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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 META-TRAINING HYPER-PARAMETERS

We summary the hyper-parameters for meta-training in our experiments in Table[I] In general, we
follow the basic settings in (Yao et al.,[2019). The base learner is a standard four-block convolutional
neural network. The number of nodes for the hierarchical task clustering network is set to 4,4,1 to
accommodate larger clustering capacity on OOD meta-testing tasks. The constructed pool has 16
clusters, each of which has a capacity of 320 images (20 classes * 16 images per class). Every 2
epochs, we re-calculate the probability scores for all images in the pool to keep the pool up-to-date.
We adopt a warm-start strategy by sampling tasks from the pool after 3 epochs, since it makes no
sense to regularize with a hypervolume loss on the basis of a random pool. We structurize 4 tasks
(i.e., 2 7,8 and 2 Tps) by designing the random variable X\ from Beta(5,2) and Beta(2, 5) for 2
Tms, respectively. In this way, we can ensure that the generated mixed tasks are not too close (or far
away) with each other, so as to better imitate OOD tasks. We meta-train our model on a single RTX
2080-Ti GPU. We summarize the whole framework of our proposed method in Algorithm|T]

A.1.2 DATASET DETAILS

In this section, we briefly introduce the datasets we use in our experiments. All images are converted
into (84 x 84) pixels of widths and heights with RGB channels. We randomly sample 16 images for
each dataset as illustrated in Figure[T}

* Meta-Dataset (Triantafillou et al.l[2019) is a cross-domain image datasets including 10 sub-datasets
from real to hand-drawn images.

— Fine-Grained Visual Classification of Aircraft (Aircraft) (Maji et al., 2013). We follow
the same setting as in (Yao et al.| [2019), that meta-training/meta-validation/meta-testing sets
are split to contain 64/16/20 classes. Each aircraft variant contains 100 images.

— Caltech-UCSD Birds-200-2011 (Birds) (Wah et al., 2011). We follow the same setting as
in (Yao et al.,[2019), that meta-training/meta-validation/meta-testing sets are split to contain
64/16/20 classes. Each bird species contains 60 images.

— Describable Textures (Textures) (Cimpoi et al.,[2014). We follow the same setting as in (Yao
et al.l 2019)), that meta-training/meta-validation/meta-testing sets are split to contain 30/7/10
classes. Each texture class contains 120 images.

— FGVCx-Fungi (Fungi) (Kaggle,[2018). We follow the same setting as in (Yao et al., 2019),
that meta-training/meta-validation/meta-testing sets are split to contain 64/16/20 classes. Each
mushroom species contains 150 images.

— ILSVRC-2012 (ImageNet) (Russakovsky et al.,[2015) is a well-established comprehensive
dataset for image classification. Here, we do not use the full dataset. In practice, we use the



Algorithm 1: Meta-training of the Proposed Framework

1: Require: termination condition 7'; outer learning rate 5; meta batch size B; shot K; way NV
2: Require: cluster number C'; pool update period T,

3: Require: hypervolume loss weight «; reference point Z

4: Tnitialize pool C = {C.}¢_, «+ {0},

5: Randomly initialize the clustering network and base learner 0,;; = {0.,,, 0}

6: fort =1to 71 do

7:  Sample a batch of tasks {7;} 2,

8 Compute L;rqin by HSML

10:  /* Clustering Pool Construction */
11: if mod (¢,73,) == 0 then

12: forc=1to C do

13: for zin C. do

14: Update p;z in Equation (1)

15: end for

16: end for

17:  endif

18: P+ C

19:  for each 7; do

20: for x in 7; do

21: Construct auxiliary task 7, with D%‘-i) — {(=, yj)}é\g{
22: Calculate p,, in Equation (1)

23: P+ PUp,

24: end for

25:  end for

26:  Apply k-means on P to have {C.}¢_; < P
27:

28:  /* Task Sampling from Pool */

29:  Sample C;,C; from C

30:  Sample Ty, Tp, s Tonis Tny» Toy s To, from Cy, C; in subsection 4.3
31:

32:  /* Conflict Loss Computation */

33:  Compute the multi-objective query loss matrix L,,, in Equation (3)
34:  Compute Luv (Lo, Z)

35:

36:  /* Meta Training */

37 Compute vEtotal = V@Etrain + avGC"‘cHV

38: Update © < © — BV Liota

39: end for

commonly used subset Mini (Vinyals et al.,[2016)) as a substitution. We randomly select 20
classes for meta-testing, each containing 600 images.

