
Appendix

A Dataset Details
We evaluate TPSR and several baseline methods on the following four standard benchmark datasets:
Feynman, Black-box, and Strogatz from SRBench [42], and In-domain Synthetic Data generated
based on [18]. More details on each of these datasets are given below.

Feynman5: This dataset contains 119 equations sourced from Feynman Lectures on Physics database
series [44]. The regression input points (x, y) from these equations are provided in Penn Machine
Learning Benchmark (PMLB) [42, 43] and have been studied in SRBench [42] for the symbolic
regression task. The input dimension is limited to d ≤ 10 and the true underlying function of points
is known. We split the dataset into B bags of 200 input points (when N is larger than 200) since the
transformer SR model is pretrained on N ≤ 200 input points as per [18].
Strogatz6: This dataset comprises 14 symbolic regression problems sourced from the ODE-Strogatz
database [45] for nonlinear dynamical systems. The input points for these problems are included in
PMLB [43] and have been examined in SRBench [42] for symbolic regression. The input dimension
for these problems is restricted to d = 2 and the true underlying functions are provided.
Black-box7: The black-box regression datasets from PMLB [43] are used for the symbolic regression
task and studied in SRBench [42] among various baselines. The aim of SR study on these black-box
datasets is to find an interpretable model expression that fits the data effectively. We limit the datasets
to those with continuous features and input dimension d ≤ 10, as the transformer SR model [18] is
pretrained with dmax = 10. In total, there are 57 black-box datasets that consist of real-world and
synthetic datasets with varying levels of noise.
In-domain Synthetic Data: Following [18], we construct a fixed validation set consisting of 400
equation examples in which the validation functions were uniformly distributed across three different
difficulty factors: input dimension (d), number of unary operators (u), and binary operators (b).
Specifically, we set d ∼ U(1, dmax), b ∈ U(d − 1, d + bmax), and u ∼ U(0, umax), where
dmax = 10, umax = 5, and bmax = 5 + d. The equation sequence is generated for each function
by providing N = [50, 100, 150, 200] input points (x, y), and the prediction accuracy is assessed
on Ntest = 200 points that are randomly extracted from a multi-center distribution, as described in
[18]. This data is referred to as “in-domain” because the validation data is generated using the same
approach as the data on which the model [18] is pre-trained.

B Implementation Details
Our model implementation leverages the state-of-the-art open-source End-to-End (E2E) SR model
[18] as the pre-trained transformer backbone. This selection is due to the public availability of
E2E’s model architecture, weights, and logits in the Facebook symbolicregression library 8 and
repository 9. The algorithm of our model is provided in Appendix C and all the implementation
code for our experiments with configuration details for reproducibility are open-sourced: https:
//github.com/deep-symbolic-mathematics/TPSR. In our experiments, the model’s maximum
sequence length is set to L = 200, and the constant to prevent numerical stability ϵ in NMSE
calculation ( 1n∥y − f̃(x)∥22)/( 1n∥y∥

2
2 + ϵ) is set to 1e− 9. We set the default maximum number of

node expansions (kmax) to be 3, the beam size of simulations (b) as 1, and the number of rollouts
(r) as 3. The complexity-controlling parameter (λ) was also varied across four values: 0, 0.1, 0.5, 1.
To ensure consistency with the protocol set out by [18], we divided the observation points of each
equation in the SRBench datasets (including Feynman, Strogatz, and Black-box) into training and
testing sets at a ratio of 75%/25%. In the evaluation experiments involving In-domain Synthetic
Data, we adjusted the number of observation points for each equation on which TPSR was trained
to N ∈ [50, 100, 150, 200]. The generated expression was subsequently tested on the Ntest = 200
data points for each sampling variance (σ) of 1, 2, 4, 8, and 16. These synthetic input points with
varying sampling variance are introduced in In-domain data [18] to assess the models’ extrapolation

5https://space.mit.edu/home/tegmark/aifeynman.html
6https://github.com/lacava/ode-strogatz
7https://github.com/EpistasisLab/pmlb/tree/master/datasets
8https://dl.fbaipublicfiles.com/symbolicregression/
9https://github.com/facebookresearch/symbolicregression
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Table 2: Experimental Settings of TPSR and E2E [18]

Setting/Parameter TPSR E2E

Maximum Equation Length (L) 200 200
Maximum No. of Observations (N ) 200 200
Maximum Input Dimension (dmax) 10 10

Maximum No. of Bags (B) 10 10
Beam/Sample size (C) – 10

No. of Refinement Candidates (K) – 10
Maximum Expansion Width (kmax) 3 –

Maximum No. of Rollouts (r) 3 –
Beam Size in Simulations (b) 1 –

UCT Exploration Parameter (β) 1 –

capabilities under different conditions. All experiments are implemented with PyTorch on four
Quadro RTX 8000 GPUs, with 48GB of RAM.

