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Abstract

Industrial X-ray computed tomography (XCT) is a powerful tool for non-destructive1

characterization of materials and manufactured components. However, it faces2

significant challenges due to the complexity of internal structures, noise, and vari-3

ability in resolution. Traditional computer vision models often struggle with noise,4

resolution variability, and complex internal structures, particularly in scientific5

imaging applications. State-of-the-art foundational models, like the Segment Any-6

thing Model (SAM)—designed for general-purpose image segmentation—have7

revolutionized image segmentation across various domains, yet their application in8

specialized fields like materials science remains under-explored. In this work, we9

explore the application and limitations of SAM for industrial X-ray CT inspection10

of additive manufacturing components. We demonstrate that while SAM shows11

promise, it struggles with out-of-distribution data, multiclass segmentation, and12

computational efficiency during fine-tuning. To address these issues, we propose13

a fine-tuning strategy utilizing parameter-efficient techniques, specifically Conv-14

LoRa , to adapt SAM for material-specific datasets. Additionally, we leverage15

generative adversarial network (GAN)-generated data to enhance the training pro-16

cess and improve the model’s segmentation performance on complex X-ray CT17

data. Our experimental results highlight the importance of tailored segmentation18

models for accurate inspection, showing that fine-tuning SAM on domain-specific19

scientific imaging data significantly improves segmentation performance. However,20

despite improvements, the model’s ability to generalize across diverse datasets21

remains limited, highlighting the need for further research into robust, scalable22

solutions for domain-specific segmentation tasks. Code and training data will be23

available in public.24

No. Size
Tr-1 5724
Tr-2 1142
Te-1 920
Te-2 920
Te-3 5000
Te-4 1080
Te-5 600
Te-6 785

Table 1: Dataset specification.

SAM-GAN Finetuning Settings: We finetune on 4 GPUs of 80GB memory for finetuning. Learning25

rate set to .0003 and batch size was set to 4. Each training ran for 20 epochs. Most finetuning26

converge by 15 iterations. Each training finishes within 4 hours.27
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Figure 1: (a)-(c)(from left to right) mean-F1, mean-Recall, and mean-Precision values of SAM ,
SAM-FineReal , SAM-FineReal-Sub , and U-Net for the class Pore. It is noted that the recall values of
SAM is lower for real OoD, while precisions are high in majortiy cases. This shows SAM identifies
many as false negative pores than false positives in OoD.

Figure 2: (a)-(c)(from left to right) mean-F1, mean-Recall, and mean-Precision values of SAM ,
SAM-FineReal , SAM-FineReal-Sub , and U-Net for the class Inclusion. It is noted that the recall
values of SAM is lower for real OoD, while precisions are high in majortiy cases. This shows SAM
identifies many as false negative pores than false positives in OoD.

0.1 Additional Results of OoD28

Fig. 1 and Fig. 2 shows the mean-F1, mean-Recall, and mean-Precision for the OoD datasets (emphTe-29

1-Te-5) for class Pore and Inclusion respectively. FIg. 3 shows the performance using same metric on30

all classes for all test OoD data.31
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Figure 3: Analogous to Fig. 1, shows performance on all classes together. High value of F1 is
dominated by high precision than recall.
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