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Abstract

This document contains the appendix of the paper entitled “Physics-Integrated
Variational Autoencoders for Robust and Interpretable Generative Modeling.” Other
supplementary materials include the codes and a part of the data we used in the
experiments.
Appendix A provides a description of the physics-integrated VAEs and the proposed
regularizers in a more general case than the one in the main text. Appendix B is
dedicated to the proof of Proposition 1. Appendix C adds some remarks on the
proposed regularizers. Appendix D additionally introduces related work as well as
some examples of concrete architectures of physics-integrated models. Appendix E
describes the experimental settings in detail. Appendix F contains the experimental
results that did not fit in the main text. Finally, in Appendix G we discuss possible
extensions of this work.

A General description of physics-integrated VAEs

In this section, we provide a general description of the physics-integrated VAEs and the proposed
regularization method, since we only described a simple case in Sections 2 and 3 of the main text.
The main difference of the general description from the simple one is the number of trainable function
fA in the model.

A.1 Model

We here consider a generalized case in which we have multiple trainable models fA,1, fA,2, . . . , fA,K .
We fix the number of fP to be one as in the main text for clarity, while an extension in this regard is
straightforward. We exemplify some use cases with multiple fA’s in Appendix D.

A.1.1 Latent variables

Beside zP ∈ ZP, we consider zA,k ∈ ZA,k for k = 1, . . . ,K. If fA,k does not take z as argument
for some k, we simply suppose ZA,k = ∅ for such k. Otherwise, we suppose that ZA,k is (some
subset of) the Euclidean space for simplicity of discussion. The prior distributions are:

p(zP) := N (zP |mP, v
2
PI), (A.1)

and
p(zA,k) := N (zA,k | 0, I), (A.2)

for k whose ZA,k is not empty.
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A.1.2 Decoder

We intentionally do not specify the ranges and the domains of fP and fA,1, fA,2, . . . , fA,K because
they depend on how these functions are connected each other. We denote the decoding process
again with a functional F whose arguments are fP and fA,1, . . . , fA,K as well as z’s, that is,
F [fP, fA,1, . . . , fA,K ; zP, zA,1, . . . ,zA,K ]1. Inside F the functions can be connected in various
ways; F can include 1) in-equation augmentation solve(fP + fA = 0) or solve(fA ◦ fP = 0),
2) out-equation augmentation fA(solve(fP = 0)), and 3) their arbitrary combinations, e.g.,
fA,3(solve(fA,2(fP + fA,1) = 0)). We show some examples in Appendix D. The observation
model is

pθ(x | zP, zA,1, . . . ,zA,K) := N
(
x | F [fP, fA,1, . . . , fA,K ; zP, zA,1, . . . ,zA,K ],Σx

)
, (A.3)

where θ is the set of trainable parameters of fP and fA,1, . . . , fA,K (and Σx).

A.1.3 Encoder

Accordingly, the approximated posterior is

qψ(zP, zA,1, . . . ,zA,K | x) := qψ(zA,1, . . . ,zA,K | x)qψ(zP | x, zA,1, . . . ,zA,K). (A.4)

We do not specify further structures of qψ(zA,1, . . . ,zA,K | x) and qψ(zP | x, zA,1, . . . ,zA,K)
because they depend on use cases. We denote the recognition networks for zP and zA,k by gP and
gA,k, respectively for k = 1, . . . ,K. ψ is again the set of all the trainable parameters in the encoder
side of the model.

A.2 Regularizers

We slightly modify the definition of the proposed regularizers in accordance with the general descrip-
tion of the model.

The regularizer to suppress trainable components, RPPC, should be able to measure the contribution
of all the trainable components, fA,1, . . . , fA,K . While the original definition in Section 3 of the
main text would still work as is, we empirically found that the following modification was useful
in some cases. The idea is to consider the marginal contribution (compared to the physics model)
of each of the trainable components, fA,1, . . . , fA,K , instead of computing the contribution of all
fA’s altogether. To show the essence of the idea, let us suppose K = 2. We consider the discrepancy
between posterior predictive distributions for the following combinations:

DKL

[
pθ,ψ(x̃ | X) ‖ pr,{1}θr,ψ (x̃ | X)

]
, (A.5)

DKL

[
pθ,ψ(x̃ | X) ‖ pr,{2}θr,ψ (x̃ | X)

]
, (A.6)

DKL

[
p
r,{1}
θr,ψ (x̃ | X) ‖ pr,{1,2}θr,ψ (x̃ | X)

]
, (A.7)

DKL

[
p
r,{2}
θr,ψ (x̃ | X) ‖ pr,{1,2}θr,ψ (x̃ | X)

]
, (A.8)

where pr,Iθr,ψ(x̃ | X) (I ⊆ {1, . . . ,K}) is a partial physics-only reduced model in which fA,i,∀i ∈ I
are replaced with baseline function hA,i. We let pr,I=∅θr,ψ (x̃ | X) := pθ,ψ(x̃ | X) for convenience of
notation.