C Methodology Details
C.1 MCTS-Guided Decoding Details
Algorithm 1 provides the details of steps in MCTS-guided lookahead planning as a decoding strategy
for SR. Here, the blue lines correspond to the utilization of reward and selection functions defined
in Eqs. (2) and (1) of Section 3. These functions play a crucial role in guiding the MCTS-based
Transformer Decoding strategy for SR and ensuring effective exploration and exploitation within
the search space. Meanwhile, the red lines in the algorithm denote the places when the pre-trained
transformer SR model is invoked to extract the top-k next tokens and equation candidate beams.
These extracted tokens and beams are employed in the expansion and evaluation steps of the MCTS
algorithm, respectively. By incorporating the pre-trained transformer SR model, the MCTS-guided
decoding strategy can effectively leverage the model’s inherent semantic knowledge gained through
large-scale pre-training to generate high-quality equation candidates and enhance the overall per-
formance of the SR approach. Notably, in this MCTS setting, a "visit" signifies that a state-action
pairing (s, a), has been explored during tree search, appending the corresponding child state, s′, to
the tree. Sequences that are generated as part of the beam search sub-routine of simulations in the
evaluation stage of MCTS are not directly considered as visits to the nodes corresponding to these
sequences. Instead, they serve the purpose of completing the partial equation to allow for feedback
computation. As for cache hits, they are also not counted as visits. The reason is that caching in this
context is used to save computation by storing previously computed values, and a cache hit simply
means retrieving a stored value rather than performing a new visit.

Algorithm 1: MCTS-Guided Decoding for Symbolic Regression
Input : rmax: maximum number of rollouts, kmax: number of children of nodes used for

top-k next token selection, b: beam size, c: P-UCB exploration parameter
while r < rmax do

node← root;
1) Selection
while |node.children| > 0 do

node← SELECT(node.children, c);
end
2) Expansion
next tokens← TOP_K(node, kmax);
for action ∈ next tokens do

next state← CONCAT(node, action);
Add next state as a child of node;

end
3) Evaluation
Equation← BEAM_SEARCH(node, b);
reward← GET_REWARD(Equation);
Save (Equation, reward) pair in a dictionary ;
4) Backpropagation
Update values on the trajectory given the reward ;

end
Return Equation with the highest reward ;
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Figure 8: MCTS-Guided decoding algorithm for Symbolic Regression without using the pretrained
transformer SR model for expansion and evaluation steps.

Figure 9: MCTS-Guided decoding algorithm for Symbolic Regression with the pre-trained trans-
former model used for expansion and evaluation steps.

C.2 Distinguishing TPSR from other MCTS Approaches in SR
It is essential to highlight that the implementation of the MCTS approach in TPSR differs from the
standalone MCTS algorithm for SR. In a recent work, Sun et al. [26] shows that Monte Carlo Tree
Search can be effective for exploring the optimal expression trees that govern nonlinear dynamical
systems. This work introduces several adjustments to the conventional MCTS to enable the recovery
of equations as expression trees. However, we would like to remark that using MCTS as a standalone
algorithm for SR is a single-instance SR method, meaning that it requires searching from scratch
for a new function or measurement data, and does not leverage pre-trained priors. To highlight the
role of pre-trained transformer in our TPSR framework, we compare the MCTS-guided decoding
algorithm in TPSR (Fig. 9, replicated from the main body for ease of comparison) with a standard
MCTS algorithm (Fig. 8) which can be used in a similar fashion but without sharing information
with the pre-trained transformer. During the expansion phase, standard MCTS chooses the next
accessible action from the action set (i.e., the vocabulary of tokens) and appends the state that can be
reached through the chosen action. In this example, action x1 is selected, and the new state appended
to the tree is [sin, x1]. Subsequently, during the evaluation phase, MCTS assesses the new state
by implementing a random policy from the new state and calculating the policy’s value. Applying
the standard MCTS algorithm to domains characterized by extensive state or action spaces, such as
symbolic regression with a large combinatorial optimization space that exponentially grows with the
number of input variables, is highly impractical. This is because attempting all possible actions in
the expansion phase is infeasible. Furthermore, the random policy employed in the evaluation phase
exhibits significant variance when estimating the new state’s value, and may result in invalid equations
that are unsuitable for proper evaluation (e.g., accurately assessing the equation’s fitting performance).
To overcome these limitations, TPSR employs the pre-trained transformer SR model. This approach
leverages the semantic knowledge embedded in large-scale pre-trained priors, while conducting
lookahead planning to optimize equation generation for the equation discovery non-differentiable
objectives. By integrating the pre-trained transformer SR model, TPSR can efficiently and effectively
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navigate the vast search space, reducing complexity and enhancing fitting performance, thus offering
more viable solutions for this task.

