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A APPENDIX

This supplementary material provides in-depth information on the following topics:

* Additional Experiments.

» Experiment Details.

* Related Works.

* Training-Based Multi-modal Out-of-Distribution (OOD) Detection Methods
* Principal Component Analysis (PCA).

e Mean Variance Calculation.

Each section offers detailed insights into the respective topic for a comprehensive understanding.

B ADDITIONAL EXPERIMENTS

B.1 GRIC LEVERAGING RESNET-BASED CLIP MODELS

Our primary findings are based on the CLIP model featuring a Vision Transformer (ViT) image
encoder. Additionally, we explore the efficacy of GRIC for models based on ResNet architecture
in the context of CLIP. Specifically, we employ the ResNet model with a depth of 50 and a width
multiplier of 4 (RN50x4) with 178.3 million parameters, a parameter count comparable to CLIP-
B/16 (149.6 million). The results are presented in Table 4.

The outcomes demonstrate that GRIC continues to yield promising results when applied to ResNet-
based CLIP models. The performance remains competitive between RN50x4 and CLIP-B/16, with
AUROC values of 90.68 and 92.89, respectively.

0OD Dataset ‘

iNaturalist (Van Horn et al., 2018) | SUN (Xiao etal., 2010) | Places (Zhou etal., 2017) | Texture (Cimpoi et al., 2014) Average ‘

‘ Method

\ | FPRY5| AUROCT | FPRYS, AUROC | FPR9S, AUROCT | FPR95,  AUROCt | FPRYS, AUROC! |
GRIC (ours) (RN50x4) 38.80 92.03 32.93 93.23 38.11 90.00 49.96 87.49 39.95 90.68
GRIC (ours) (CLIP-B/16) | 10.3270.23  98.8170.10 20.1150.28  97.5970.14 | 24.3750.31  96.8270.29 | 26.5170.11  93.9750.25 | 20.32%0.23  96.8050.20
MCM (RN50x4) 4451 9151 35.11 92.84 43.74 89.60 57.73 85.93 45.27 89.97
MCM (CLIP-B/16) 3091 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77

Table 4: GriC presents outstanding performance leveraging ResNet-based CLIP model on ImageNet-1k (ID).
B.2 EVALUATING THE SIGNIFICANCE OF k IN GRIC PERFORMANCE

As elucidated in Section 3, we assign a value of zero to the £ most important features to derive a
general representation of in-distribution (ID) data. The determination of the k value is accomplished
through diminishing mean-variance, with a set threshold of 1e~* in our ImageNet-1k experiment,
resulting in an optimal & value of 34 to meet this threshold.

In this investigation, we systematically assess the impact of the k£ value on the performance of
GRIC by employing different k values, specifically 30, 40, and 45. The experimental outcomes are
detailed in Table 5. Notably, deviations from £ = 34 demonstrate discernible effects on the method’s
performance. Generally, values close to k = 34 demonstrate discernible effects on the method’s
performance. Generally, values close to k = 34 exhibit comparable performance. However, as the
deviation from £ = 34 increases, there is a noticeable degradation in performance.

In conclusion, our analysis underscores the substantial influence of the k& parameter on the perfor-
mance of the GRIC method. The selection of an appropriate k value emerges as a critical factor in
achieving optimal results across diverse out-of-distribution datasets.

B.3 ID CLASSIFICATION ACCURACY

To augment the precision of ID classification, we integrate the comprehensive feature representation,
acknowledging its indispensable role in the identification process. Simultaneously, we incorporate
informative prompts that leverage hierarchy information, aligning with the methodology employed
in our out-of-distribution (OOD) detection experiments, denoting it as GRIC-IP. The outcomes of
our experiments are detailed in Table 3, underscoring the exceptional performance achieved with
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OOD Dataset

‘ Method iNaturalist (Van Horn etal., 2018) | SUN (Xiao etal., 2010) | Places (Zhou et al., 2017) | Texture (Cimpoi et al., 2014) Average ‘

