
Appendices

A Fluctuations through layers

We are interested in analyzing the fixed point solutions in Eq. 3, which may be stable
(attractors), unstable (repulsors), or meta-stable (attractive for certain values of K and
repulsive for others K). Let’s define the Gaussian average as

⟨f(z)⟩K =
1√

2πK

∫ ∞

−∞
dze−

z2

2K f(z). (7)

For a given input (α1 = α2), the infinitesimal magnitude variation is characterized by the
parellel susceptibility (Roberts et al., 2022)

χ∥(K) = CW
dg

dK
=

CW

2K2

〈
σ(z)σ(z)

(
z2 −K

)〉
K
. (8)

The susceptibility χ||(K) characterizes how ‘susceptible’ the kernel is to perturbations
around the fixed point. The kernel value exponentially expands away from or contracts
towards the fixed-point value, according to whether χ||(K

∗) > 1 or χ||(K
∗) < 1. For two

different inputs (α1 ̸= α2), the infinitesimal variation of magnitude differences is character-
ized by the perpendicular susceptibility,

χ⊥(K) = CW

〈
dσ(z)

dz

dσ(z)

dz

〉
K

. (9)

The input difference either explodes (χ⊥(K∗) > 1) or shrinks (χ⊥(K∗) < 1) (Roberts et al.,
2022). From this discussion it becomes clear that, in an ideal scenario,

χ||(K
∗) = χ⊥(K∗) = 1. (10)

We will call such a case ‘critical’.

As an illustration, let’s analyze the ReLU activation

σ(z) =

{
z, z ≥ 0

0, z < 0
(11)

The susceptibility integrals can be evaluated analytically, χ∥(K) = χ⊥(K) = CW

2 , indepen-
dent of K. This suggests a parametric family of fixed points, and (CW = 2, Cb = 0) leads
to the critical initialization for any value of K.

A.1 Susceptibilities for ReLu function

ReLU is defined as σ(z) = max(z, 0).

χ∥(K) =CW
d

dK
⟨σ(z)σ(z)⟩K

=CW
d

dK

[ 1√
2πK

∫ ∞

−∞
dze−

z2

2K σ(z)σ(z)
]

=CW
d

dK

[ 1√
2πK

∫ ∞

0

dze−
z2

2K z2
]

=CW
d

dK

(
K

2

)
=
CW

2
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χ⊥(K) =CW ⟨σ′(z)σ′(z)⟩K

=CW

[ 1√
2πK

∫ ∞

−∞
dze−

z2

2K σ′(z)σ′(z)
]

=CW

[ 1√
2πK

∫ ∞

0

dze−
z2

2K

]
=
CW

2

Criticality implies CW = 2.

These results do not depend on K∗ and the recursion equation is

K∗ =Cb + CW
K∗2

2
=Cb + K∗

(12)

Thus, for (Cb, CW ) = (0, 2) there is family of K∗ that serve as critical kernels.

B Critical point

In Fig. 6 we plot the dependence of the layer update on the metric, the expectation value
of the two point correlator, for all smooth-ReLU activations from Table 1 for a wide range
in K in subplot (a), and closer to the fixed point in subplot (b). In Fig. 7 we rescale the
axes and we zoom in to reveal the fixed point obtained by solving Eq. 3, and the adjacent
fixed point. AlgebraicLU is the only activation without a secondary fixed point. While in
the neighborhood of the critical value there is a power law layer update, away from the
point it is exponential. For low temperatures, the region between the fixed point from
Eq. 3 and the second fixed point is very small, and most typically, one would observe the
exponential update from either side towards the fixed point region, apart from AlgebaricLU
which has only positive updates. This is why in Table 1, we refer to this point as unstable,
and the others as semi-stable. From these figures one may be tempted to conclude that as
T → 0 the update becomes almost 0 and hence, the ReLU-like behavior is obtained. As this
transition seems rather smooth, nothing analogous to a phase transition should happen as
the temperature is lowered.
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Figure 6: Theoretical layer update for all activation functions.