— Omniglot (Lake et al.l 2015) contains 1623 hand-written characters from different alphabets.
We randomly select 659 characters for meta-testing, each containing 20 images.

— VGG Flower (Nilsback & Zisserman, [2008) contains 102 flower categories. We randomly
select 16 classes for meta-testing, each containing around 100 images.

— Quickdraw (Jongejan et al.l 2016) contains 345 online hand-drawn categories. We use
a subset of 500 images for each class described in DomainNet. We randomly select 100
categories for meta-testing.

— Traffic Signs (Houben et al., 2013) contains 43 classes of German road signs. Images are in
different illumination conditions and blurs. All classes are used for meta-testing.

— MSCOCO (Lin et al.,|2014) contains 80 classes of objects localized in bounding boxes of
original images. All classes are used for meta-testing.



Table 1: Hyper-parameters summary.

Hyper-parameters Values
Meta batch size 4
Inner loop learning rate 0.01
Outer loop learning rate 0.0001
Base learner Inner step 3
Outer step 15
CNN block number 4
CNN filter number 48
Node number “4,4,1)
Clustering network Hidden dim 128
Reconstruction loss weight 0.01
Cluster capacity (image number) 320
Pool construction Cluster number C 16
Pool update period (epoch) 2
Start sampling epoch 3
Task sampling Tp, T, To numbers 2,2,2)
CutMix bounding box size (25, 25)
Beta parameter (a, b) (5,2)and (2, 5)
Conflict loss calculation ~ Hypervolume loss weight o 0.1
Reference point Z [1.5,1.5]"
Class number N 5
Dataset Shot number K 1
Query sample number n(@ 75
Image shape (34, 84, 3)

* DomainNet (Triantafillou et al., 2019) is a multi-source datasets including 6 distinct domains (i.e.,
Clipart, Infograph, Painting, Quickdraw, Real, Sketch) with similar class labels. We randomly
select 100 classes for each domain, each containing around 500 images.

* CIFAR-100 (Krizhevsky et al.,[2009) is a low resolution image dataset containing 100 fine-grained
categories. All classes are used for meta-testing.

 Stanford Cars (Cars) (Krause et al., [2013)) contains 196 car classes. Different from the given
default image-level splitting, we randomly select 49 classes for meta-testing, each containing
around 40 images.

* Oxford-IIIT Pets (Pets) (Parkhi et al.,2012) contains 37 dog and cat categories. Each image has
a ground truth bounding box around the head of the animal. We randomly select 20 classes for
meta-testing, each containing 100 images.

 Stanford Dogs (Dogs) (Khosla et al.,|2011)) contains 120 breeds of dogs. We randomly select 30
classes for meta-testing, each containing hundreds of images.

A.2 ADDITIONAL RESULTS

A.2.1 ADDITIONAL META-TRAINING SETTINGS
After testing the effectiveness of our proposed framework on the commonly used 1-shot 5-way
meta-training scenario, we further apply it to additional meta-training settings.

Testing on a base learner with less capacity. We report the average meta-testing accuracy in
Table [2] 3| when decreasing the number of filters to 32. Our method achieves similar performance
on ID datasets (i.e., 49.62% accuracy on average comparing with HSML 49.29% accuracy) but also
shows consistently outperforming accuracy (i.e., 42.85% on average comparing with HSML 41.77%
accuracy). Comparing with the results in Table ??, we can observe a smaller improvement on average
(i.e., 1.08% vs 2.01%) between Ours and HSML. We can conclude that a more disentangled clustering
is of benefit to generalize to OOD tasks for a base learner with higher capacity.
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Figure 1: Image examples from all datasets used in the experiments.