It is also crucial to emphasize how the integration of MCTS in TPSR differentiates from others, par-
ticularly from works like Kamienny et al. [47], which also pairs MCTS with pre-trained transformers.
Key differentiators include:

General Approach. Unlike [47] that exploits a pre-trained mutation policy M to generate the
expression by following a series of mutations from an empty expression (root), TPSR follows the
seq2seq approach of E2E [18] to generate the expression token-by-token. Consequently, TPSR uses
the pre-trained E2E as its backbone but [47] pre-trains the mutation policy from scratch.

MCTS and Search Strategy. In [47], the search tree consists of full mathematical equations, with
each node representing a distinct equation and edges corresponding to mutations between equations.
In contrast, TPSR employs MCTS as a decoding strategy in the context of the transformer model.
Each node in the search tree of TPSR represents the current state of generated tokens, potentially
forming non-complete sequences, with edges corresponding to mathematical operators or variables.
So, the search tree of [47] with “n” nodes includes “n” different equations, while the TPSR search
tree includes partial decoded sequences, and completed equations only exist at the terminal leaf nodes.
This distinction inherently leads to major differences in selection, expansion, and back-propagation
mechanisms within the MCTS algorithm.

Parameter Update and Learning. [47] utilizes MCTS to update and learn the distribution of
mutations for a group of out-of-distribution datasets. The approach involves fine-tuning an actor-
critic-like model to adjust the pre-trained model on a group of symbolic regression instances. On the
other hand, TPSR uses the pre-trained transformer’s weights to guide the expansion during the search
process, without updating any specific parameters for in-domain or out-of-domain datasets (without
fine-tuning). Consequently, the same settings and pre-trained model are applied to both in-domain
and out-of-domain evaluations in TPSR.

Computation Time. [47] involves pre-training a mutation policy, a critic network, and performing
fine-tuning stages for these networks, leading to significantly higher computation time (a limit of
24hrs and 500K equation candidate evaluations as stated in [47]). In contrast, TPSR has substantially
lower computation time and the number of equation candidate evaluations, typically in the order of
102 equations, taking approximately 102 seconds (as shown in Fig. 5 and 7). This renders TPSR
more suitable for applications where fast yet accurate equation discovery is critical.

C.3 Caching Details

In the evaluation phase of MCTS, a transformer model is employed to produce complete sequences
from a given state. This procedure entails the creation of implicit tree structures that are used to
carry out a beam search. The beam search involves determining the top-k next tokens for the states
visited during the generation process until the entire sequence is generated. These calculations will
be needed in future MCTS iterations for two purposes: (1) to extract the top-k next tokens during the
expansion step of each state and (2) to generate the complete equation from a given state during the
evaluation step. To avoid redundant computations and improve the efficiency of the framework, two
caching mechanisms are used, namely top-k caching and sequence caching.

Top-k caching is a mechanism that stores the computed top-k values for given states. For example, in
Fig. 4 of the main paper, when evaluating the state s = [+, sin] in iteration t of MCTS, the top-k
tokens are calculated for s and its subsequent visited states (e.g., [+, sin, x2]). These pairs of states
and their corresponding top-k values can be stored in a top-k cache. Consequently, if a state s is
visited again in a future iteration (e.g., visiting s = [+, sin, x2] in iteration t + 1 of MCTS), the
cached top-k values are utilized instead of calling pretrained SR model again and retrieving the top-k
tokens from the forward pass of model.