Let us denote the upper bounds (see Proposition 1) of Eqs. (A.5)–(A.8) respectively as follows:

Epd(x|X)D̂∅,{1}(θ,param(h), ψ;x),

Epd(x|X)D̂∅,{2}(θ,param(h), ψ;x),

Epd(x|X)D̂{1},{1,2}(θ,param(h), ψ;x),

Epd(x|X)D̂{2},{1,2}(θ,param(h), ψ;x).

1Note that the expression in Section 2 of the main text, F [fA(fP(zP),zA)], violates this general notation;
for consistency, it should have been F [fP, fA;zP,zA] instead. The idea there was to emphasize the fact that fA
and fP are somehow (not only additively) composited in the model.
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Then, the regularizer is defined as

4RPPC(θ,param(h), ψ)

:= Epd(x|X)D̂∅,{1}(θ,param(h), ψ;x) + Epd(x|X)D̂∅,{2}(θ,param(h), ψ;x)

+ Epd(x|X)D̂{1},{1,2}(θ,param(h), ψ;x) + Epd(x|X)D̂{2},{1,2}(θ,param(h), ψ;x).

(A.9)

The regularizer to use physics-based data augmentation, RDA, is defined in almost the same way as
in the simple case — we draw samples z?P from some distribution of zP and generate physics-only
augmentation by xr(z?P) := F [fP, hA,1, . . . , hA,K ; z?P]. Note that all of fA’s are replaced with hA’s
at once unlike the aforementioned case of RPPC.

B Proof of Proposition 1

We use the following well-known facts in deriving the upper bound in Proposition 1.
Lemma 1. Let p1(x, y) and p2(x, y) be two joint distributions on random variables x and y, and
p1(x) and p2(x) be the corresponding marginals. Then,

DKL[p1(x) ‖ p2(x)] ≤ DKL[p1(x, y) ‖ p2(x, y)]. (B.1)

Proof. From definition,

DKL[p1(x, y) ‖ p2(x, y)] =

∫
p1(x, y)

p1(x, y)

p2(x, y)
dxdy

=

∫
p1(y | x)p1(x)

p1(y | x)p1(x)

p2(y | x)p2(x)
dxdy

=

∫
p1(y | x)p1(x)

p1(y | x)

p2(y | x)
dxdy +

∫
p1(y | x)p1(x)

p1(x)

p2(x)
dxdy

=

∫
p1(x)

(∫
p1(y | x)

p1(y | x)

p2(y | x)
dy

)
dx+

∫
p1(x)

p1(x)

p2(x)
dx

= Ep1(x)DKL[p1(y | x) ‖ p2(y | x)] +DKL[p1(x) ‖ p2(x)].

Hence, from the nonnegativity of the KL divergence, we have

DKL[p1(x) ‖ p2(x)] = DKL[p1(x, y) ‖ p2(x, y)]− Ep1(x)DKL[p1(y | x) ‖ p2(y | x)]

≤ DKL[p1(x, y) ‖ p2(x, y)].

Lemma 2. Let x and y be random variables with joint distribution q(x, y). Let I(x; y) be the
mutual information between x and y, i.e.: I(x; y) := DKL[q(x, y) ‖ q(x)q(y)]. Let p(x) be some
distribution of x. Then,

I(x; y) ≤ Eq(y)DKL

[
q(x | y) ‖ p(x)

]
. (B.2)

Proof. From the nonnegativity of the KL divergence,

I(x, y) = DKL[q(x, y) ‖ q(x)q(y)]

=

∫
q(x, y) log

q(x, y)

q(x)q(y)
dxdy

=

∫
q(x, y) log

q(x | y)

q(x)
dxdy

=

∫
q(x, y) log

q(x | y)p(x)

p(x)q(x)
dxdy

= Eq(y)DKL

[
q(x | y) ‖ p(x)

]
−DKL

[
q(x) ‖ p(x)

]
≤ Eq(y)DKL

[
q(x | y) ‖ p(x)

]
.
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Now we give a proof of Proposition 1.

Proof of Proposition 1. Let us denote the set of zP and zA by z. As a posterior predictive distribution
p(x̃ | X) is obtained by marginalizing out z and x of joint distribution p(x̃, z,x | X), from (B.1),

DKL

[
pθ,ψ(x̃ | X) ‖ prθr,ψ(x̃ | X)

]
≤ DKL

[
pθ,ψ(x̃, z,x | X) ‖ prθr,ψ(x̃, z,x | X)

]
. (B.3)

The right-hand side of (B.3) is

DKL

[
pθ,ψ(x̃, z,x | X) ‖ prθr,ψ(x̃, z,x | X)

]
= DKL

[
pθ(x̃ | z)qψ(z | x)pd(x | X)

∥∥∥ prθr(x̃ | z)qrψ(z | x)pd(x | X)
]

= Epd(x|X)Eqψ(z|x)DKL

[
pθ(x̃ | z) ‖ prθr(x̃ | z)

]
+ Epd(x|X)DKL

[
qψ(z | x) ‖ qrψ(z | x)

]
,

where the last term is

Epd(x|X)DKL

[
qψ(z | x) ‖ qrψ(z | x)

]
= Epd(x|X)DKL

[
qψ(zP | x, zA)qψ(zA | x) ‖ qψ(zP | x)p(zA)

]
= Epd(x|X)

[
Eqψ(zA|x)DKL

[
qψ(zP | x, zA) ‖ qψ(zP | x)

]
+DKL

[
qψ(zA | x) ‖ p(zA)

]]
= Epd(x|X)

[
I(zP; zA) +DKL

[
qψ(zA | x) ‖ p(zA)

]]
.