C Condition for criticality in smooth-ReLU activations

Lemma 1 (Criticality Condition). A FFN network with activation σ(z) = za(z) admits a
critical initialization scheme if and only if the following conditions are satisfied
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Figure 7: Zoomed in view of the theoretical layer update for all activation functions. Apart
from AlgebraicLU and Mish, they all display 2 fixed points.

• 2⟨za(z)a′(z)⟩K∗ = −⟨z2a(z)a′′(z)⟩K∗

• z3a(z)2 and a(z)(a(z) + za′(z)) are sub-Gaussian (limz→±∞ f(z)e−z2/2K = 0)

Proof. Substituting the activation definition

σ(z) =za(z) (13)

σ′(z) =a(z) + za′(z) (14)

σ′′(z) =2a′(z) + za′′(z) (15)

(16)

Using Lemma 4, if xσ2 and σσ′ are sub-Gaussian, the susceptibilities satisfy

χ⊥ = χ∥ + CW ⟨σσ′′⟩K (17)

Then, the following equation has to be true at criticality

⟨σσ′′⟩K =0 (18)
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Therefore, substituting the activation definition we have that

⟨za(z)
(

2a′(z) + za′′(z)
)
⟩K =0 (19)

2⟨za(z)a′(z)⟩ = −⟨z2a(z)a′′(z)⟩K (20)

(21)

as we wanted to prove.

Corollary 2 (T Criticality). Given the activation σT (z) = za(z/T ), if K∗ is critical for
T = 1, then K∗

T = K∗T 2 is critical for T ̸= 1.

Proof. Noticing that

daT (z)

dz
=

d

dz
a(z/T ) (22)

=
1

T

d

d(z/T )
a(z/T ) (23)

=
1

T

da(u)

du
, (24)

(25)

and that

d2aT (z)

dz2
=

1

T 2

d2a(u)

du2
, (26)

(27)

Then we substitute in the criticality condition found in Lemma 1

2⟨za(z)a′(z)⟩ = −⟨z2a(z)a′′(z)⟩K (28)

(29)

⟨zaT (z)a′T (z)⟩KT
=

1√
2πK

∫
dz e−

z2

2K zaT (z)a′T (z) (30)

=
1√

2πKT

∫
Tdu e

− (uT )2

2KT (uT )a(u)
1

T

da(u)

du
u = z/T (31)

=
1

T

1√
2π(KT /T 2)

∫
du e

− u2

2(KT /T2)ua(u)
da(u)

du
(32)

=
1

T
⟨za(z)a′(z)⟩KT /T 2 (33)

and similarly for ⟨z2a(z)a′′(z)⟩K :〈
z2aT (z)a′′T (z)

〉
KT

=
1√

2πK

∫
dz e−

z2

2K z2aT (z)a′′T (z) (34)

=
1√

2πKT

∫
Tdu e

− (uT )2

2KT (uT )2a(u)
1

T 2

d2a(u)

du2
u = z/T (35)

=
1

T

1√
2π(KT /T 2)

∫
du e

− u2

2(KT /T2)u2a(u)
d2a(u)

du2
(36)

=
1

T

〈
z2a(z)a′′(z)

〉
KT /T 2 (37)

Therefore if K∗ is critical for T = 1, then K∗
T = K∗T 2 is critical for T ̸= 1, as we wanted

to prove.
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D Susceptibility scaling with T

Lemma 3 (Temperature Criticality Smooth ReLU). If the activation σ(z) = za(z) is
critical at K∗ for (C∗

W , C∗
B), then the activation σT (z) = za(z/T ) is critical at K∗

T = K∗T 2

for (C∗
W,T , C

∗
B,T ) = (C∗

W , T 2C∗
B).