\ | FPR95| AUROC? | FPR95, AUROCT | FPR9S| AUROCT | FPR95S,  AUROCT | FPR9S| AUROCY |
GRIC, k=34 | 1032 98.81 20.11 97.59 24.37 96.82 2651 93.97 2032 9680
GRIC, k=30 | 10.67 98.66 20.78 97.09 2470 96.56 26.84 93.80 2075 9653
GRIC, k=40 | 13.19 97.01 23.09 9598 28.37 92.47 29.18 92.11 2346 9439
GRIC, k=45 | 13.68 96.81 23.43 95.82 28.19 9235 29.53 91.93 2371 9423

Table 5: Impact of k in performance of GRIC.
GRIC-IP. The results indicate that the incorporation of informative prompts contributes to an en-
hancement in the ID classification performance. Notably, it is crucial to emphasize that MCM rep-
resents the base of our methodology, omitting both the consideration of general ID representation
and the utilization of informative prompts.

| Method | ID ACC |
Training free
MCM (CLIP-B/16) 67.01
MCM (CLIP-L/14) 73.28
GRIC-IP (CLIP-B/16) 80.29
GRIC-IP (CLIP-L/14) 85.64
w. fine-tuning
MSP (CLIP-B/16) 79.39
MSP (CLIP-L/14) 84.12
Energy (Liu et al., 2020) (CLIP-B/16) 79.39
Energy (Liu et al., 2020) (CLIP-L/14) 84.12
Fort et al. (Fort et al., 2021) (ViT-B/16) 81.25
Fort et al. (Fort et al., 2021) (ViT-L/14) 84.05
MOS (Huang & Li, 2021) (BiT) 75.16

Table 6: The accuracy of ID classification on ImageNet-1k (%) demonstrates promising performance with our method, GRIC-IP, which
utilizes informative prompts.

Furthermore, Table 6 presents the multi-class classification accuracy on ImageNet-1k for the meth-
ods listed in Table 2.

B.4 GRIC MASKING (GM) LEADS TO A NOTABLE ENHANCEMENT IN THE PERFORMANCE
OF SINGLE-MODAL METHODS:

We conducted supplementary experiments to assess the influence of incorporating the general repre-

sentation of in-distribution (ID) data on single-modal out-of-distribution (OOD) detection method-

ologies such as Mahalanobis (Lee et al., 2018), Energy score (Liu et al., 2020), React (Sun et al.,

2021a), and GradNorm (Huang et al., 2021).

We utilize the ImageNet-1k dataset as the ID dataset in our experimental setup. Firstly, we compute
mask indices and general feature representations of ID data from ImageNet-1k. Subsequently, we
apply these mask indices to each test sample before subjecting them to traditional single-modal
OOD detection methods. This methodology enables us to assess how leveraging general ID data
representations influences the performance of OOD detection algorithms.

Results and Discussion: Our experimental results, as presented in Table 7 demonstrate that lever-
aging general feature representations from the ImageNet-1k dataset leads to improvements in the
average AUROC performance of Mahalanobis, GradNorm, Energy score, and React OOD detection
methods by 3.91, 2.74, 3.76, and 0.31, respectively. These findings highlight the significance of
incorporating general ID data representations in enhancing the effectiveness of traditional single-
modal OOD detection algorithms.

B.5 MASKING ONE CLASS AT A TIME

In section 4.2, we present the initial findings from our experiments, focusing on the performance
evaluation of our method across various ID datasets. The summarized outcomes are presented in
Table 1. For this experiment, we derived masking indices and a general representation using all
classes. An intriguing aspect of our approach involves masking class-specific features for individual
classes. To delve deeper into this aspect, we conducted supplementary experiments, masking one
class at a time while leveraging the ImageNet10 ID dataset.

Single-modal method FPR95] | AUROCT | Single-modal method+GM | FPR95] | AUROCT
Mahalanobis (Lee et al., 2018) 87.43 55.47 Mahalanobis + GM 75.26 61.92
GradNorm (Huang et al., 2021) 40.29 87.34 GradNorm + GM 31.16 91.62

Energy (Liu et al., 2020) 58.41 86.17 Energy + GM 47.08 89.37
React (Sun et al., 2021a) 31.43 92.95 React + GM 25.31 95.73

Table 7: GRIC Masking (GM) improves most Single-modal methods significantly.
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Single-modal method | FPR95] | AUROCT | Single-modal method+GM | FPR95| | AUROCYT
GRIC [All] 0.20 99.88 MCM 0.33 99.78
GRIC [car] 0.31 99.73 GRIC [bird] 0.34 99.75
GRIC [cat] 0.29 99.80 GRIC [antelope] 0.32 99.76
GRIC [dog] 0.30 99.82 GRIC [frog] 0.31 99.77

GRIC [truck] 0.43 99.73 GRIC [horse] 0.32 99.75
GRIC [warplane] 0.38 99.69 GRIC [Ship] 0.40 99.61

Table 8: Masking one class at a time,ImageNet10 as ID. x refers to the masked class in GRIC [x].