Hence, from the upper bound of mutual information, (B.2), the right-hand side of (B.3) is further
upper bounded as

DKL

[
pθ,ψ(x̃, z,x | X) ‖ prθr,ψ(x̃, z,x | X)

]
≤ Epd(x|X)

[
Eqψ(z|x)DKL

[
pθ(x̃ | z) ‖ prθr(x̃ | zP, zA)

]
+ Eqψ(zA|x)DKL

[
qψ(zP | x, zA) ‖ p(zP)

]
+DKL

[
qψ(zA | x) ‖ p(zA)

]]
.

C Additional remarks on the regularized learning method

Upper bound of KL in general case In the general case of Appendix A, the upper bound of the
KL divergence used for defining RPPC becomes slightly different. For example, a bound of (A.5) is
as follows (recall that we focused the case of K = 2 for discussion):

DKL

[
pθ,ψ(x̃ | X) ‖ pr,{1}θr,ψ (x̃ | X)

]
≤ Epd(x|X)

[
Eqψ(zP,zA|x)DKL[pθ ‖ pr,{1}θ ]

+DKL[qψ(zA,1, zA,2 | x) ‖ pA,{1,2}] + Eqψ(zA,1,zA,2|x)DKL[qψ(zP | zA,1, zA,2,x) ‖ pP]
]
,

where pA,{1,2} is some distribution of zA,1 and zA,2, for example pA,{1,2} = p(zA,1)p(zA,2) using
priors. This upper bound can be derived analogously to Proposition 1.

Interpretation of upper bound It is interesting that the mutual information I(zP; zA) appears in
the intermediate bound of DKL

[
pθ,ψ(x̃ | X) ‖ prθr,ψ(x̃ | X)

]
(see the proof of Proposition 1). Such

a mutual information becomes a conditional mutual information (e.g., I(zP; zA,1 | zA,2)) in the
general case. Moreover, the last two terms of the upper bound in Proposition 1 are the same as the last
two terms of the ELBO when pP and pA are the priors. In such a case, adding them as regularizers
to the objective is equivalent to what is done in β-VAE [26]. It would also be interesting to discuss
connection with the work by Zhao et al. [93].

Usage of augmented data Data augmented with physics-based prior knowledge can also be used
for pretraining (e.g., Jia et al. [28]). We rather generate and use them during the main training
procedure as regularizers because the effects of pretraining may diminish in the main training.
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D Related work

We introduce related studies that could not be in Section 4 of the main text due to length limit. Recall
that in Section 4, we reviewed the studies with the following two perspectives: “Physics+ML in
model design” and “Physics+ML in objective design.” In this appendix, we follow a slightly different
taxonomy: 1 ) physics-integrated, 2) physics-informed, and 3) physics-inspired methods. The first two
of these three roughly correspond to the two perspectives in Section 4 of the main text. In contrast,
we did not focus on the last one, physics-inspired method, in Section 4, while it will be informative
for readers to provide a broader view of the context. We refer to some reviews and surveys on these
topics, such as ones by Willard et al. [84], von Rueden et al. [79], von Rueden et al. [80], Beckh et al.
[7], and Karniadakis et al. [33]. We would like to emphasize that the aforementioned three areas of
research are never exclusive, and study that can bridge and unify them will be important.

D.1 Physics-integrated methods

We refer to methods where the model is a combination of physics models and machine learning
models as physics-integrated2 ones. As such an approach was already explained to some extent
in Section 4 of the main text, we here focus on exemplifying architectures of physics-integrated
models. Most of the studies referred to here did not aim generative modeling originally, though the
ideas can be fitted to our general architecture of physics-integrated VAEs. For more information, we
recommend consulting the excellent survey / overview papers [e.g., 75, 34, 65, 63, 82, 10, 71, 84, 69].

In-equation augmentation A numerical solver of dynamics models such as ODEs, PDEs, and
discrete-time difference equations are one of the most prevailing forms of an equation-solving process
that can be in a physics-integrated VAE. In such cases, fP and/or fA would give terms that appear in
a dynamics equation. They are combined additively in many cases [66, 75, 64, 23, 50, 18, 67, 39, 88,
78, 51, 60], for example:

F := solvey
[
fP(y,zP) + fA(y,zA) = 0

]
, (D.1)

where solvey refers to a numerical ODE/PDE solver with regard to y and returns the value of the
solution on some time/space grid. Another way of combining fP and fA in this context is composition
[59, 75, 45, 81, 38, 16, 52, 49, 8, 5, 42, 30, 36, 19], for example:

F := solvey
[
fP(y,zP, fA(y,zA)) = 0

]
, (D.2)

where fA often gives estimation of some unknown or varying physics parameters in fP. The order of
the composition may reverse [recent examples include 1, 2], that is,

F := solvey
[
fA(y,zA, fP(y,zP)) = 0

]
, (D.3)

where the output of a physics model is augmented by a machine learning model. Such a mechanism
is often called residual physics. Some studies consider more complex combinations of fP and fA,
for example, F := solve[fP,2(fA(fP,1)) = 0] [61, 17, 25, 31]. A trickier case appears in Jiang et al.
[29], where discrete state of contact dynamics is first determined by a data-driven classifier, which is
then used for choosing one of physics models (also including trainable ones) to be used. Moreover,
Um et al. [77] considered to correct numerical errors by neural nets inside a differentiable solver of
differential equations.

The equation-solving process can be anything else than an ODE/PDE solver. If (augmented) physics
models are algebraic equations with closed-form solutions, F just evaluates some functions [e.g., 4].
If no closed-form solution is available, a diffentiable optimizer may be utilized in F .

We also note that the latent force models [3] are known as a principled method to incorporate physics
models in differential equations into Gaussian processes.

Out-equation augmentation Physics and machine learning integration can also happen outside an
equation-solving process. The simplest case is

F := fA(solve[· · · ], zA) or F := fA(solve[· · · ], zA) + solve[· · · ], (D.4)
where solve[· · · ] denotes the output of some equation-solving process, which also includes fP as
well as another set of fA’s. For example, such architectures can be found in the following use cases:

2Though this has been traditionally known as gray-box modeling, here we put an emphasis on the focus on
physics-based models and adjust the wording with other related perspectives.
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• fA corrects the output of an equation-solving process, solve[· · · ], to compensate inaccuracy of
physics models or unmodeled phenomena [89, 12, 55, 72, 82, 90, 58]. This can also be seen as
residual physics.

• fA works as an observation function that changes signal’s modality [24, 48, 87, 44, 76, 15, 68, 27].
• Output of solve[· · · ] is used as input features of machine learning model fA [35, 57, 53, 92, 9, 58].

In [70], fA works as the weight of ensemble of physics models, that is,

F :=
∑
i

fA,i(zA,i) · solve[· · · ]i. (D.5)

Inverse problems as (V)AE The idea of (Bayesian) inverse problems is in line with the auto-
encoding variational Bayes; in inverse problems, the forward process (i.e., a decoder) is known
and a corresponding backward process (i.e., an encoder) is to be estimated. For example, Tait and
Damoulas [74] propose a VAE whose decoder has a structure based on the finite element method
for PDEs. Aragon-Calvo and Carvajal [4] replace VAE’s decoder with a light distribution model of
galaxies for inferring parameters of galaxy from images. Pakravan et al. [56] integrate a PDE solver
into the decoder of a VAE. Nguyen and Bui-Thanh [54] discuss the form of solution for a special
case where physics and VAEs are with linear models. Sun et al. [73] use learned surrogate models as
the decoder of autoencoders. Similar problems are also discussed in the context of data assimilation
[see, e.g., 22] and likelihood-free inference [see, e.g., 14].

D.2 Physics-informed methods

We already introduced some studies in this direction, i.e., designing learning objective based on
physics knowledge, in Section 4 of the main text. We call such an approach physics-informed after
the work of Raissi et al. [62]. As it is not our main interest in this paper, we do not repeat the contents
of Section 4; please refer to Section 4, and we also recommend consulting survey papers such as
[33]. The study by Wang et al. [83] is also notable here as they analyze the difficulty of training
physics-informed neural networks and propose a remedy.

D.3 Physics-inspired methods

While the main interest of this work is integration of application-specific physics models into machine
learning models, it is worth noting that there are lines of studies where the aim is to design models on
the basis of abstract and general knowledge of data-generating process. The extent of the abstraction
is diverse; in some studies, it is still natural to refer to the utilized knowledge as physics-related (in
a narrow sense, i.e., as one of scientific disciplines) [13, 21, 32, 37, 43, 46, 47, 87, 39, 91], and in
some other studies, the level of abstraction goes beyond that, e.g., a general model that can realize
structural causal models is incorporated [40]. Hence, the heading of this subsection, physics-inspired,
may not be perfect; we stick to it just for the consistency with the other perspectives.

For example, researchers have been investigating structured generative models for sequential data,
in which the structure of latent variables reflects the sequential nature of data [13, 21, 32, 37, 43].
Moreover, Casale et al. [11] proposed to place a Gaussian process prior in VAEs. Note that these
studies are never exclusive with the interest of our work and related ones; for example, the VAEs with
sequential structures are indeed closely related to the VAEs with ODEs/PDEs [e.g., 87, 46, 47, 39, 91],
since only the major difference is whether time is discrete or continuous. The techniques of the
structured latent variable models would also be useful in physics-inspired and physics-integrated
methods.

