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1. Method001

UrbanIR takes a multi-frame video of a scene under sin-002
gle illumination; as the camera moves, its motion is known.003
Write {Ii, Ei,Ki}, where Ii ∈ RH×W×3 is the RGB im-004
age; Ei ∈ SE(3) is the camera pose; and Ki is camera005
intrinsic matrix. We produce a neural field model that can006
be viewed from novel camera viewpoints under novel light-007
ing conditions. We do so by constructing a neural scene008
model that encodes albedo, normal, semantics, and visibil-009
ity in a unified manner (Sec. 1.1). This model is rendered010
from a given camera pose with given illumination using an011
end-to-end differentiable volume renderer (Sec. 1.2). Our012
inference is by joint optimization of all properties (Sec. 1.3).013
Applications include changing the sun angle (??; top right),014
day-to-night transitions (??; bottom right), and object in-015
sertion (??; middle right). More details about applications016
are in Sec. 2. Fig. ?? provides an overview of our proposed017
inverse graphics and simulation framework.018

1.1. Relightable Neural Scene Model019

The scene representation is built on Instant-NGP [53, 58],020
a spatial hash-based voxel NeRF representation. Instant-021
NGP offers numerous advantages, including low memory022
consumption; high efficiency in training and rendering; and023
compatibility with expansive outdoor scenes. Write x ∈ R3024
for position in 3D, d for query ray direction, θ for learnable025
scene parameters; NeRF models, including Instant-NGP,026
learn a radiance field Fθ(x,d) = (c, σ), where c ∈ R3 and027
σ ∈ R represent observed color and opacity respectively.028
Standard NeRFs have view- and lighting-dependent effects,029
such as shading, shadow, and specularity, baked into their030
observed color, making them non-relightable.031

In contrast, UrbanIR learns a model of the intrinsic scene032
attributes field independent of viewing angles and lighting033
conditions. Write diffuse albedo a, surface normal n, seman-034
tic vector s, and density σ; then UrbanIR learns:035

Fθ(x) = (a,n, s, σ) (1)036

where θ is learnable parameters. The diffuse albedo rep-037

resents the intrinsic color and texture of the material; the 038
normal represents the intrinsic surface geometry; density 039
encodes the spatial opacity, and semantics is used as a key to 040
query surface reflectance. Following Instant-NGP [53], we 041
learn a dense feature hash table to represent the scene, and 042
an individual MLP header is used to decode each attribute 043
given a queried feature at point x. We provide the details of 044
the architecture in the supplementary. The geometry of the 045
scene is implicitly encoded in σ. In contrast to existing re- 046
lightable outdoor scene models that demand coupled explicit 047
geometry [60, 73], our scene model is implicit, providing 048
compactness and consistency to appearance modeling. 049

The lighting model is a parametric sun-sky model [34, 80]. 050
This encodes outdoor illumination as: 051

L = {(Lsun, ψsun, ϕsun),Lamb,Lsky}. (2) 052

Our sun model is a 5-DoF representation, encoding sun 053
color Lsun along with the azimuth and zenith ψsun, ϕsun. The 054
Lamb model is represented as a 3-DoF ambient light. The sky 055
dome model infers the sky texture from the viewing direction: 056
Csky = Lsky(r). We chose this minimalist sun-sky model as 057
it is more compact than other alternatives (e.g., HDR dome 058
or Spherical Gaussians) yet has proven highly effective in 059
modeling various outdoor illumination effects [34, 80]. 060

1.2. Rendering 061

Given the scene model Fθ and a lighting model L, render- 062
ing involves two steps: 1) volume rendering of the scene’s 063
intrinsic properties and visibility map onto the image plane, 064
and 2) a shading process to produce the final result with 065
view-dependent and lighting-dependent effects: 066

C = Shade(Intrinsic(Fθ, r),Shadow(Fθ, r,L),L)
(3) 067

where L is the lighting model, C is the final RGB color. 068

Intrinsics images are obtained by volume rendering. We 069
accumulate predictions from F (·; θ) along the query ray. 070
Multiple points are sampled along the ray, and intrinsics 071
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at the query pixel along the ray [29, 51]. In particular, the072
albedo A, normal N, and semantics S are predicted as:073