Following the experiment reported in Table 1, we evaluated our method using four OOD datasets:
iNaturalist, SUN, Places, and Textures. We report the average performance metrics over these
datasets, considering FPR95 and AUROC.

The detailed experimental outcomes are presented in Table 8. As shown in Table 8, masking differ-
ent classes affects the performance variably. We observed that the best performance was achieved
when leveraging masking generated by considering all classes collectively. Furthermore, our results
highlight the importance of specific classes, prompting further investigation into the optimal selec-
tion of classes for masking. However, this aspect falls beyond the scope of the current paper and
warrants future research investigations.

C EXPERIMENT DETAILS

C.1 SOFTWARE AND HARDWARE
Software We run all experiments with Python 3.8.0 and PyTorch 1.12.1.

Hardware All experiments are run on NVIDIA RTX 3090.

C.2 HYPERPARAMETERS

As we explained in section 3.3, the formal definition of the matching score S(x; Vin, T,Z) is given
by:

s;(x)
S(x) = max —J\f 7 )
‘ Zj:l esj(m)/T

where we set 7 to 1 in our formulation. The sole hyper parameter governing our model is the
temperature scaling factor denoted as 7. Our empirical investigations indicate that, our scoring
function exhibits robustness to variations in the scaling factor. Specifically, across a broad range of
values spanning from 0.5 to 100, the performance remains consistent.

®

C.3 DATASETS

ImageNet-10 We establish ImageNet-10, designed to emulate the class distribution of CIFAR-10,
while utilizing high-resolution images. This dataset encompasses the following categories, each
accompanied by its respective class ID: warplane (n04552348), sports car (n04285008), bram-
bling bird (n01530575), Siamese cat (n02123597), antelope (n02422699), Swiss mountain dog
(n02107574), bullfrog (n01641577), garbage truck (n03417042), horse (n02389026), and container
ship (n03095699).

ImageNet-20 For rigorous out-of-distribution (OOD) evaluation using realistic datasets, we adopt
ImageNet-20, a dataset introduced by MCM. ImageNet-20 is meticulously curated, comprising
20 classes that are semantically akin to those in ImageNet-10, such as dog (in-distribution) ver-
sus wolf (OOD). The selection of categories is based on the semantic distance in the WordNet
synsets (Fellbaum, 2010). The dataset encompasses the following categories: sailboat (n04147183),
canoe (n02951358), balloon (n02782093), tank (n04389033), missile (n03773504), bullet train
(n02917067), starfish (n02317335), spotted salamander (n01632458), common newt (n01630670),
zebra (n01631663), frilled lizard (n02391049), green lizard (n01693334), African crocodile
(n01697457), Arctic fox (n02120079), timber wolf (n02114367), brown bear (n02132136),
moped (n03785016), steam locomotive (n04310018), space shuttle (n04266014), and snowmobile
(n04252077). The generation of this dataset is facilitated using the script provided by the authors of
MCM.

ImageNet-100 We compile a dataset named ImageNet-100 by selecting 100 classes from ImageNet-
1k. The MCM authors randomly chose these 100 classes without adhering to specific criteria. The
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dataset creation process is executed using the script provided by the MCM authors. The list of classes
utilized in this dataset is accessible at https://github.com/deeplearning-wisc/MCM.