Another mechanism employed to reduce redundant computations is sequence caching, which caches
complete equations generated in a greedy manner. When the beam size in MCTS is one, the sequence
is generated greedily for the given state in the evaluation step. This means that if any partial sequence
of this equation is given, the same equation will be generated by the decoder. As a result, the generated
equation in iteration t can be used directly in future iterations if the state matches the stored equation
partially. For instance, in Fig. 4 of the main paper, consider the equation f̃ : [+, sin, x2, ·, x1] is
generated for s = [+, sin] with b = 1 in iteration t. Now, if in a later iteration (e.g., iteration t+ 1),
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the state to evaluate is s = [+, sin, x2], the iterative sequence generation process can be bypassed by
directly using the sequence cache to predict the complete equation. It is essential to note that both
of these caching strategies serve the same purpose of enhancing the framework’s efficiency without
compromising its accuracy performance.

D Further Results and Visualization

D.1 Controlling the Fitting-Complexity Trade-off

Figure 10: Effect of controllable com-
plexity parameter (λ) on average test ac-
curacy and equation complexity for the
Feynman dataset. E2E uses sampling de-
coding.

Fig. 10 illustrates the relationship between fitting accuracy
and complexity of predicted equations for various values
of λ ∈ {0, 1, 0.5, 1}, on the Feynman dataset. This fig-
ure highlights the impact of the controllable complexity
parameter λ on balancing the trade-off between fitting per-
formance and equation complexity. As it can be observed,
when the value of λ is set to 0, the TPSR framework gen-
erates exceedingly complex equations, resulting in a com-
plexity score greater than 80. These equations are primar-
ily focused on optimizing fitting performance. However,
as λ is slightly increased to 0.1, there is a minimal effect
on the fitting performance, while the complexity of the
generated equations drops significantly to a score of less
than 60. As λ continues to increase, the TPSR framework
produces equations with reduced complexity, accompa-
nied by a slight decline in fitting performance. Fig. 10
demonstrates that even when λ is set to a large value,
such as 1, the fitting accuracy performance of the equa-
tions generated by TPSR remains notably superior to the
baseline E2E+Sampling method (0.916 versus 0.848).
Additionally, the complexity of the generated equations
marginally improves (47.24 compared to 50.73). This
can be observed by examining the gap between the red and
blue dashed lines in both the top and bottom sub-figures
of Fig. 10. These findings emphasize the advantages of
the TPSR framework over the baseline methods in terms
of fitting performance. At the same time, TPSR is capable of generating equations with either
comparable or lower complexity than those discovered by the baseline methods.

Given the significance of λ in governing this trade-off, and to assist users in hyperparameter selection,
we recommend setting λ = 0.1 as a default. Based on our results, particularly Table. 1 and Fig. 10,
we find that this setting tends to achieve a harmonious balance between accuracy and complexity,
mitigating overfitting. It is important to note that this recommendation aims to offer a starting point
for users. The appropriate choice of this hyperparameter may depend on the specific use case, where
the balance between finding an accurate function and sacrificing complexity, versus emphasizing
interpretability and equation simplicity over relative accuracy, becomes relevant.

D.2 Pareto Comparisons: Accuracy-Complexity and Accuracy-Time Trade-off

Fig. 11 presents pareto comparisons of various algorithms on two fronts: fitting-complexity (top
row) and fitting-time (bottom row) trade-off. These comparisons are conducted on the (a) Black-box
and Feynman datasets. Results show that TPSR demonstrates superior performance, consistently
achieving the optimal Pareto-front in all comparisons over both data groups. With respect to the
balance between complexity and accuracy (as also noted in Fig. 1), TPSR outperforms the E2E
transformer backbone and shows comparable performance to state-of-the-art GP algorithms. TPSR
also provides a significant improvement in fitting-time balance, being 100 times faster than leading
GP algorithms, a benefit accomplished by utilizing pre-trained priors. Notably, this substantial
improvement in inference time does not come at the cost of accuracy, as TPSR also exceeds the E2E
baseline as well as most leading GP methods in this aspect.
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Figure 11: Pareto comparison of all methods in terms of fitting-complexity (top) and fitting-time
(bottom) trade-off across (a) SRBench Black-box and (b) Feynman datasets. TPSR successfully
reaches the first Pareto-front in all comparisons. In terms of fitting-complexity balance, it outperforms
E2E baseline, obtaining comparable results to SOTA genetic algorithms. In terms of fitting-time
balance, it performs 100x faster than genetic algorithms by leveraging the pre-trained priors and
surpasses the accuracy of E2E baseline.

