Supplementary materials: Rethinking Counterfactual
Explanations as Local and Regional Counterfactual
Policies

Anonymous Author(s)

Affiliation

Address

email
Contents
A Regional RF detailed 2
B Additional experiments 3

C Simulated annealing to generate counterfactual samples using the Counterfactual Rules 3

D Parameters detailed 5

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

6

22
23
24

25
26
27

28
29
30
31
32

A Regional RF detailed

In this section, we give a simple application of the Regional RF algorithm to better understand how
it works. Recall that the regional RF is a generalization of the RF’s algorithm to give prediction
even when we condition given a region, e.g., to estimate E(f(X) | X s € Cs(x), X g = z5) with
Cs(x) = Hlill [ai, bi], ai, b; € R a hyperrectangle. The algorithm works as follows: we drop the
observations in the initial trees, if a split used variable ¢ € S, a fixed value-based condition, we used
the classic rules i.e., if x; < ¢, the observations go to the left children, otherwise the right children.
However, if a split used variable ¢ € S, regional-based condition, we used the hyperrectangle

Cs(x) = Hli‘l [a;, b;]. The observations are sent to the left children if b; < ¢, right children if a; > ¢
and if ¢ € [a;, b;] the observations are sent both to the left and right children.

To illustrate how it works, we use a two dimensional variables X € R2, a simple decision tree f
represented in figure 1, and want to compute for = [1.5,1.9], E(f(X)| X1 € [2, 3.5], X = 1.5).
We assume that P(X; € [2, 3.5] | X¢ = 1.5) > 0 and denoted T as the set of the values of the splits
based on variables X of the decision tree. One way of estimating this conditional mean is by using
Monte Carlo sampling. Therefore, there are two cases :

X, 1
4
* —
*
*
3 * [5])
*
* * *
Xk
2 *
X * @
*
1 * *
* X 5 ¥ *
* A .
*
x| "3 © .
1 2 3 Xo

Figure 1: Representation of a simple decision tree (right figure) and its associated partition (left
figure). The gray part in the partition corresponds to the region [2, 3.5] x [1,2]

« IfVt € Th,t < 2ort > 3, then all the observations sampled s.t. X; ~ L(X |X; €
[2, 3.5],X(= 1.5) follow the same path and fall in the same leaf. The Monte Carlo
estimator of the decision tree E(f(X)| X1 € [2, 3.5], X¢ = 1.5) is equal to the output of
the Regional RF algorithm.

— For instance, a special case of the case above is: if V¢ € T7,t < 2, and we sample using
L(X | X1 € [2, 3.5], X¢ = 1.5), then all the observations go to the right children
when they encounters a node using X and fall in the same leaf.

e If3¢t e Tyandt € [2, 3.5], then the observations sampled s.t. X; ~ L(X |X; €
[2, 3.5], X¢ = 1.5) can fall in multiple terminal leaf depending on if their coordinates
x1 is lower than ¢. Following our example, if we generate samples using £(X | X €
[2, 3.5], X = 1.5), the observations will fall in the gray region of figure 1, and thus can
fall in node 4 or 5. Therefore, the true estimate is:

E(f(X)|X1 € [Qa 35]7X0 = 15)

= p(X) <29 [Xo = 1.5)* E[f(X) |X € Ly + p(X; > 2.9 |Xo = 1.5) E[f(X) |X € Ls]

(A.1)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

51
52

53
54
55
56

57

58

59 1
60 2
613
62 4
63 5
64

656
66 7
67 8
68

69 9
70

7110
72

7311
7412
7513

Concerning the last case (¢t € [2, 3.5]), we need to estimate the different probabilities p(X; <
2.9 | Xy = 1.5),p(X1 > 2.9 |Xo = 1.5) to compute E(f(X)|X; € [2, 3.5], Xo = 1.5), but
these probabilities are difficult to estimate in practice. However, we argue that we can ignore these
splits, and thus do no need to fragment the query region using the leaves of the tree. Indeed, as we
are no longer interest in a point estimate but regional (population mean) we do not need to go to
the level of the leaves. We propose to ignore the splits of the leaves that divide the query region.
For instance, the leaves 4 and 5 split the region [2, 3.5] in two cells, by ignoring these splits we
estimate the mean of the gray region by taking the average output of the leaves 4 and 5 instead of
computing the mean weighted by the probabilities as in Eq. A.1. Roughly, it consists to follow
the classic rules of a decision tree (if the region is above or below a split) and ignore the splits
that are in the query region, i.e., we average the output of all the leaves that are compatible with
the condition X; € [2, 3.5], Xy = 1.5. We think that it leads to a better approximation for two
reasons. First, we observe that the case where t is in the region and thus divides the query region
does not happen often. Moreover, the leaves of the trees are very small in practice, and taking the
mean of the observations that fall in the union of leaves that belong to the query region is more
reasonable than computing the weighted mean and thus trying to estimate the different probabilities

B Additional experiments

In table 1, we compare the Correctness (Acc), Plausibility (Psb), and Sparsity (Sprs) of the different
methods on additonal real-world datasets: FICO [FICO, 2018], NHANESI [CDC, 1999-2022].

We observe that the L-CR, and R-CR outperform the baseline methods by a large margin on Correct-
ness and Plausibility. The baseline methods still struggle to change at the same time the positive and
negative class. In addition, AReS and CET give better sparsity, but their counterfactual samples are
less plausible than the ones generated by the CR.

Table 1: Results of the Correctness (Acc), Plausibility, and Sparsity (Sprs) of the different methods.
We compute each metric according to the positive (Pos) and negative (Neg) class.