Conventional Out-of-Distribution (OOD) Datasets Huang et al.(Huang & Li, 2021) meticu-
lously compile a diverse set of subsets from prominent datasets such as iNaturalist(Van Horn et al.,
2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and Texture (Cimpoi et al., 2014), es-
tablishing expansive OOD datasets for ImageNet-1k. Importantly, the test sets for these datasets are
designed such that their classes do not overlap with those in ImageNet-1k. A brief overview of each
dataset is provided below.

iNaturalist: Comprising images captured in the natural world (Van Horn et al., 2018), iNaturalist
boasts 13 super-categories and 5,089 sub-categories, spanning various domains such as plants, in-
sects, birds, mammals, and more. For our purposes, we utilize a subset encompassing 110 plant
classes that do not overlap with those present in ImageNet-1k.

SUN: An acronym for the Scene Understanding Dataset (Xiao et al., 2010), SUN encompasses 8§99
categories, encapsulating diverse indoor, urban, and natural environments, both with and without
human presence. We selectively use a subset of 50 categories representing natural objects absent in
ImageNet-1k.

Places: As a repository of large-scale scene photographs (Zhou et al., 2017), Places categorizes
images into Indoor, Nature, and Urban scenes. From the larger collection, we extract a subset
comprising 50 categories that are distinct from those found in ImageNet-1k.

Texture: Denoting the Describable Textures Dataset (Cimpoi et al., 2014), Texture consists of
images featuring textures and abstracted patterns. Given the absence of category overlaps with
ImageNet-1k, we utilize the entire dataset, aligning with the approach taken by Huang et al. (Huang
& Li, 2021).

C.4 BASELINE MODELS AND MODEL CHECKPOINT SOURCES

In our evaluation of baseline models, we rely on reported experimental results from MCM (Ming
etal., 2022) and CLIPN (Wang et al., 2023). For the Mahalanobis score (Lee et al., 2018), we utilize
feature embeddings without [, normalization, considering that Gaussian distributions are inherently
incompatible with hyperspherical features. Alternatively, one can opt to normalize the embeddings
before applying the Mahalanobis score.

In the case of Fort et al.(Fort et al., 2021), detailed in Table2, the entire Vision Transformer (ViT)
model undergoes fine-tuning on the in-distribution (ID) dataset. We leverage publicly available
checkpoints from Hugging Face, where the ViT model is pre-trained on ImageNet-21k and sub-
sequently fine-tuned on ImageNet-1k. For instance, the checkpoint for ViT-B can be accessed at
https://huggingface.co/google/vit—-base-patchl6-224.

Regarding CLIP models, our reported results are based on checkpoints provided by Hugging
Face for CLIP-B (https://huggingface.co/openai/clip-vit-base-patchl6)
and CLIP-L (https://huggingface.co/openai/clip-vit-large—-patchl4). Sim-
ilar outcomes can be achieved using checkpoints available in the OpenAl codebase (https:
//github.com/openai/CLIP). Notably, for CLIP (RN50x4), which is not accessible via
Hugging Face, we employ the checkpoint provided directly by OpenAl

D RELATED WORKS

Vision-Language Models. The usage of large-scale pre-trained vision-language models for mul-
timodal tasks has emerged as a promising paradigm, exhibiting impressive performance (Gu et al.,
2020). Typically, two architectural paradigms are prevalent: single-stream models, exemplified by
VisualBERT (Li et al., 2019a) and ViLT (Kim et al., 2021), which integrate text and visual features
into a single transformer-based encoder; and dual-stream models like CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and FILIP (Yao et al., 2021), employing separate encoders for text and im-
age. These models optimize with contrastive objectives to align semantically similar features across
different modalities. Among these, CLIP has gained widespread popularity due to its simplicity and
robust performance. The success of CLIP-like models has prompted subsequent works (Li et al.,
2022; Zhang et al., 2021), focusing on enhancing data efficiency and task adaptation. While our
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paper centers around CLIP as the primary pre-trained model, the proposed approach can generally
apply to contrastive models aiming to align vision and language features.

OOD Detection in Computer Vision. For open-world multi-class classification, the objective of
OOD detection is to establish a binary ID-OOD classifier alongside a multi-class model tailored for
visual inputs. Various methodologies have emerged for deep neural networks (Yang et al., 2021b).
These approaches include generative model-based techniques (Cai & Li, 2023; Ge et al., 2017;
Kirichenko et al., 2020), as well as discriminative-model based methods. Within the latter category,
OOD scores are derived from the model’s softmax output (DeVries & Taylor, 2018; Hein et al.,
2019; Yang et al., 2021a), energy-based scores (Liu et al., 2020; Sun et al., 2021b; Sun & Li, 2022),
or gradient information (Behpour et al., 2023; Huang et al., 2021). Theoretical analyses have been
presented by (Morteza & Li, 2022; Fang et al., 2022; Bitterwolf et al., 2022) in the domain of OOD
detection.