D.3 Qualitative Study
Fig. 12 offers a detailed qualitative analysis comparing the performance of TPSR, the E2E baseline
(symbolic model) as well as XGBoost and MLP (black-box models) with respect to the ground-truth
equation x2sin(x). The training dataset, depicted by the shaded red region, consists of 200 data points
randomly sampled within the range of (−2, 2). The evaluation is performed on an out-of-domain
region spanning from (−5, 5).
While all four models demonstrate a strong ability to fit the training data, the proposed TPSR method
surpasses the E2E baseline in fitting the true underlying function, as evidenced by its performance in
the out-of-domain region. This superior performance can be attributed to TPSR’s capacity to generate
less complex equations that still effectively fit the data, a feature highlighted in the accompanying
complexity barplot. Moreover, the results showcase the general superiority of symbolic regression
methods over the black-box XGBoost and MLP machine learning methods when fitting the underlying
function within the unseen evaluation range. This observation emphasizes the potential benefits of
adopting symbolic regression techniques, such as TPSR, in providing more accurate representations
of the data’s underlying symbolic patterns and behaviors.

D.4 Evaluating the Model-Agnostic Capability
In order to underscore the model-agnostic capabilities of TPSR, we also conducted evaluation
experiments to include the integration of TPSR with the "Neural Symbolic Regression that Scales"
(NeSymReS) model by Biggio et al. [16], a pioneering work for large-scale pre-training in SR.

Limitations and Adjustments. NeSymReS, while influential, presents some inherent limitations:
(1) Dimensionality Constraint: It can only handle datasets having a maximum of three dimensions
(D ≤ 3). This limits its application in wider experimental scenarios. (2) Skeleton Prediction:
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Figure 12: Qualitative comparison of TPSR with E2E as well as black-box XGBoost and MLP
models on the ground-truth function x2 sin (x). The training dataset contains 200 points in range of
(−2, 2) (shaded region), and the performance is evaluated over (−5, 5).

NeSymReS is also trained to only predict equation skeletons. As such, the system requires a more
complex constant optimization process, further complicating its integration.

Experiment Setup. Due to the constraints highlighted above, to evaluate the combination of TPSR
with NeSymReS, we use a dataset composed of 52 Feynman equations, as in [16], ensuring the
dimensionality constraint (D ≤ 3) is respected.

Results. As illustrated in Table 3, integrating TPSR with NeSymReS resulted in marked improvement.
Specifically, results show that TPSR has significantly improved the fitting accuracy of NeSymReS
without changing the average complexity of the equations when λ = 0.1 and with a slight increase
when λ = 0.

Table 3: Fitting accuracy and complexity performance of NeSymReS [16] with and without the
proposed TPSR planning on 52 Feynman datasets with D ≤ 3.

Model Avg. (R2 > 0.99) ↑ Avg. Complexity ↓
NeSymReS 0.635 9.98
NeSymReS+TPSR (λ=0.1) 0.808 9.98
NeSymReS+TPSR (λ=0) 0.827 13.30

D.5 Additional SRBench Results
Strogatz Datasets. Fig. 13 presents a performance comparison of TPSR and SRBench algorithms
on the Strogatz dataset (similar to the results shown for Feynman and Black-box datasets in Fig. 5).
The Strogatz dataset comprises 14 equations from a two-state system following a first-order ordinary
differential equation (ODE). As it can be observed, E2E performance is less well on this dataset
compared to other genetic algorithms due to the unique time-ordered distribution of observations,
which differs substantially from the E2E’s pre-training data. Notably, despite not being exposed
to time-ordered data during pre-training, TPSR with the E2E pre-training backbone significantly
enhances its performance on the Strogatz dataset. TPSR ranks among the top three baselines for fitting
accuracy performance while maintaining comparable or even slightly better equation complexity and
inference time.

Black-box Datasets. SRBench [42] studied black-box problems, originally extracted from
OpenML 10 and integrated into PMLB [43], include several datasets derived from Friedman’s
[48] synthetic benchmarks. These Friedman datasets, generated through non-linear functions, display
varying degrees of noise, variable interactions, and non-linearity. As observed in earlier studies [42],
the results from the Friedman datasets tend to highlight the performance differences among top-
ranked methods more noticeably than other benchmarks, where top-performing methods often deliver

10https://www.openml.org/
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Figure 13: Performance comparison of TPSR and SRBench algorithms in terms of Accuracy-
Complexity-Time on Strogatz dataset. Models are sorted based on mean accuracy defined as the ratio
of solutions with R2 > 0.99 on test set under various noise levels. The error bars represent the 95%
confidence interval.

similar results. Fig. 14 shows that performance of several baselines such as KernelRidge, MLP, DSR,
BSR, gplearn, and AFP, degrades on Friedman datasets. However, our TPSR variants maintains its
superior performance across these challenging Friedman synthetic datasets and the remaining PMLB
black-box datasets, asserting its state-of-the-art (top-1) status. Following [42], this performance
distinction is illustrated in Fig. 14 with more details, separating the results of Friedman datasets from
the rest of PMLB black-box datasets.