A(r)=

N∑
i=1

wiai,N(r)=

N∑
i=1

wini,S(r)=

N∑
i=1

wisi, (4)074

where wi = exp(−
∑i−1

j=1 σjδj) (1− exp(−σiδi)) is alpha-075
composition weight, δi = ti − ti−1. We perform rendering076
for each camera ray and get the final semantic map, albedo077
map, and the normal map.078

Shadow modeling and rendering are essential for obtain-079
ing realistic-looking outdoor images. Modeling the visibil-080
ity of the sun with a per-scene optimized MLP head (as081
in [85, 87]) is impractical because we need to change the082
sun’s position in relighting but can learn from only one po-083
sition. An alternative is to construct an explicit geometry084
model to cast shadows [73], but this model might not be085
consistent with the other neural fields, and imposing consis-086
tency is difficult. Instead, we first compute an estimate x(r)087
of the 3D point being shaded, then estimate the visibility088
V (x, sun). Our key insight is that shadows in outdoor scenes089
are primarily due to the visibility of a single directional sun-090
light.091

We obtain x(r) for each ray by volume rendering depth092
(so substitute t̂ =

∑
witi into the equation for the ray being093

rendered). Now, to check whether x is visible to the light094
source, we compute the transmittance along the ray segment095
between x and the light source using volume rendering:096

V (x, sun)=exp

(
−
∑
i

σi(xi)δi

)
where xi = x+ tilsun

(5)097
Lower transmittance along a ray from a surface point098
to a light source suggests fewer obstacles between the099
point and the light source. Eq. 5 establishes a strong link100
between transmittance, lighting, and visibility fields used in101
training. In particular, a point in a training image known102
as shadowed (resp. out of shadow) should have large (resp.103
small) accumulated transmittance. We use this constraint to104
adjust distant geometry during training. Compared to other105
alternatives [73, 87], our proposed visibility test is simple to106
compute, flexible for relighting, and aligns with intrinsic107
properties with a few mild assumptions for outdoor scenes.108

109
Shading is performed by a Blinn-Phong model [7] that110

incorporates sun and sky terms for the foreground scene and111
an MLP query for the background sky. For S(r) ∈ sky, we112
use C(r) = Lsky(r) and otherwise, we use113

C(r) = A(r) (LsunDV + Lamb) (6)114

where D = max(N(r) · lsun, 0) is the diffuse lighting at the115
surface, lsun is the sunlight direction (derived fromψsun, ϕsun).116

The visibility V (x, sun) is 1 if x(r) can see the sun and 0 117
otherwise. This shading model is capable of producing a 118
realistic appearance with shadows following varying lighting 119
conditions. The model can readily be extended with addi- 120
tional lighting sources at the relighting stage, as later shown 121
in the night simulation. 122

1.3. Inverse graphics 123

We train scene F (·) (Eq. 1) and lighting L (Eq. 2) models 124
jointly using a loss: 125

min
θ,L

Lrender+λ0Ldeshadow+λ1Lvisibility+λ2Lnormal+λ3Lsemantics+λ4Lreg,

(7) 126
where individual loss terms are described below. 127

Rendering loss measures the agreement between observed 128
images and images rendered from the model using the train- 129
ing view and lighting, yielding Lrender =

∑
r ∥Cgt(r) − 130

C(r)∥22, where C is rendered color per ray, as defined in 131
Eq. 3, and Cgt is the observed “ground-truth” color. Mini- 132
mizing the rendering loss ensures our scene model can re- 133
produce the observed images. 134

Deshadowed rendering loss forces shadow effects out of 135
the estimated albedo. In particular, we compute a shadow- 136
free version of an image using an off-the-shelf shadow detec- 137
tion and removal network [13, 22] to obtain Cdeshadow. We 138
then render that image from the model using the training 139
view and lighting, but assuming that every point can see the 140
sun (equivalently V (x, sun) = 1 for every x). This yields 141
C′(θ). We then measure the agreement between the two 142
to obtain Ldeshadow =

∑
r |Cdeshadow −C′(θ)|2. The combi- 143

nation of this deshadowed rendering loss and the original 144
rendering loss directly gauges how the visibility map influ- 145
ences rendering, and helps disentangle albedo and shadows. 146