Proof. The activation considered in this work is of the form σT (z) = za(z/T ), and we want
to know how the statistics relates to σ(z) = za(z) There are many ways to search for the
critical point for a given activation function. For cases that can not be solved analytically,
the following steps can be implemented,

To study the T dependence, at first, we compute the T dependence of the auxiliary function,

gT (K) = ⟨σT (z)σT (z)⟩K =
1√

2πK

∫
dz e−

z2

2K z2a(z/T )2 (38)

=
1√

2πK

∫
Tdu e−

(uT )2

2K (uT )2a(u)2 u = z/T (39)

=T 2 1√
2π(K/T 2)

∫
du e

− u2

2(K/T2)u2a(u)2 (40)

=T 2g(K/T 2) (41)

Then, the parallel susceptibilities, given that according to Corollary 2 at criticality K∗
T =

T 2K∗, have to satisfy

χ∥,T (K∗
T ) =CW,T

dgT (KT )

dKT

∣∣∣
K∗

T

(42)

=
1

T 2
CW,T

dgT (KT )

d(KT /T 2)

∣∣∣
K∗

T

(43)

=
T 2

T 2
CW,T

dg(KT /T
2)

d(KT /T 2)

∣∣∣
K∗

T

(44)

=CW,T
dg(KT /T

2)

d(KT /T 2)

∣∣∣
K∗

T

(45)

=CW,T
dg(K)

d(K)

∣∣∣
K∗

(46)

χ∥(K) =CW
dg(K)

dK

∣∣∣
K∗

(47)

Since at criticality both susceptibilities have to be equal to one, χ∥,T (K∗
T ) = χ∥(K∗) gives

that CW,T = CW .

To conclude the proof, we need to retrieve the T dependence of Cb. A necessary condition
to be at criticality is that there is a critical variance K∗, that can satisfy a layer-wise fixed
point equation:

KT = Cb,T + CW,T gT (KT ) (48)

(49)

Using the results above gT (KT ) = T 2g(KT /T
2), and CW,T = CW , and Corollary 2, dividing

both sides by T 2 we have that at criticality

K∗
T = Cb,T + CW,T gT (K∗

T ) (50)

= Cb,T + CW,TT
2g(K∗

T /T
2) (51)

K∗
T /T

2 = Cb,T /T
2 + CW,T g(K∗

T /T
2) (52)

K∗ = Cb,T /T
2 + CW g(K∗) (53)

(54)
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Comparing with the layer-wise fixed point equation for T = 1

K∗ = Cb + CW g(K∗) (55)

We conclude that Cb,T = T 2Cb, concluding the proof.

E arctanLU only has K∗ = 0

Lemma 2 (Zero Criticality). For neural networks with activations of the form za(z/T ),
the condition that a(z/T ) → H(z) as T → 0 is not sufficient to ensure the existence of a
critical initialization scheme with a non-zero fixed point K∗ ̸= 0.

Proof. The activation a(z/T ) =

(
tan−1( z

T )
π + 1

2

)
tends to a Heaviside as T → 0, however

using Lemma 4

⟨σσ′′⟩ =
〈T 3z

(
2 tan−1

(
z
T

)
+ π

)
π2 (T 2 + z2)

2

〉
(56)

=
2T 3

π2

〈z tan−1
(
z
T

)
(T 2 + z2)

2

〉
≥ 0 (57)

(58)

The expression above is 0 only for K = 0 since the integrand is even.

F Analytical K∗ for GeLU

For the activation σ(z, T ) = z
2 (1 + erf( z

T
√
2
),

⟨σσ′′⟩ = −
KTT

(
K2

T − 3KTT
2 − 2T 4

)
2π (KT + T 2)

2
(2KT + T 2)

3/2
(59)

The activation function is critical when ⟨σσ′′⟩ = 0:

K∗
TT

(
K∗

T
2 − 3K∗

TT
2 − 2T 4

)
= 0 (60)

K∗
T = 0, K∗

T =
T 2

2

(
3 ±

√
17
)

(61)

We can recover K∗ by setting T = 1, K∗ = 1
2

(
3 +

√
17
)
≈ 3.56.

G Equivalent statements for criticality

The following result appeared already in Hanin (2022) without proof, we prove it here
for completeness, even if the proof is simple. We say that f(x) is sub-Gaussian if

f(x)e−x2/2K x→±∞−−−−−→ 0 for the K of interest.