Recent works (Roy et al., 2022; Wang et al., 2022b) have explored OOD detection specifically in
long-tailed distributions. So far, these works have primarily concentrated on task-specific models
using only visual information. Our method marks a pioneering leap in training-free multi-modal
OOD detection, incorporating informative textual information alongside the shared general visual
representation within in-distribution data across a spectrum of diverse tasks.

E TRAINING-BASED MULTI-MODAL OUT-OF-DISTRIBUTION (OOD)
DETECTION METHODS

In accordance with the discussions presented in Section D, numerous studies have explored the
realm of multi-modal OOD detection, employing various training strategies.

CLIPN: Saying ”No” with CLIP

Wang et al. (Wang et al., 2023) introduce CLIPN, an extension of CLIP (Contrastive Language-
Image Pre-training) specifically designed for discerning between ID and OOD samples. CLIPN
achieves this by incorporating positive semantic prompts and introducing negation-semantic
prompts. The method employs a learnable “no” prompt and a dedicated "no” text encoder to capture
negation semantics within images. Dual loss functions, the image-text binary-opposite loss, and the
text semantic-opposite loss, are utilized to instruct CLIPN in associating images with "no” prompts,
enabling it to identify unknown samples effectively.

Z0OC: Zero-Shot OOD Detection based on CLIP Esmaeilpour et al. (Esmaeilpour et al., 2022)
present the Zero-Shot OOD Detection (ZOC) method, extending the pre-trained language-vision
model CLIP. ZOC incorporates a text-based image description generator trained on top of CLIP.
During testing, this extended model generates candidate unknown class names for each test sample.
A confidence score is then computed based on both known class names and candidate unknown
class names, facilitating zero-shot OOD detection.

CLIPood: Generalizing CLIP to OOD Test Data

Shu et al. (Shu et al., 2023) proposed CLIPood, a fine-tuning method aimed at adapting CLIP mod-
els to out-of-distribution scenarios in downstream tasks. CLIPood addresses situations involving
domain shifts and open classes in unseen test data. Introducing the margin metric softmax (MMS)
as a novel training objective, CLIPood exploits semantic relations between classes from the text
modality. Additionally, it incorporates a new optimization strategy, Beta moving average (BMA),
for maintaining a temporal ensemble weighted by a Beta distribution. The focus of our paper centers
on zero-shot multi-modal OOD detection, and thus, studies involving training a text encoder, such
as those discussed above, fall outside the scope of our investigation.

In summary, these training-based methods showcase diverse approaches to multi-modal OOD detec-
tion, each contributing unique insights and methodologies. However, our emphasis in this paper is
specifically on zero-shot multi-modal OOD detection, excluding investigations that involve training
a text encoder.
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F PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA aims to transform high-dimensional data into a lower-dimensional representation while retain-
ing the maximum variance in the data. It achieves this by identifying the principal components,
which are orthogonal vectors that capture the directions of maximum variance (Shlens, 2014; Jol-
liffe, 2002).
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Figure 4: Singular Value Decomposition

F.1 PROCEDURE:

In this section, we explain the procedure that is followed in PCA analysis to extract the most infor-
mative features.

Data Standardization:
Standardize the features of the dataset to have zero mean and unit variance.

Covariance Matrix: Compute the covariance matrix of the standardized data. The covariance
matrix represents the relationships between different features.

SVD of Covariance Matrix:

Perform SVD on the covariance matrix. The singular value decomposition of the covariance matrix
results in the principal components. Selecting Principal Components:

Sort the singular values in descending order. The corresponding singular vectors are the principal
components. Choose the top k principal components to form a reduced-dimensional space.

Projection:

Project the original data onto the selected principal components to obtain the lower-dimensional
representation.

Benefits:

Dimensionality reduction facilitates easier visualization and interpretation of data. Reduced dimen-
sions often lead to computational efficiency. Principal components capture the most significant
patterns in the data.