Figure 14: Detailed performance comparison of TPSR and SRBench algorithms in terms of Accuracy
(Fitting Performance) on Black-box dataset groups: Friedman [48] synthetic datasets, non-Friedman
datasets, and all the black-box datasets. The error bars represent 95% confidence interval and ” ∗ ”
refers to SR methods vs. other ML methods.

Fig. 15 shows an in-depth comparison of TPSR performance, varying λ ∈ {0, 0.1, 0.5, 1}, against
top competitors (Operon, SBP-GP, FEAT, EPLEX, and E2E) on Black-box datasets of different input
dimensions. Given E2E’s pre-training on dmax ≤ 10, we focused on datasets with input dimensions
d ≤ 10. In Fig. 15(a), we note that dataset distribution and model performance both depend
on the input dimensionality. TPSR consistently outperforms competitors across most dimensions.
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Interestingly, lower dimensions (e.g., d = 3) favor TPSR with higher λ = 0.5 or 1, resulting in better
performance, while larger dimensions (i.e., d = 8, 9) benefit from smaller λ = 0, 0.1. This pattern
aligns with the expectation that greater λ values yield less complex expressions, more prevalent in
lower dimensions, and vice versa. Fig. 15(b) presents the average inference time for each model
across different input dimensions. E2E is the fastest, while SBP-GP and DSR are the slowest. Notably,
as input dimension increases, the inference time of Operon and EPLEX significantly escalates, hitting
the scale of 104 and 105 seconds respectively, while TPSR’s time remains relatively constant, peaking
at 103 seconds or roughly 30 minutes for d = 9, compared to Operon’s 3 hours and SBP-GP’s 30
hours. This shows how efficient TPSR is compared to genetic algorithms in finding higher-quality
expressions. Finally, Fig. 15(c) shows the average complexity of expressions generated by each
model for different input dimensions. DSR’s expressions are the least complex, while SBP-GP’s
are the most. TPSR with λ = 0 is slightly more complex than its counterparts. Interestingly, TPSR
with λ = 0.5, 1 produces less complex expressions than GP-based models like Operon, FEAT, and
EPLEX at lower dimensions. However, as dimensions increase, these models generate less complex
expressions than TPSR.

Figure 15: Detailed performance comparsion of TPSR and competing baselines in terms of Accuracy-
Complexity-Time metrics for Black-box datasets of varying input dimensions.

D.6 Additional In-Domain Results

Fig. 16 presents a comprehensive performance comparison between our proposed TPSR method with
varying controllable parameter λ ∈ {0, 0.1, 0.5, 1} and the E2E baseline employing sampling for the
In-domain Synthetic Dataset. As observed, when the complexity of the synthetic formula increases
(as shown in the top row), such as increasing the number of binary/unary operators or the input
dimension, the performance across all models tends to degrade. However, we can see that TPSR with
λ = 0, 0.1 “always“ have lower performance drops and TPSR with λ = 0.5, 1 “mostly“ have lower
performance drop than the E2E. This highlights that not only does the incorporation of performance
feedback in TPSR’s MCTS-guided decoding help the transformer generation scale better with these
difficulty levels, but the controllable complexity parameter λ also plays a pivotal role in performance
scaling for more challenging input functions.
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Fig. 16(d) illustrates that the performance of all models increases as the number of input data points
N grows, as one would expect. However, TPSR with λ = 0, 0.1 exhibits considerably better low-
resource performance for N < 100 compared to the E2E model. It is important to note that the
maximum Nmax = 200 since the E2E model is pretrained with N ≤ 200, and the transformer
architecture employed in the encoding stage demands significant computational and GPU resources
for training the model with N > 200.

Fig. 16(e) also reveals that the performance of all models improve as the number of input data
centroids increases, meaning that as the input data is sampled with greater diversity across different
distribution clusters. We can clearly observe that our proposed TPSR with λ = 0, 0.1 consistently
outperforms the E2E model, both with smaller and larger numbers of centroids.