Lemma 4. If xσ2 and σσ′ are sub-gaussian, then d
dK ⟨σσ⟩K = ⟨σσ′′⟩ + ⟨σ′σ′⟩

Proof. Let’s start by noticing that
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d

dK
⟨σσ⟩K =

d

dK

1√
2πK

∫
e

−x2

2K σσ (62)

= − 1

2K
√

2πK

∫
e

−x2

2K σσ + x2 1

2K2

1√
2πK

∫
e

−x2

2K σσ (63)

=
1

2K2
⟨(x2 −K)σσ⟩K (64)

Then, integrating by parts

u =xσ2 du = σ2dx + 2xσσ′dx (65)

dv =xe
−x2

2K dx v = −Ke
−x2

2K (66)

and given that, if xσ2 is sub-gaussian, uv = 0 at infinity then

∫
udv =uv −

∫
vdu (67)

=

∫
Ke

−x2

2K σ2dx +

∫
Ke

−x2

2K 2xσσ′dx (68)

=Kg(K) + 2K⟨xσσ′⟩K (69)

Integrating again by parts the second integral we get

u =σσ′ du = σσ′′dx + σ′σ′dx (70)

dv =xe
−x2

2K dx v = −Ke
−x2

2K (71)

Performing the integration by parts and noticing that if σσ′ is sub-gaussian, uv = 0 at
infinity,

∫
udv =uv −

∫
vdu (72)

=

∫
Ke

−x2

2K σσ′′dx +

∫
Ke

−x2

2K σ′σ′dx (73)

=K⟨σσ′′⟩ + K⟨σ′σ′⟩ (74)

Substituting in the initial integral we get

d

dK
⟨σσ⟩K =

1

2K2
⟨(x2 −K)σσ⟩K (75)

=
1

2K2
⟨x2σσ⟩K − 1

2K
⟨σσ⟩K (76)

=
1

2K2
(K⟨σσ⟩K + 2K⟨xσσ′⟩K) − 1

2K
⟨σσ⟩K (77)

=
1

K
⟨xσσ′⟩K (78)

=⟨σσ′′⟩ + ⟨σ′σ′⟩ (79)
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Figure 8: The experimental results the correlations for the SWISH activation with critial
initialization at T = 1.

H Verification of near Gaussian behaviour

Due to the Gaussian initialization of the weights of the networks, the first cumulant of the
final layer pre-activation is ⟨zi,α1

⟩ = 0. The next order, the 2-point correlator is

Z
(c)
i,α1,j,α2

= ⟨zi,α1
zj,α2

⟩ − ⟨zi,α1
⟩⟨zj,α2

⟩ = ⟨zi,α1
zj,α2

⟩. (80)

Similarly, one can compute higher order cumulants (Shlosman, 1986), for instance,

Z
(c)
i,α1,j,α2,k,α3

= ⟨zi,α1
zj,α2

zk,α3
⟩ − ⟨zi,α1

⟩⟨zj,α2
zk,α3

⟩
− ⟨zj,α2⟩⟨zi,α1zk,α3⟩ − ⟨zk,α3⟩⟨zi,α1zj,α2⟩ + 2⟨zi,α1⟩⟨zj,α2⟩⟨zk,α3⟩.

(81)

If the pre-activation through the layers remained exactly Gaussian, the only cumulant
present would be the 2-nd order. However, higher order correlations do develop and their
strength depends on both width and depth. For very wide networks (l/n ≪ 1) the higher
moments are sub-leading with the most important being the 4-point correlator. We can
define the fluctuation on the 2-point correlator based on the metric previously introduced,

K̂(ℓ)
α1α2

=
1

n

n∑
j=1

z
(ℓ)
j;α1

z
(ℓ)
j;α2

,

∆K̂(ℓ)
α1α2

=K̂(ℓ)
α1α2

−K(ℓ)
α1α2

V (ℓ)
α1α2;α3α4

=
〈
∆K̂(ℓ)