E Detailed experimental settings

E.1 Infrastructure

We implemented the models using Python 3.8.0 with PyTorch 1.7.0 and NumPy 1.19.2 throughout the
experiments. We used SciPy of version 1.5.2 in generating the synthetic datasets. The computation
was performed with a machine equipped with an NVIDIA® Tesla™ V100 GPU in the experiment on
the galaxy images dataset. We used a machine equipped with a CPU of Intel® Xeon® Gold 6148 in
the other experiments.
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E.2 Forced damped pendulum

Data-generating process We consider a gravity pendulum with damping effect and external force.
Let ϑ(t) be the angle of the pendulum at time t. We generated the data by numerically integrating an
ODE:

d2ϑ(t)

dt2
+ ω2 sinϑ(t) + ξ

dϑ(t)

dt
−Aω2 cos(2πφt) = 0,

using scipy.integrate.solve_ivp with the explicit Runge–Kutta method of order 8. The toler-
ance parameters rtol and atol were kept to be the default values, 10−3 and 10−6, respectively. We
evaluated the solution’s values at timesteps t = 0,∆t, · · · , (τ − 1)∆t with ∆t = 0.05 and τ = 50
using the 7-th order interpolation polynomial. The values of the parameters, ω, ξ, A, and φ, as well
as the initial condition ϑ(0) were randomly sampled when creating each sequence. The random
sampling was with the uniform distributions on the following ranges: ω ∈ [0.785, 3.14], ξ ∈ [0, 0.8]

f ∈ [3.14, 6.28], A ∈ [0, 40], and ϑ(0) ∈ [−1.57, 1.57]. The initial condition of ϑ̇(0) was fixed to be
0. Each element of each generated sequence was added by zero-mean Gaussian noise with standard
deviation 0.01.

Data property The overall dataset we generated comprises 3,500 elements (data-points) in total.
Each data-point x is a sequence of length τ of pendulum’s angle, that is,

xi := [ϑi(0) ϑi(∆t) · · · ϑi((τ − 1)∆t)]T ∈ Rτ ,

where i = 1, . . . , 3500 is the sample index.

Train/valid/test split We first extracted 500 and 1,000 sequences randomly from the overall dataset
as the validation set and the test set, respectively. We then selected 1,000 sequences out of the
remaining 2,000 sequences to make a training set. This selection was randomly done every time; so a
different random seed resulted in a different training set.

Physics model A part of the data-generating process was given as physics model: fP(ϑ, zP) :=

ϑ̈+ zP sinϑ.

Latent variables By construction of fP, zP ∈ R is expected to work in the same manner as ω
in the data-generating process. There were also zA,1 ∈ R and zA,2 ∈ R2 in the full NN+phys and
NN+phys+reg models. Meanwhile, we used zA,2 ∈ R4 (and no zA,1, zP) in the NN-only; and
zA,1 ∈ R2 and zA,2 ∈ R2 (and no zP) in the NN+solver model.

Decoder architecture We describe the decoder architecture of the full NN+phys and NN+phys+reg
models. In the first stage, an ODE fP(ϑ, zP)+fA,1(ϑ, zA,1) = 0 is numerically solved with the Euler
method for length τ with step size ∆t. Let ν ∈ Rτ be the solution sequence. In the second stage, ν
is then augmented by fA,2, i.e., fA,2(ν, zA,2). We modeled fA,1 with a multilayer perceptron (MLP)
with two hidden layers of size 64. We modeled fA,2 also with an MLP with two hidden layers of
size 128. We used the exponential linear unit (ELU) with its3 α = 1.0 as activation function after the
hidden layers.

Encoder architecture We describe the encoder architecture of the full NN+phys and NN+phys+reg
models. We modeled the recognition networks, gA,1, gA,2, and gP,2 with MLPs with five hidden layers
of size 128, 128, 256, 64, and 32. We modeled gP,1 as gP,1(x, zA,1, zA,2) = x+ U(x, zA,1, zA,2),
where U was an MLP with two hidden layers of size 128. We used ELU with its3 α = 1.0 as
activation function after the hidden layers. We put a softplus function after the final output of gP to
make its output positive-valued.

Replacement functions To create the reduced models, we replaced fA,1 and fA,2 respectively by
hA,1 = 0 and hA,2 = Id.

3α here is different from one of the hyperparameters of the proposed regularizers.
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Hyperparameters We selected the hyperparameters, α, β, and γ, from the following sets: α ∈
{10−3, 10−2, 10−1}, β ∈ {10−4, 10−3, 10−2}, and γ ∈ {10−2, 10−1, 1},. These ranges were
chosen to roughly adjust the values of the corresponding regularizers to that of the ELBO. The
configuration that achieved the best reconstruction error on the validation set was selected finally:
α = 10−2, β = 10−3, and γ = 10−1. In computing RDA,2, we sampled z∗P from the uniform
distribution on range [0.392, 3.53].

Optimization We used the Adam optimizer with its4 α = 10−3, γ1 = 0.9, γ2 = 0.999, and
ε = 10−3. We ran iterations with mini-batch size 200 for 5000 epochs (i.e., 25,000 iterations in total)
and saved the model that achieved the best validation reconstruction error.