Fig. 16(f) further investigates the impact of introducing multiplicative noise with variance γ to the
target: y → y(1 + σ), σ ∼ N (0, γ). As evident from the figure, the performance of all models
deteriorates as the noise variance increases. This phenomenon highlights the sensitivity of the
pre-trained models to the input noise of the target variable. However, it is noteworthy that TPSR
with λ > 0 demonstrates slightly better performance compared to the E2E model, particularly when
encountering larger noise variances.

Figure 16: Performance comparison of TPSR for varying λ ∈ {0, 0.1, 0.5, 1} and E2E with sampling
decoding across different levels of formula and input difficulties: (a) number of binary operators,
(b) number of unary operators, (c) input dimension, (d) number of input points N (e) number
of input centroids, and (f) input noise variance γ.

D.7 Additional Ablation Studies
The selection of β, in Eq. (1) can also affect the exploration-exploitation trade-off, influencing the
overall performance of TPSR. Fig. 17 demonstrates the impact of varying β on TPSR’s performance
over 119 Feynman datasets, emphasizing the balance between exploration and exploitation. Based
on the results, we observe that for small values of β, specifically β = 0, the performance is sub-
optimal. This diminished performance can be attributed to constrained exploration. Without sufficient
exploration, the model might miss potential solutions or equation sequences that might be more
effective. At the other end of the spectrum, with large values like β = 100, there is also a decline
in performance. This degradation can be linked to an over-emphasis on exploration at the cost of
exploitation. By exploring too much without adequately leveraging the learned knowledge, the
model can get overwhelmed with possibilities, some of which might not be beneficial. Experiment
results highlight that optimal performance is achieved for β values ranging between 0.1 and 10.
As seen in Fig. 17(b), with an increase in β, the number of equation sequence candidates grows,
indicating an increase in exploration. However, beyond β > 0.1, the increase in sequence candidates
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is marginal. This plateau suggests the possible activation of caching mechanisms due to repetitive
sequence generation. Fig. 17(a) also shows average accuracy performance against different β values,
illustrating the aforementioned trends and offering a visual guide for selecting β.

Figure 17: Ablation study of β parameter in TPSR on 119 Feynman datasets: Balancing Exploration
and Exploitation.

D.8 Examples of Generated Symbolic Expressions
Table 4 presents example comparisons of symbolic expressions generated by E2E using sampling and
our proposed TPSR model with λ = 1 for 200 observation points of given true functions. To improve
readability and simplify notation, all constants in the generated expressions are denoted with the
token “C“. The table highlights how TPSR-generated symbolic expressions are more closely aligned
with the true functions than those generated by E2E. The aligned components are bolded in the table
entries. Additionally, the fitting performance R2 of TPSR-generated equations is notably superior
to that of E2E-generated expressions. This comparison demonstrates how TPSR’s integration of
fitting and complexity feedback during transformer decoding can yield quantitatively and qualitatively
improved expressions using the same model weights. Improved learning of governing expressions
can enhance the interpretability of black-box prediction models, contributing to their extrapolation
and generalizability.

Table 4: Example comparisons of symbolic expressions generated by E2E and TPSR, along with
their respective fitting performance.

Expression R2

True Function 2X0(1− cos (X1X2)) –

E2E Generation CX0 (C + C cos (CX2 + CX1)) + C 0.453

TPSR Generation CX0 (C + C cos (CX1 + CX2 +CX1X2)) + C 1.0

True Function sin2

(
X0X1

(X2
2π )

)
–

E2E Generation C sin (CX0 + CX1 + CX2) + C 0.178

TPSR Generation C sin2
(

CX1X0

CX2+CX1

)
+ C 0.671

True Function X0

(
cos (X1X2) +X3 cos

2 (X1X2)
)

–

E2E Generation CX0 (CX3 + CX2 + CX1 + C cos (CX2 + CX1))
2
+ C 0.878

TPSR Generation CX0

(
cos (CX2X1) +X2

3 cos
2 (CX2X1)

)
+ C 0.996

True Function X0
sin2 (

X1X2
2 )

sin2 (
X2
2 )

–

E2E Generation CX0 + CX0

(
C sin (CX1 + CX2) + CX2

1

)2
+ C 0.655

TPSR Generation CX2
0

(
sin (CX2X1)
sin (CX2)