α1α2
∆K̂(ℓ)

α3α4

〉 (82)

If the first and third cumulants can be ignored,

Z
(c)ℓ
i,α1,j,α2,k,α3,r,α4

=
1

n

(
δi,jδk,rV

ℓ
α1α2;α3α4

+ δi,kδj,rV
ℓ
α1α3;α2α4

+ δi,rδj,kV
ℓ
α1α4;α2α3

)
(83)

For more details, we refer the reader to (Roberts et al., 2022). By marginalizing over all the
indices and taking the absolute value we obtain the following relationship,

Z(4)
c = 3nV, (84)

where we have suppressed the the depth superscript for simplicity of notation. In fig. 8 (a) we
verify this relation and also compute the ratio of the third over the second cumulant in fig. 8
(b). We have taken respective roots to account for the powers of the output in each. The
plots were generated for the SWISH activation with the samples collected for section 4.1, and
similar results were obtained for other activations. As predicted theoretically, we confirm
empirically in the figure that the third moment goes to zero with increasing width for a

fixed depth and there is a factor of 3 between Z
(4)
c and nV .
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I Initialization statistics for GumbelLU
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Figure 9: Initialization plots for GumbelLu; (a) shows the layer update for critical initial-
ization at various temperatures and widths and in dashed red the respective theoretical
prediction, (b) depicts the layer update for He et al initialization and T = 0.1, and (c) por-
trays the NTK for critical initialization at the same temperatures as (a). These results are
in complete agreement with the results in the main text and our theoretical expectations.

J Additional loss and NTK results through training

As the ReLU curve shows no clear trend, Fig. 10, we apply a Savitzky-Golay filter (Savitzky
and Golay, 1964; Virtanen et al., 2020) with a window of 80 epochs and a polynomial order
of 3, to improve the clarity of the plot. We tested several epochs and polynomial orders
for the window filtering with similar results. This allows us to discern some trends in the
ReLU curves, particularly in the early stages of training where the window filtered ReLU
seems to agree with smooth-ReLU. We plot additional loss and NTK training curves, for
critical and He initializations, for two additional smooth-ReLUs: GudermanLU, Fig. 11
and Fig. 12, with the CIFAR10 dataset, and GeLU, Fig. 13 and Fig. 14, with the MNIST
dataset. As the plots show these two activations are less sensitive to temperature, even
for He initialization. From Table 1 we can see that their hyper-parameters are closer to
ReLU than SWISH or GumbelLU. It is interesting to notice that, after using the window
filter, in the initial faster training phase, the ReLU ∆Θ̃t follows closely the low temperature
SWISH ∆Θ̃t, while on the later stages of training, the ReLU NTK update seems to resemble
stochastic noise without a specific pattern.
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Figure 10: NTK update for Cifar10 training with SWISH activation, He and critical initial-
ization.
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Figure 11: Loss function for Cifar10 training with GudermanLU activation, He and critical
initialization.
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Figure 12: NTK update for Cifar10 training with GudermanLU activation, He and critical
initialization.
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Figure 13: Loss function for MNIST training with GeLU activation, He and critical initial-
ization.
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Figure 14: NTK update for MNIST training with GeLU activation, He and critical initial-
ization.
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K EfficientNet and Transformer

We check whether the closer C∗
W and C∗

b are to ReLU critical values, the more the activation
behaves like ReLU, for more complex tasks and architectures, see Fig. 15. We see that B0
EfficientNet trained on CIFAR100 shows GudermanLU being closer to ReLU than SWISH,
and both get closer to ReLU when the temperature is lowered, confirming our assumption.
Same holds true when we train the small Transformer on the English-German translation
task, especially at the beginning of training and less so when the small differences accumulate
towards the end. We report only one random seed for clarity, but the same behavior was
observed for several seeds.
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Figure 15: GudermanLU is more ReLU-like than Swish in more complex tasks. Left panel,
we train the EfficientNet on CIFAR100, and right panel, we train the Transformer on the
WMT’14 English-German Translation task.
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