E.3 Advection-diffusion system

Data-generating process We consider the advection (convection) and diffusion of something (e.g.,
heat) on the 1-dimensional space, which is described by the following PDE:

∂T (t, s)

∂t
− a∂

2T (t, s)

∂s2
+ b

∂T (t, s)

∂s
= 0,

where t and s denote the time and space dimension, respectively. We numerically solved this PDE
using scipy.integrate.solve_ivp with the explicit Runge–Kutta method of order 8. The spatial
derivative was computed with discretization on the H-point even grid between s = 0 and s = smax
with H = 12 and smax = 2. We evaluated the solutions values at timesteps t = 0,∆t, · · · , (τ − 1)∆t
with ∆t = 0.02 and τ = 50. The initial condition was set T (0, s) = c sin(πs/smax), and we set the
Dirichlet boundary condition T (t, 0) = T (t, smax) = 0. The values of the parameters a, b, and c
were randomly sampled when creating each sequence. The random sampling was with the uniform
distributions on the following ranges: a ∈ [10−2, 10−1], b ∈ [10−2, 10−1], and c ∈ [0.5, 1.5]. Each
element of each generated sequence was added by zero-mean Gaussian noise with standard deviation
0.001.

Data property The overall dataset we generated comprises 3,500 sequences, each of which is

xi :=

 Ti(0, 0) Ti(∆t, 0) · · · Ti((τ − 1)∆t, 0)
...

...
...

Ti(0, smax) Ti(∆t, smax) · · · Ti((τ − 1)∆t, smax)

 ∈ RH×τ .

Train/valid/test split We first extracted 500 and 1,000 sequences randomly from the overall dataset
as the validation set and the test set, respectively. We then selected 1,000 sequences out of the
remaining 2,000 sequences to make a training set. This selection was randomly done every time; so a
different random seed resulted in a different training set.

Physics model A part of the data-generating process was given as physics model: fP(T, zP) :=
Tt − zPTss.

Latent variables By construction of fP, zP ∈ R is expected to work in the same manner as a in
the data-generating process. There was also zA ∈ R4 in the full NN+phys and NN+phys+reg models.
Meanwhile, we used zA ∈ R5 (and no zP) in the NN-only and NN+solver models.

Decoder architecture We describe the decoder architecture of the full NN+phys and NN+phys+reg
models. In F , a PDE fP(T, zP) + fA = 0 was numerically solved with the finite difference method
with the explicit scheme for length τ with temporal step size ∆t. We modeled fA with an MLP with
two hidden layers of size 64. We used ELU with its3 α = 1.0 as activation function after the hidden
layers. In the NN-only model, we modeled fA with an MLP with a hidden layer of size 128.

Encoder architecture We describe the encoder architecture of the full NN+phys and NN+phys+reg
models. We modeled the recognition networks, gA and gP,2, with MLPs with five hidden layers of
size 256, 256, 256, 64, and 32. We modeled gP,1(x, zA) with an MLP with two hidden layers of size
256. We used ELU with its3 α = 1.0 as activation function after the hidden layers. We put a softplus
function after the final output of gP to make its output positive-valued.

4α and γ here are different from the ones of the hyperparameters of the proposed regularizers.
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Replacement functions To create the reduced model, we replaced fA by hA = 0.

Hyperparameters We selected the hyperparameters, α, β, and γ, from the following sets: α ∈
{10−2, 10−1}, β ∈ {10−2, 10−1}, and γ ∈ {105, 106}. These ranges were chosen to roughly adjust
the values of the corresponding regularizers to that of the ELBO. The configuration that achieved
the best reconstruction error on the validation set was selected finally: α = 10−1, β = 10−2, and
γ = 106. In computing RDA,2, we sampled z∗P from the uniform distribution on range [0.005, 0.2].

Optimization We used the Adam optimizer with its4 α = 10−3, γ1 = 0.9, γ2 = 0.999, and
ε = 10−3. We ran iterations with mini-batch size 200 for 20000 epochs (i.e., 100,000 iterations in
total) and saved the model that achieved the best validation reconstruction error.

E.4 Galaxy images

Data property We used images of galaxies from a part of the Galaxy10 dataset5. We selected the
589 images of the “Disk, Edge-on, No Bulge” class to form an overall dataset. Each image is of size
69× 69 with three channels, so xi ∈ R69×69×3. We normalized the intensity values into range [0, 1].

Train/valid/test split We separated the overall dataset them into training, validation, and test sets
with 400, 100, and 89 images, respectively. In training, we performed data augmentation with random
vertical/horizontal flips and random rotation, and thus the size of the training set was 8,000.

Physics model The physics model fP : R4 → R69×69 is an exponential profile of the light distri-
bution of galaxies whose input is zP := [I0 A B ϑ]T ∈ R4

>0, whose elements have the semantics
introduced in the following. Let [fP]i,j denote the (i, j)-element of the output of fP. Then, for
1 ≤ i, j ≤ 69,

[fP]i,j = I0 exp(−ri,j),
where

r2i,j :=
(Xj cosϑ− Yi sinϑ)2

A2
+

(Xj sinϑ+ Yi cosϑ)2

B2
,

Xj := 2 · j − 1

68
− 1,

Yi := −2 · i− 1

68
+ 1.