)2

+ C 0.991

True Function
√

(X2
0 +X2

1 − 2X0X1 cos (X2 −X3)) –

E2E Generation
√

(CX0 + CX1)
2
cos (CX2 + CX2

3 ) + C 0.939

TPSR Generation
√

(CX1X0 cos (CX2 −CX3)− CX2
1X

2
0 ) + C 0.986
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E Discussion and Future Work
Limitations. While our methodology exhibits substantial potential, it is not without limitations.
One limitation of our approach is the increased inference time of the TPSR in comparison to simpler
decoding methods like beam search and sampling. This extended inference time is primarily due
to the process of searching and incorporating performance feedback during the generation phase
in TPSR’s decoding process. Nevertheless, by exploiting the large-scale pre-trained priors, TPSR’s
inference time still remains considerably lower than the majority of leading genetic algorithms.
Another factor influencing TPSR’s performance is the dependency on the learned priors of the
pre-trained transformer model. TPSR is also subject to the inherent structural limitations of the
pre-trained model, such as constraints on input dimensionality, expression length, and vocabulary
definition. For example, the E2E model is pre-trained with a maximum input dimension (dmax) of 10,
which in turn limits the TPSR with the E2E backbone to d ≤ 10. However, it’s important to note that
TPSR is a model-agnostic framework, implying potential integration with more advanced pre-trained
SR models in the future.

Future Directions. An intriguing dimension in the symbolic regression revolves around out-of-
distribution data. Pre-trained Transformer SR methods, distinct from their search-focused counter-
parts, train on vast synthetic datasets stemming from certain distributions. Essentially, this distribution
is shaped by specific equation generators and sampling techniques. Hence, any data or equation
not stemming from these generators could be viewed as out-of-distribution. Our experimentation
evaluated TPSR and the pre-trained E2E model [18] across both in-domain and out-of-distribution
datasets, as in the SRBench. A crucial observation was that TPSR, with lookahead planning, con-
siderably elevates the pre-trained model’s performance on out-of-distribution datasets, a trend most
pronounced in SRBench comparisons (as illustrated in Table 1). While pre-trained models offer the
strength of utilizing prior knowledge from large-scale datasets, they can be limited when faced with
data far from their training distribution or unique equation forms they have not encountered during
training. TPSR offers a partial solution through its decoding-stage search and lookahead planning,
but it is still limited to the inherent constraints of the pre-trained SR model’s priors. Addressing this
challenge is an intriguing avenue for future research. Possible strategies might involve fine-tuning
pre-trained model weights using non-differentiable rewards for the new out-of-distribution datasets.

F Broader Impacts
Potential positive impacts. The proposed TPSR approach for symbolic regression using
transformer-based models has significant implications for both the research and practical com-
munities. By integrating Monte Carlo Tree Search (MCTS) into the transformer decoding process,
TPSR enables the generation of equation sequences that balance fitting accuracy and complexity,
addressing key challenges in symbolic regression. This has wide-ranging applications in science
and engineering domains, where accurate and interpretable mathematical models are essential for
understanding and predicting complex phenomena. The improved performance of TPSR over state-
of-the-art methods enhances the usability and reliability of symbolic regression models, enabling
researchers and practitioners to extract valuable insights from their data and make informed decisions.

Moreover, TPSR offers practical benefits by leveraging the efficiency of transformer-based models
and the pre-training priors. The ability to optimize equation generation using TPSR enhances the
efficiency and scalability of symbolic regression, making it more accessible in resource-constrained
settings. This opens up opportunities for the adoption of symbolic regression in various domains,
including scientific research, engineering design, and optimization problems. The impact of TPSR
extends beyond symbolic regression, as the integration of MCTS and non-differentiable feedback
into transformer-based models can inspire novel approaches in other fields where the combination
of symbolic mathematical or formal verification and reasoning with machine learning is valuable.
Overall, TPSR has the potential to advance the state-of-the-art in symbolic regression and contribute
to scientific and technological advancements.

Ethical considerations. Symbolic regression makes it easier for anyone to understand underlying
symbolic and mathematical patterns behind the data and learn interpretable mathematical models for
observations. This approach brings the potential for machine learning models to achieve a balance
of high predictive performance and transparency, which is critically valuable in sectors such as
healthcare, where the interpretability of models can directly influence life-saving decisions. However,
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as with any powerful tool, the ethical issues of its use must be considered carefully. For example,
while symbolic regression can yield life-saving insights in the hands of healthcare professionals, it
can also be exploited for malicious purposes. It could be used to decipher patterns and relationships
within data where privacy should be maintained, leading to potential breaches of confidentiality. This
becomes particularly concerning as symbolic regression techniques mature, enabling more effective
comprehension of symbolic mathematical and causal relationships behind data values. To mitigate
this risk, we need the development of separate modules tasked with screening input data and denying
requests where pattern extraction could lead to harmful outcomes.
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