Visibility loss exploits shadow detection to improve geom- 147
etry estimates. A pixel that is known to be in shadow must 148
be at a point that cannot see the sun, so constraining geom- 149
etry along a ray from that pixel to the sun. This loss could 150
be computed by simply comparing visibility V (, sun) with 151
the shadow masks used for Ldeshadow. However, there are 152
challenges: first, computing visibility requires another vol- 153
ume rendering per sample point; second, back-propagation 154
through volume rendering, shading, and visibility computa- 155
tion forms a long, non-linear gradient chain, and optimiza- 156
tion becomes difficult. Instead, we construct an intermediate 157
“guidance” visibility estimate V̂ (r) which is an MLP head 158
trained to reproduce the shadow masks, and compute 159

Lvisibility =
∑
r∈R

CE
(
M(r), V̂ (r)

)
+ CE

(
V (r), V̂ (r)

)
,

(8) 160
where M(r) is the shadow mask at pixel r, , and CE(., .) is 161
a cross-entropy loss. Here the first term forces the (relatively 162
easily trained) V̂ to agree with the shadow masks, and the 163
second forces V to agree with V̂ . 164
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Figure 1. Night-time rendering. In this sequence of images, the scene changes from daytime to night-time by introducing new light
sources such as a headlight on a car and a street lamp. The top three and bottom three rows are from the same driving video, but at different
times. Our decomposition method successfully removes dark shadows with sharp boundaries, resulting in a more realistic rendering of new
light sources (such as streetlights and headlights) during night-time simulations. Our method is superior to Instruct-NeRF2NeRF [23], a
data-driven, generative prior, radiance field approach.

Normal loss is computed by comparing results Ngt from165
an off-the-shelf normal estimator [18, 30] to the output of166
the normal MLP. Recall the camera is known for training167
scenes and write r for the pixel corresponding to 3D point168
x(r). An alternate estimate of the normal follows from the169

density field: N̂(r) = − ∇σ(x)
∥∇σ(x)∥ . Then our normal loss is170

given by:171

Lnormal =
∑
r∈R

(
∥Ngt(r)−N(r)∥2 + ∥N(r)− N̂(r)∥2

)
.

(9)172
We adopt smooth normal regularization from Ref-NeRF [69],173
producing better density. The normal loss requires second-174
order derivatives of the density during back-propagation. An175
efficient implementation using the Hessian vector products176
(HVP) enables memory-efficient computation.177

Semantic loss is computed by comparing predicted seman-178
tics s with labels in the dataset [42]. We use an additional179
loss to encourage high-depth values in the sky region, yield-180

ing: Lsemantics =
∑
r∈R

CE (Sgt(r), S(r))−
∑
r∈sky

D(r).181

A regularization term is used to regularize the albedo of182
the scene and ambient light intensity. This is necessary due183
to the ill-posed nature of our optimization process. However,184
removing the hard shadow from the sunlight in the albedo185
field A remains a challenge, particularly in urban driving186

sequences. To address this challenge, we introduce a prior 187
that ensures the ground albedo is homogeneous. This is im- 188
portant because the ground region typically shares a similar 189
albedo value. More specifically, we first compute the aver- 190
age ground albedo Āg from albedo A and semantic Sgt and 191

regularize the albedo using Lalbedo =
∑

r∈ground

∥A(r)− Āg∥2. 192

We also calculate an ambient regularization term as 193
∥Lamb∥2. We regularize the intensity of ambient light to 194
avoid unnatural color shifts in the recovered albedo caused 195
by a large intensity of ambient light. Our regularization term 196
is thus Lreg = Lalbedo + ∥Lamb∥2. 197

2. Application Details 198

As intrinsics are recovered, UrbanIR can be rendered using 199
any preferred source model. Natural uses are rendering 200
scenes with different sun configurations and simulating 201
night-time. 202

203
Simulating night-time proceeds by defining headlights and 204
street lights, then illuminating with scene model considering 205
specularity and lens flare. For sky regions S(r) ∈ sky, we 206
use C(r) = Lsky(r) and otherwise, we use 207

A(r)
(∑

Li
difDiVi + Lamb

)
+
∑
i

Li
spec (10) 208
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The spotlight we used is given by the center oi
L ∈ R3 and209

direction di
L ∈ R3 of the light. This spotlight produces a210

diffuse radiance at r given by211

Li
dif(r) =

1

∥oi
L − x(r)∥2

(
l · di

L

)k
, l =

oi
L − x(r)