FICO NHANESI
Acc Psb Sps Acc Psb Sps
Pos Neg Pos Neg Pos Neg | Pos Neg Pos Neg Pos Neg
L-CR 098 094 098 099 5 5 099 098 098 097 5 6
R-CR 090 094 098 099 9 843|086 095 096 099 7 7
AReS 034 001 085 086 2 1 0.06 1 087 092 1 1
CET 0.76 0 076 060 2 2 0 040 082 056 O 5

C Simulated annealing to generate counterfactual samples using the
Counterfactual Rules

import numpy as np

def generate_candidate(x, S, x_train, C_S, n_samples):

nnn
Generate sample by sampling marginally between the features value
of the training observations.
Args:

x (numpy.ndarray)): 1-D array, an observation

S (list): contains the indices of the variables on which to
condition

x_train (numpy.ndarray)): 2-D array represent the training
samples

C_S (numpy.ndarray)): 3-D (#variables x 2 x 1) representing
the hyper-rectangle on which to condition

n_samples (int): number of samples
Returns:

The generated samples

7614
7715
78
7916
8017
8118
8219
83
8420
8521
8622
8723
884
895
90
9126
9207
93
948
959
96
97
980
9931
100
10132
102
10333
104
10534
10635
10736
108
10937
110
11138
11239
11340
11441
1152
11643
11744
11845
11946
12047
12148
12219
12350
12451
12552
12653
12754
1285
12%56
13057
13158
13259
1330
1341
1352
13653
1374
1385
13%6
14007

def

nun

x_poss = [x_train[(C_S[i, 0] <= x_train[:, i]) * (x_train[:, i] <=
C_S[i, 11), i] for i in §]
x_cand = np.repeat(x.reshape(l, -1), repeats=n_samples, axis=0)

for i in range(len(S)):

rdm_id = np.random.randint(low=0, high=x_poss[i].shape[0],
size=n_samples)

x_cand[:, S[i]] = x_poss[i] [rdm_id]

return x_cand

simulated_annealing(outlier_score, x, S, x_train, C_S, batch,
max_iter, temp, max_iter_convergence):
nnn
Generate sample X s.t. X_S \in C_S using simulated annealing and
outlier score.
Args:

outlier_score (lambda functon): outlier_score(X) return a
outlier score. If the value are negative, then the observation is
an outlier.

x (numpy.ndarray)): 1-D array, an observation

S (list): contains the indices of the variables on which to
condition

x_train (numpy.ndarray)): 2-D array represent the training
samples

C_S (numpy.ndarray)): 3-D (#variables x 2 x 1) representing
the hyper-rectangle on which to condition

batch (int): number of sample by iteration

max_iter (int): number of iteration of the algorithm

temp (double): the temperature of the simulated annealing
algorithm

max_iter_convergence (double): minimun number of iteration to
stop the algorithm if it find an in-distribution observation

Returns:
The generated sample, and its outlier score

nun

best = generate_candidate(x, S, x_train, C_S, n_samples=1)
best_eval = outlier_score(best) [0]
curr, curr_eval = best, best_eval

it = 0
for i in range(max_iter):

x_cand = generate_candidate(curr, S, x_train, C_S, batch)
score_candidates = outlier_score(x_cand)

candidate_eval = np.max(score_candidates)

candidate = x_cand[np.argmax(score_candidates)]

if candidate_eval > best_eval:

best, best_eval = candidate, candidate_eval
it = 0

else:
it += 1

check convergence
if best_eval > 0 and it > max_iter_convergence:
break

diff = candidate_eval - curr_eval
t = temp / np.log(float(i + 1))

14168
14209
14370
14471
14572
14673

147

148
149

151

152

153

154

155

156

157

158

159

160

161
162

metropolis = np.exp(-diff / t)

if diff > 0 or rand() < metropolis:
curr, curr_eval = candidate, candidate_eval

return best, best_eval

Listing 1: The simulated annealing algorithm to generate samples that satisfy the condition CR

D Parameters detailed

In this section, we give the different parameters of each method. For all methods and datasets, we first
used a greedy search given a set of parameters. For AReS, we use the following set of parameters:
* max rule = {4, 6, 8}, max rule length = {4, 8}, max change num = {2, 4, 6},
* minimal support = 0.05, discretization bins = {10, 20},
* Aace = Acov = Acst = 1.

For CET, we search in the following set of parameters:

* max iterations = {500, 1000},
* max leaf size = {4,6,8,—1},
e A=00L7=1.

Finally, for the Counterfactual Rules, we used the following parameters:

* nb estimators = {20, 50}, max depth= {8, 10, 12},
e 1=0.9 7 =0.9.

We obtained the same optimal parameters for all datasets:

* AReS: max rule = 4, max rule length= 4, max change num = 4, minimal support = 0.05,
discretization bins = 10, Agee = Aoy = Acst = 1

* CET: max iterations = 1000, max leaf size = —1, A = 0.01,y =1

* CR: nb estimators= 20, max depth= 10, 7 = 0.9, 1c = 0.9

The code and the results can be found at https://github.com/anoxai/counterfactual_
rules.

https://github.com/anoxai/counterfactual_rules
https://github.com/anoxai/counterfactual_rules
https://github.com/anoxai/counterfactual_rules

167

168
169

170
171

References

CDC. National health and nutrition examination survey, 1999-2022. URL https://wwwn.cdc.
gov/Nchs/Nhanes/Default.aspx.

FICO. Fico. explainable machine learning challenge, 2018. URL https://community.fico.com/
s/explainable-machine-learning-challenge.

https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx.
https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx.
https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx.
https://community.fico.com/ s/explainable-machine-learning-challenge.
https://community.fico.com/ s/explainable-machine-learning-challenge.
https://community.fico.com/ s/explainable-machine-learning-challenge.

	Regional RF detailed
	Additional experiments
	Simulated annealing to generate counterfactual samples using the Counterfactual Rules
	Parameters detailed