(Xj ,Yi) is the coordinate on the 69× 69 even grid on [−1, 1]× [−1, 1]. I0 determines the overall
magnitude of the light distribution, A and B determine the size of the ellipse of the light distribution,
and ϑ determines its rotation. This model was used in a similar problem of Aragon-Calvo and
Carvajal [4], where they only handle artificial images. See also, e.g., Erwin [20], for an extensive list
of such light distribution models of galaxies.

Latent variables zP ∈ R4 contains the information of intensity, semi-major and semi-minor axes,
and rotation, as mentioned above. We used zA ∈ R2 in the full NN+phys and NN+phys+reg models.
Meanwhile, we used zA ∈ R6 (and no zP) in the NN-only model.

Decoder architecture There is no nontrivial equation-solving process this time because the physics
model fP itself gives the closed-form solution. So the data-generating process in the full NN+phys
and NN+phys+reg models is:

F [fP, fA,Unet, fA,tconv; zP, zA] := fA,Unet
(
fP(zP), fA,tconv(zA)

)
.

fA,tconv is a neural net with transposed convolutional layers and given zA, outputs a signal in R69×69.
fA,Unet is a neural net with architecture similar to the U-Net, whose outputs are in R69×69×3. We
used the rectified linear unit (ReLU) as activation function and applied batch normalization before
each activation function. In the NN-only model, we modeled fA(zA) only with a neural net with
transposed convolutional layers whose output is in R69×69×3.

Note that we do not consider the NN+solver type of baseline as there appear no nontrivial solvers.
5The original images are from the Sloan Digital Sky Survey www.sdss.org, and the labels are from the

Galaxy Zoo project www.galaxyzoo.org. The dataset is available a part of the astroNN package [41]
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Encoder architecture The architecture of gP,2 and gA is similar to the one in Aragon-Calvo and
Carvajal [4]. We put the softplus function after the final output of gP to make its output positive-
valued. gP,1 is simply gP,1(x) :=

∑3
i=1 ci[x]i, where [x]i denotes the i-th channel of x, and c’s are

trainable parameters.

Replacement functions To create the reduced model, we replaced fA,Unet by hA such that
hA(ν) := [ν;ν;ν] ∈ R69×69×3 (i.e., the repeat operator along the channel axis).

Hyperparameters We selected the hyperparameter α from α ∈ {10−2, 10−1, 1}. This range was
chosen to roughly adjust the value of the corresponding regularizer to that of the ELBO. The others
were fixed to be β = 1 and γ = 103; these values were also determined by roughly adjusting the
order of the values of objectives. In computing RDA,2, we sampled from the uniform distributions on
I∗0 ∈ [0.5, 1], A∗ ∈ [0.1, 1.0], e∗ ∈ [0.2, 0.8], and ϑ∗ ∈ [0, 3.142], where B = A(1− e).

E.5 Human gait

Physics model We modeled fP with a trainable Hamilton’s equation as in [76, 24]:

fP

([
pT qT

]T
, zP

)
=
[
−∂H∂q

T ∂H
∂p

T
]T
,

where p ∈ RdH is a generalized position, q ∈ RdH is a generalized momentum, andH : RdH×RdH →
R is a Hamiltonian. We let dH = 3 and modeledH with an MLP with two hidden layers of size.

Latent variables zP ∈ R2dH is used as the initial condition of p and q. There was also zA ∈ R15.

Decoder architecture In the full NN+phys and NN+phys+reg models, the decoding process con-
tains a numerical solver of ODE fP = 0 with the Euler method. Its output is then transformed by fA,
an MLP with two hidden layers of size 512.

Encoder architecture gP and gA are MLPs with five hidden layers of size 512, 512, 512, 64, 32.

Replacement functions To create the reduced model, we replaced fA by an affine map hA, where
hA is applied to each snapshot of a sequence independently.

Hyperparameters We selected the hyperparameter α from α ∈ {10−3, 10−2, 10−1, 1}. This range
was chosen to roughly adjust the value of the corresponding regularizer to that of the ELBO. The
other hyperparameters were just γ = β = 0 as we did not use the corresponding regularizers.

F Additional experimental results

We present additional experimental results including investigation of the sensitivity of hyperparameter
values and some observation on training runtime.

F.1 Forced damped pendulum

Hyperparameter sensitivity We investigated the sensitivity of the performance with regard to the
hyperparameters, i.e., the regularization coefficients, α, β, and γ. We varied them around the nominal
values, i.e., the setting with which the results were reported in the main text (α = 10−2, β = 10−3,
and γ = 10−1; see also Appendix E). Figure F.1 summarizes the result. We can consistently observe
the tendency that 1) NN+phys+reg is far better than phys-only in terms of the reconstruction error
(upper row); and that 2) NN+phys+reg is far better than NN+phys in terms of the estimation error of
physics parameter ω (lower row).