∥oi
L − x(r)∥

,

(11)212
Spotlight’s diffuse color intensity is brightest on the central213
ray r(t) = oL − tdL, decays with distance from ray r(t)214
and angle. We modulate it with constant k.215

The realistic night-time simulation requires reproducing216
the strong specular effects on cars. We find car regions using217
a semantic field S in Eq. 4, then simulate specular reflec-218
tion with the Blinn-Phong model [7], where the γ (specular219
strength) parameter is inherited from the semantic field.220

At night, luminaires often display lens flares. A pure221
simulation of lens flares is impractical, as it requires222
extensive ray tracing through the lens. We use the standard223
image-based approximation [1] to simulate such light224
scattering effects. For directly visible luminaires, we225
composite a real-world lens flare image from a similar226
lighting source into the image, using location and depth. As227
Fig. 1 shows, this simple method is effective.228

229
Object insertion proceeds by a hybrid rendering strategy.230
We first cast rays from the camera and estimate ray-mesh231
intersections [16] for the inserted object. If the ray hits the232
mesh and the distance is shorter than the volume rendering233
depth, the albedo A(r), normal N(r), and depth D(r) are234
replaced with the object attributes. In the shadow pass,235
we calculate visibility from surface points to the light236
source (Eq. 5), and also estimate the ray-mesh intersection237
for the tracing rays. If the rays hit the mesh (meaning238
occlusion by the object), the visibility is also updated239
: V (r) = 0. With updated A(r), N(r), V (r), shading240
(Eq. 1.2) is applied to render images with virtual objects.241
Our method not only casts object shadows in the scene but242
also casts scene shadows on the object, enhancing realism243
significantly. Similar approaches have been depicted in244
recent works [37, 57]. However, ours is the first to be245
visibility-aware, enabling us to render effects when an object246
enters into a shadow.247

248
Outdoor relighting is done by simply adjusting lighting pa-249
rameters (position or color of the sun; sky color) then re-250
rendering using Eq. 3. We also use semantics to interpret251
specular car surfaces and emulate their reflectance during252
the simulation.253

3. Model Architecture254

Instant-NGP [53] encodes the scene with a multi-scale hash255
table, and each entry contains learnable parameters. For256
point x ∈ R3, the model retrieves and interpolates the pa-257

rameters with hash function: F (x, θ). UrbanIR adopts the 258
hash encoding from [53] and maintain two separate hash 259
tables for geometry and appearance, and predict the scene 260
properties with: 261

σ = Fg(x, θg)

(a,n, s) = Fa(x, θa),
(12) 262

where σ is density, (a,n, s) are albedo, surface normal, and 263
semantic. θg, θa are learnable parameters for geometry and 264
appearance. Please note that the density field σ is not only 265
involved in the volume rendering (Eq. 4), but also involved 266
in visibility estimation (Eq. 5) and normal loss calculation 267
(Eq. 9). The hash encoding is implemented with tiny-cuda- 268
nn [52]. We empirically find that maintaining separate learn- 269
able parameters for geometry and appearance leads to more 270
stable convergence and higher rendering quality. 271

4. Training Details 272

The training procedure is illustrated in Fig. 2. We leverage 273
pretrained networks as 2D priors during training to address 274
the ill-posed inverse problem. Specifically, the shadow mask 275
is estimated with MTMT [13], and shadow removal is per- 276
formed with ShadowFormer [22]. Omnidata normal esti- 277
mation [18] helps refine scene geometry (Eq. 9), which is 278
critical in the shading quality and albedo decomposition. A 279
semantic map is provided in Kitti360 dataset [42] and can 280
also be estimated with MMSegmentation [15] if such infor- 281
mation is not provided. The loss terms are weighted during 282
training: 283

L = Lrender+λ0Ldeshadow+λ1Lvisibility+λ2Lnormal+λ3Lsemantics+λ4Lreg,284

where λ0 = 1.0, λ1 = 0.001, λ2 = 0.01, λ3 = 0.04, λ4 = 285
0.1. We use Adam optimizer [31] with a learning rate of 286
0.002 for a total of 100 epochs during the optimization. 287

