated_annealing(outlier_score , x, S, x_train , C_S , batch ,89

max_iter , temp , max_iter_convergence):90

26 """91

27 Generate sample X s.t. X_S \in C_S using simulated annealing and92

outlier score.93

28 Args:94

29 outlier_score (lambda functon): outlier_score(X) return a95

outlier score. If the value are negative , then the observation is96

an outlier.97

30 x (numpy.ndarray)): 1-D array , an observation98

31 S (list): contains the indices of the variables on which to99

condition100

32 x_train (numpy.ndarray)): 2-D array represent the training101

samples102

33 C_S (numpy.ndarray)): 3-D (# variables x 2 x 1) representing103

the hyper -rectangle on which to condition104

34 batch (int): number of sample by iteration105

35 max_iter (int): number of iteration of the algorithm106

36 temp (double): the temperature of the simulated annealing107

algorithm108

37 max_iter_convergence (double): minimun number of iteration to109

stop the algorithm if it find an in-distribution observation110

38111

39 Returns:112

40 The generated sample , and its outlier score113

41 """114

42115

43 best = generate_candidate(x, S, x_train , C_S , n_samples =1)116

44 best_eval = outlier_score(best)[0]117

45 curr , curr_eval = best , best_eval118

46119

47 it = 0120

48 for i in range(max_iter):121

49122

50 x_cand = generate_candidate(curr , S, x_train , C_S , batch)123

51 score_candidates = outlier_score(x_cand)124

52125

53 candidate_eval = np.max(score_candidates)126

54 candidate = x_cand[np.argmax(score_candidates)]127

55128

56 if candidate_eval > best_eval:129

57 best , best_eval = candidate , candidate_eval130

58 it = 0131

59 else:132

60 it += 1133

61134

62 # check convergence135

63 if best_eval > 0 and it > max_iter_convergence:136

64 break137

65138

66 diff = candidate_eval - curr_eval139

67 t = temp / np.log(float(i + 1))140

4

68 metropolis = np.exp(-diff / t)141

69142

70 if diff > 0 or rand() < metropolis:143

71 curr , curr_eval = candidate , candidate_eval144

72145

73 return best , best_eval146

Listing 1: The simulated annealing algorithm to generate samples that satisfy the condition CR

D Parameters detailed147

In this section, we give the different parameters of each method. For all methods and datasets, we first148

used a greedy search given a set of parameters. For AReS, we use the following set of parameters:149

• max rule = {4, 6, 8}, max rule length = {4, 8}, max change num = {2, 4, 6},150

• minimal support = 0.05, discretization bins = {10, 20},151

• λacc = λcov = λcst = 1.152

For CET, we search in the following set of parameters:153

• max iterations = {500, 1000},154

• max leaf size = {4, 6, 8,−1},155

• λ = 0.01, γ = 1.156

Finally, for the Counterfactual Rules, we used the following parameters:157

• nb estimators = {20, 50}, max depth= {8, 10, 12},158

• π = 0.9, πC = 0.9.159

We obtained the same optimal parameters for all datasets:160

• AReS: max rule = 4, max rule length= 4, max change num = 4, minimal support = 0.05,161

discretization bins = 10, λacc = λcov = λcst = 1162

• CET: max iterations = 1000, max leaf size = −1, λ = 0.01, γ = 1163

• CR: nb estimators= 20, max depth= 10, π = 0.9, πC = 0.9164

The code and the results can be found at https://github.com/anoxai/counterfactual_165

rules.166

5

https://github.com/anoxai/counterfactual_rules
https://github.com/anoxai/counterfactual_rules
https://github.com/anoxai/counterfactual_rules

References167

CDC. National health and nutrition examination survey, 1999-2022. URL https://wwwn.cdc.168

gov/Nchs/Nhanes/Default.aspx.169

FICO. Fico. explainable machine learning challenge, 2018. URL https://community.fico.com/170

s/explainable-machine-learning-challenge.171

6

https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx.
https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx.
https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx.
https://community.fico.com/ s/explainable-machine-learning-challenge.
https://community.fico.com/ s/explainable-machine-learning-challenge.
https://community.fico.com/ s/explainable-machine-learning-challenge.

	Regional RF detailed
	Additional experiments
	Simulated annealing to generate counterfactual samples using the Counterfactual Rules
	Parameters detailed