Achieved hyperparameter values We examined the values of the regularizers for data augmenta-
tion. After training, RDA,1 ≈ 0.5 and RDA,2 ≈ 2× 10−3 whereas ‖x‖22 ≈ 16 on average. This result
implies that the functionality of gP,1 and gP,2 are well controlled as intended.
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Training runtime In training, the NN-only model took about 5.13 seconds for 10 epochs, and the
NN+phys+reg took about 10.9 seconds for 10 epochs, though we believe our implementation can
still be improved for more efficiency. The difference probably stems from the physics-part encoder.

More examples of reconstruction and extrapolation In the main text, we have shown only one
example case of the reconstruction and extrapolation. In Figure F.2, we provide more examples on
different test samples to facilitate further understanding of the result.

F.2 Advection-diffusion system

Hyperparameter sensitivity We investigated the sensitivity of the performance with regard to the
hyperparameters α, β, and γ. We varied these values around the nominal values, i.e., the setting
with which the results were reported in the main text (α = 10−1, β = 10−2, and γ = 106; see also
hyperparameter settings in Appendix E). Figure F.3 summarizes the result. Across all the coefficient
values, we can consistently observe the tendency similar to that in the pendulum data experiment.

Achieved hyperparameter values We examined the values of the regularizers for data augmen-
tation. After training, RDA,1 ≈ 0.01 and RDA,2 ≈ 5× 10−7 whereas ‖x‖22 ≈ 458 on average. This
result implies that the functionality of gP,1 and gP,2 are well controlled as intended.

Training runtime In training, the NN-only model took about 6.01 seconds for 10 epochs, and the
NN+phys+reg took about 15.4 seconds for 10 epochs.

F.3 Galaxy images

Reconstruction In Figure F.4, we show examples of reconstruction of five test samples. While
the phys-only model cannot recover the color information by construction, the other models
that include neural nets reproduce the original colors to some extent. The reconstruction errors
over the whole test set are reported in Table F.1. From these results, we can observe that the
reconstruction performance is similar between NN-only, NN+phys, and NN+phys+reg. Despite
the similar reconstruction performance, the NN+phys+reg model achieves clearly better generation
performance as shown in the main text.

Counterfactual generation In Figure F.5, we show the result of generation, where we varied the
last element of zP that corresponds to the angle of a galaxy in image, ϑ. We examined the models
trained without or with one of the regularizers, RPPC (i.e., α = 0); the other regularizers were always
active. In Figure F.5, the case without the regularizer does not show reasonable generation with
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Figure F.1: Performances on the pendulum data with one of the hyperparameters (α, β, or γ) varied
around the nominal value, while the others maintained. Averages and SDs over five random trials are
reported. Reference values are shown in dashed or dotted lines.
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Figure F.2: Reconstruction and extrapolation of five test samples of the pendulum data. Range
0 ≤ t < 2.5 is reconstruction, whereas t ≥ 2.5 is extrapolation. The bottom corresponds to the
example presented in the main text.

Table F.1: Performances on test set of the galaxy
image data. Averages (and SDs) over the whole test
set are reported.

MAE of reconstruction

NN-only 0.0167 (3.0× 10−2)
Phys-only 0.0264 (3.9× 10−2)
NN+phys(+reg), α = 0 0.0188 (3.4× 10−2)
NN+phys+reg, α > 0 0.0180 (3.3× 10−2)

Table F.2: Performances on test set of the
gait data. Averages (SDs) over 20 random
trials are reported.

MAE of reconstruction

Phys-only 0.726 (1.0×10−2)
NN+solver 0.276 (1.5×10−2)
NN+phys 0.273 (9.0×10−3)
NN+phys+reg 0.259 (9.0×10−3)

different ϑ. Note that ϑ < 0 was never encountered during training as we set the range of the last
element of zP to be non-negative; nevertheless reasonable images are generated with ϑ < 0.

Latent variable We computed the first two principal scores of zA and plotted them with the
corresponding image sample in Figure F.6. In the NN-only model, the distribution of zA clearly
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corresponds to the angle of the galaxy in images6. In contrast in the NN+phys+reg model, such a
correspondence is not observed. This is a reasonable result because in NN+phys+reg, the semantic
of galaxy angle is completely assigned to the last element of zP.

F.4 Human gait

Reconstruction The reconstruction errors over the whole test set are reported in Table F.2.

G Extension

While the proposed framework is useful as shown in our experiments, there are several directions to
go for possible technical improvement of the method. First, physics-integrated VAEs can be further
combined with techniques to solve ODEs and PDEs with neural networks [62, 86, 85]. We supposed
the use of differentiable numerical solvers if the model contains ODEs or PDEs, but such numerical
solvers are often computationally heavy. Replacing them with neural net-based solutions will be
useful for various applications. Second, while we defined the regularizer based on the (possibly
loose) upper bound of KL divergence, we may use other dissimilarity measure of distributions or
random variables, such as maximum mean discrepancy. Third, the proposed regularization method
can be extended to other types of deep generative models; e.g., an extension to InfoVAE [94] is
straightforward. Lastly, neural architecture search in the context of physics-integrated models [6]
would be an interesting topic also in generative modeling.
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