Table 2: ID meta-testing accuracy comparison of our method to HSML meta-trained with Aircraft,
Birds, Textures, and Fungi. Base learners have 32 filters in each layer. Accuracy (standard deviation)
are reported.

Test Dataset Aircraft Birds Textures Fungi , ID Average
HSML 55.92%(0.30%)  62.45%(0.39%) 33.71%(0.30%) 45.10%(0.21%) ' 49.29%
Ours 56.48%(0.37%) 62.12%(0.35%) 34.83%(0.32%) 45.06%(0.18%) ' 49.62%

Table 3: OOD meta-testing accuracy comparison of our method to HSML meta-trained with Aircraft,
Birds, Textures, and Fungi. Base learners have 32 filters in each layer. Accuracy (standard deviation)
are reported.

Test Dataset Mini Traffic Signs Real CIFAR-100 Pets , OOD Average
HSML 37.10%(0.28%)  44.48%(0.36%)  42.08%(0.23%)  39.49%(0.31%)  45.72%(0.31%) ' 41.77%
Ours 38.40%(0.29%) 45.37%(0.35%) 43.01%(0.31%) 40.93%(0.27%) 46.55%(0.28%) '  42.85%

A.2.2 HYPER-PARAMETER STUDIES

Effect of different objective numbers. The number of objectives is the number of randomly sampled
columns from the pool in each iteration. A larger number indicates a larger scope considered to
encourage disentanglement simultaneously. We investigate this effect in Figure[2] We do not observe
better OOD performance in the 3-objective case, which supports our claim that it is computationally
efficient to enhance pair-wise cluster difference.

Effect of different mixed task numbers. We study the effectiveness of our framework when varying
the number of mixed tasks generated in each iteration. The meta-testing accuracy is reported in
Figure[3] We do not observe a clear tendency when increasing the number of mixed tasks. Regarding
the computational cost, we use 2 mixed tasks in our main experiments.

Effect of hypervolume loss weights. The weight of hypervolume loss a controls the importance
between the meta-training loss and the hypervolume loss. We investigate the effect of hypervolume
loss weights in Table [d] Note that, the zero weight equals to the standard HSML. For ID datasets,
increasing the weight does not produce a better meta-testing accuracy, which shows that the learned
clustering in HSML is enough for distinguishing ID datasets. However, this can be further promoted
for OOD datasets with our hypervolume loss, since the meta-testing accuracy for OOD datasets
shows a significant increasing trend when increasing the hypervolume loss weight.
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Omniglot  Traffic Signs Mini Clipart Real CIFAR-100 Pets OOD Average

Figure 2: Meta-testing accuracy for varying number of objectives (blue: 2-objective, red: 3-objective)
on 1-shot 5-way experiments meta-trained with Aircraft, Birds, Textures, and Fungi datasets. The
number of mixed tasks generated in each iteration is set to 2 and 3 for 2-objective and 3-objective
cases, respectively.



mS5 m6 7

m3 m4
0.6 = &
0.5 - :
04 e HERD
JREA

Aircraft Birds Textures Fungi ID Average

© O 000
> oo

-
z .3
.
[Fr—— . NN s NN

Omniglot  Traffic Signs Mini Clipart Real CIFAR-100 Pets OOD Average

Figure 3: Meta-testing accuracy for varying number of mixed tasks on 1-shot 5-way experiments
meta-trained with Aircraft, Birds, Textures, and Fungi datasets. The number of objectives is set to 2.

Table 4: Comparison of different settings of hypervolume loss weights on meta-testing accuracy
over 1000 tasks for each dataset. Models are all meta-trained with Aircraft, Birds, Textures, and
Fungi datasets.