5. Related Works Comparison 288

We compare the problem setting, input requirement with 289
recent methods in Tab. 1. UrbanIR addresses inverse 290
rendering for large-scale urban scenes that object-centric 291
methods [28, 85, 87] fails to reconstruct. Furthermore, our 292
method takes videos under single illuminations as input. In 293
order to estimate the geometry of large-scale driving scenes, 294
FEGR [73] and LightSim [56] rely on captures from five 295
to six cameras and LiDAR sensors. On the other hand, Ur- 296
banIR only needs videos from single or stereo cameras 297
without any guidance from LiDAR. Our method also per- 298
forms nighttime simulation by inserting local light sources 299
(e.g. streetlight, vehicle light), which is not demonstrated in 300
previous works. 301
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Figure 2. Training Pipeline. UrbanIR retrieves scene intrinsics with volume rendering from camera rays, which is guided by semantic and
normal priors. Transmittance along tracing rays is supervised with shadow masks. The shading model (illustrated in Fig. ??) is performed
with and without visibility term, and enforce reconstruction loss with original and deshadowed images, respectively. Please refer to
Section 1.3 for more details.

6. Visibility Modeling for Object Insertion302

Following [72, 73], we build the object insertion pipeline303
with Blender [14], and the results are shown in Fig. 3. By304
tracing the rays from object surface toward light sources305
(i.e. the sun), UrbanIR estimates the visibility with volume306
rendering (Eq. 5 in main paper). As a result, our full model307
is able to cast scene shadow on the inserted objects and also308
weaken the object shadow on the ground if it overlaps with309
the existing scene shadow. The visibility modeling enables310
our method to simulate shadows better and to enhance the311
insertion realism significantly.312

7. More Relighting Results313

We compare the relighting quality with FEGR [73] in Fig. 4.314
FEGR [73] first extracts mesh and estimates the shading315
from the lighting configuration, and the imperfect mesh ge-316
ometry produces artifacts and loses appearance details. On317
the other hand, our method alleviates the original shadow318
and produces relighting images while preserving appearance319
details. Additionally, UrbanIR can insert local light sources320
and simulate the scene in the night time (Fig. 5), demonstrat-321
ing the capability and flexibility of our relighting framework.322

We show additional night simulation results on various323
Kitti360 [42] sequences in Fig. 6, demonstrating the gener-324
alization capability of UrbanIR . The Instruct-Pix2Pix [10]325
leverages the large language model [11] and stable diffu-326
sion [59] for abundant image editing tasks. However, such a327

data-driven method cannot move the daylight shading and 328
shadow in the input images. On the contrary, UrbanIR de- 329
composes shadow-free albedo and performs physically- 330
based rendering with new light sources (e.g., streetlights, 331
headlights), significantly enhancing the visual quality of 332
night simulation. The strong specular reflection is also sim- 333
ulated on the car region (Eq. 10), boosting the realism of 334
metal material. Please note that the simulation is flexible, 335
and the user can adjust physical parameters (e.g., light color, 336
light strength) to create various effects. Please refer to our 337
supplementary video to visualize view consistency and con- 338
trollable simulation better. 339

8. Baseline Details 340

Description of the approach of baselines we compared to. 341

NeRF + Mesh The recent work FEGR [73] explores the 342
relighting of outdoor scenes under singular or multiple il- 343
lumination sources. However, due to the absence of open- 344
source access to their method, we implement our baseline 345
model incorporating similar visibility modeling strategies. 346
Specifically, we employ the marching cubes technique [48] 347
to extract the mesh from our model, excluding our proposed 348
visibility optimization (as per Eq.8). In alignment with the 349
shadow mapping approach adopted by FEGR [73], we cast 350
shadows by estimating two intersections: the first between 351
the camera rays and the mesh and the second by tracing rays 352
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Input w/o visibility modeling Ours

Figure 3. Object Insertion Qualitative Results.Without visibility modeling (middle column), the scenes do not cast shadows on the
inserted objects and the original object shadow looks unrealistic in the existing shadow. Our full method (right column) simulates the better
interaction between the reconstructed scenes and inserted objects with the help of visibility modeling.