More Explanation Regarding SVD Computation: Consider an m x n matrix R, where m denotes
the number of rows, and n represents the number of columns. The primary objective of Singular
Value Decomposition (SVD) is to decompose matrix R into three distinct matrices: U, %, and VT
(transpose of matrix V'). This decomposition is expressed as R = UXVT € R™*", as illustrated
in Fig. 4.

U: An m x m orthogonal matrix, where its columns signify the left singular vectors of R.

3: An m x n diagonal matrix, featuring singular values of R (non-negative and arranged in de-
scending order).

VT: Ann x n orthogonal matrix, with its columns representing the right singular vectors of R.

In addition to singular values and singular vectors, eigenvalues and eigenvectors are also integral to
understanding matrix properties. An eigenvalue A and its corresponding eigenvector v of a square
matrix R satisfy the equation Rv = A\v. Eigenvectors denote directions in the vector space that are
solely scaled by the matrix I, while eigenvalues represent the scaling factors for these eigenvectors.
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SVD and its Relationship to Eigenvalues and Eigenvectors: SVD establishes a crucial connection
between eigenvalues and eigenvectors with the singular values and singular vectors of a matrix. The
singular values of R are the square roots of the eigenvalues of either RR” or RT R, and the left
and right singular vectors are the eigenvectors of RRT and RT R, respectively.

Rank and Matrix Approximation: The rank of a matrix R is determined by the count of non-zero
singular values in ¥. By retaining only the largest singular values and their corresponding singular
vectors, it becomes feasible to approximate the original matrix R with a lower-rank approximation.
This technique is valuable for tasks such as dimensionality reduction and noise reduction, and we
leverage this feature in our approach.

Properties of SVD: ) ) )
The singular values in X are non-negative and arranged in descending order. The columns of U

and V' are orthonormal, forming an orthogonal basis for their respective vector spaces. The SVD
decomposition is unique, except for the sign of the singular values and the order of the singular
vectors. SVD is a potent matrix factorization technique, offering a concise representation of a matrix
while preserving essential structural properties. Its applications span diverse fields, including data
analysis, image processing, recommendation systems, and more (Deisenroth et al., 2020).

G PRINCIPAL COMPONENT ANALYSIS FOR COMPUTING MEAN VARIANCE

In this section, we describe the process of calculating the mean variance of high-dimensional features
using Principal Component Analysis (PCA). Let X € R™*9 be the dataset, where n represents the
number of samples, and d is the number of features.

G.1 FEATURE STANDARDIZATION

PCA is sensitive to the scale of the input data, so the first step is to standardize the features, ensuring
each has a mean of zero and a variance of one.

Given the dataset X = {X1, X»,..., X, }, where each X; € R¢ represents a sample with d features,
we standardize the data as follows:

1< .
=1
Xeentered = X — 1y (10)
Xcen ered 1 -
Xstandardized = Tl» g = E Z(Xz] - uj)Q' (11)

i=1
Here, 11, is the mean of the j-th feature, and o; is its standard deviation.

G.2 COVARIANCE MATRIX CALCULATION

After standardizing the data, we compute the covariance matrix ¥ € R%*?, which captures the
relationships between features. The covariance matrix is defined as:

1
Y= m stindardized Xslandardized 3 ( 1 2)

where 3, represents the covariance between features j and k.

G.3 EIGENVALUE DECOMPOSITION

We perform an eigenvalue decomposition on the covariance matrix 3, which yields the principal
components and the amount of variance explained by each. The decomposition is given by:
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Y =VAVT, (13)
where V€ R9? is the matrix of eigenvectors (principal components), and A =

diag(A1, Az, ..., Ag) € R4 is a diagonal matrix with the eigenvalues \;, representing the vari-
ance explained by the j-th principal component.

G.4 EXPLAINED VARIANCE
The eigenvalues J; indicate the variance captured by each principal component. The proportion of

variance explained by the j-th component is calculated as:

s
Explained Variance Ratio = d—J. (14)

k=1 Ak

G.5 MEAN VARIANCE CALCULATION

The mean variance explained by all principal components is computed by averaging the explained
variance ratios:

1L N
Mean Variance = — E e —
d
d =1 Zk:l Ak

This value represents the average variance explained by each principal component.

15)
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