« Aircraft Birds Textures  Fungi Mini Traffic Signs VGG Flower  Omniglot

0.00 5954% 64.18%  34.84% 46.82%  36.40% 44.38% 68.06% 77.88%
001 5717%  63.56%  3532%  46.51% 36.83% 44.65% 67.12% 76.08%
005 6041% 64.25%  3573%  46.36% 37.71% 45.39% 68.64% 75.06%
0.10 57.75% 6338%  34.96%  46.40% 38.12% 45.16% 67.15% 78.15%
050 4690%  59.49%  33.63%  42.773%  37.79% 48.45% 68.92% 79.35%
1.00 42.55%  57.36%  31.75%  41.94% 36.81% 47.99% 69.54% 78.31%

Effect of different mixing methods. Mixed tasks are essential components in Task Sampling, which
are generated to mimic OOD tasks from meta-training ID tasks. To this end, our method performs
CutMix (Yun et al.} 2019) task augmentation to generate mixed tasks. We investigate the effect of
MixUp (Zhang et al.,[2017) task augmentation. For each image-pair (Z1;, Z2;), we calculate the
mixed image &; = A\Z1; + (1 — A)Z9;. Note that we sample \ using the same strategy as described in
Task Sampling part. We further develop a variant of MixUp (named MixUp-R), which is to mix the
task representations of each image-pair rather than the images themselves.

We compare CutMix, MixUp, MixUp-R on meta-testing accuracy over 1000 tasks for each dataset.
The 5-way 1-shot experiment results are shown in Table[5] We can not observe significant difference
among these methods, but CutMix works better in general.

A.2.3 ADDITIONAL EXPERIMENTS ON DIFFERENT CLUSTERING STRUCTURES

Different clustering network architectures. In order to show the benefit of a larger capacity of
the clustering network, we evaluate three different architectures (i.e., (4,2,1), (4,4,1), and (8,4,1)
structures with 8, 16, and 32 clusters in the pool, respectively). The meta-testing accuracy is reported
in Figure@with some representative OOD datasets (i.e., Traffic Signs, Mini, Clipart, Real, CIFAR-
100, and Dogs) and the average of all OOD datasets. It is clear that a larger capacity leverages
improvement on OOD meta-testing.

SpectralNet. Recent studies on SpectralNet (Shaham et al.| 2018}, [Yang et al., 2019) show promising
results on promoting disentangled clustering. We compare our method with a HSML variant (named
HSML-SN) that use SpectralNet 2019) as a substitution of the clustering network. We
use a meta batch size of 256, which is much larger than the meta batch size we use for HSML and
our method (i.e., 4), so as to well capture the structure of the data for each task batch. The dimension
of the network output (i.e., cluster number) is set to the same number w.r.t. hierarchical clustering
network in HSML (i.e., 16).




Table 5: Comparison of different settings of mixing methods on meta-testing accuracy over 1000
tasks for each dataset. Models are all meta-trained with Aircraft, Birds, Textures, and Fungi datasets.

Method Aircraft  Birds Textures  Fungi Mini Traffic Signs VGG Flower  Omniglot

CutMix 56.48% 62.12% 34.83% 45.06% 38.40% 45.37% 66.62% 76.08 %
MixUp 5494%  62.01%  3428%  44.93%  37.62% 45.29% 58.14% 75.34%
MixUp-R  54.85%  62.05%  34.28%  44.41% 38.23% 44.19% 68.44 % 75.74%
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Figure 4: Meta-testing accuracy for different numbers of clusters on 1-shot 5-way experiments
meta-trained with Aircraft, Birds, Textures, and Fungi datasets. The clustering network architecture
for 8, 16, and 32 are (4, 2, 1), (4, 4, 1), and (8, 4, 1), respectively.

We compare HSML-SN with HSML as well as our method in terms of the meta-testing accuracy
over 1000 tasks for each OOD dataset. The 5-way 1-shot experiment results are shown in Table [f]
SpectralNet does not bring better OOD meta-testing performance than hierarchical clustering network
in HSML and our method within limited meta-training iterations. Our method outperforms HSML-SN
on most of OOD datasets, which hints the advanced clustering learned by our method.

A.3 ADDITIONAL DISCUSSION ON THE LEARNED CLUSTERING

We analyse the learned clustering of HSML and our method using the pool described in Clustering
Pool Construction. We visualize images whose probability scores are top-16 closest to 16 clustering
centers in Figure[5] It can be clearly observed that the learned features (clusters) are different for
HSML and our method. HSML has some duplicated clusters (i.e., 2 similar Birds and 2 similar
Texture clusters). Our method tends to learn more implicit features than HSML.
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