from the surface to the light source.353

Colmap MVS [64] We compare our method with an354
explicit geometry-based baseline. For this, we utilize355
COLMAP for dense scene reconstruction [63, 64] and import356
the resulting scene into Blender [14] for relighting simula-357
tion.358

Instruct-Pix2Pix [10] edits images according to user in-359
struction. The model leverages large language model GPT-360
3 [11] and Stable Diffusion [59] for generating image and361
instruction pairs and fine-tune diffusion model to perform362
editing. We use instructions “change to night”, and “It’s now363
midnight” for night image generation.364

Instruct-NeRF2NeRF [23] aims to edit NeRF scenes365
with text instructions. It uses a generative image editing366
model [10] to iteratively edit input images while optimizing367
the underlying scene model, resulting in an optimized 3D368
scene that respects the instruction. We compare Instruct369

NeRF2NeRF in night simulation, where we provide the in- 370
struction, “Make it look like it was taken at night.” 371

NeRF-OSR [60] is a recent work for outdoor scene re- 372
construction and relighting. We use the open-source project 373
provided by the author to run this baseline. This method 374
represents lighting as spherical harmonics parameters. It 375
is worth noting that NeRF-OSR was designed for inverse 376
rendering in multi-illumination conditions. For a fair com- 377
parison, we rotate the spherical vectors to simulate different 378
light conditions. 379

RelightNet [79] is a single-image based relighting frame- 380
work. We use the open-source project provided by the au- 381
thors to produce intrinsic decomposition results, including 382
shading and albedo for comparison. 383
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Figure 4. Relighting Comparison on Waymo Open Dataset [68]. The second and third columns compare the relighting quality. The
authors provide the FEGR results and we match the lighting condition according to the shadow direction.

Input Evening Street + vehicle light Vehicle light only

Figure 5. Controllable Night Simulation.

9. Related Work384

Inverse Graphics involves inferring illumination and in-385
trinsic properties of a scene. The problem is undercon-386
strained, and there is much reliance on priors [2, 3, 26,387
27, 35, 50, 62, 78, 83] or on managed lighting condi-388
tions [2, 2, 20, 25, 25, 82], known geometry [17, 32, 36, 61],389
or material simplifications [49, 83, 88]. Recent methods390
use deep learning techniques to reason about material prop-391
erties [45–47, 55, 77, 86]. Models trained on synthetic392

data [43] or pair-wise annotated data [4] have shown promis- 393
ing results. Learned predictors of albedo or shading are de- 394
scribed and reviewed in [6, 19, 65]. Neural representations 395
of material or illumination appear in [5, 38–41, 47]. Like 396
these methods, we exploit monocular cues, such as shadows 397
and surface normals. In contrast, we combine learning-based 398
monocular cues and model-based relightable NeRF optimiza- 399
tion to infer the scene’s intrinsic properties and illumination. 400
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Figure 6. Nighttime rendering. The scene is transformed from daytime (1st row) to night-time (3rd row) by introducing new light sources:
a headlight on a car and a street lamp. Top 3 and bottom 3 rows are from same driving sequence with different time stamp. Comparing
with data-driven generative model and Instruct-Pix2Pix [10], the dark shadows with sharp boundaries are successfully removed with our
decomposition, resulting more realistic rendering with new light sources (e.g. streetlights, headlight) during the nighttime simulation.

Method
Scene
Type

Illumination
Conditions

RGB
Only

Nighttime
Simulation

NeRFFactor [85] Object Multi Yes
TensoIR [28] Object Single Yes
InvRender [87] Object Single Yes
NeRF-OSR [60] Front-Facing Multi Yes
FEGR [73] Large Scene Single/Multi LiDAR
LightSim [56] Large Scene Single/Multi LiDAR
UrbanIR (Ours) Large Scene Single Yes ✓

Table 1. Comparison of various recent relightable NeRF methods.
UrbanIR is among the first to offer single-illumination and RGB-
only relightable NeRF capabilities suitable for large-scale scenes.

Relightable Neural Fields: Relightable neural radiance401
field methods [8, 9, 24, 54, 74, 77, 81, 85] aim to factor the402

neural field into multiple intrinsic components and lever- 403
age neural shading equations for illumination and material 404
modeling. These methods admit realistic and controllable 405
rendering of scenes with varying lighting conditions and 406
materials. However, most relightable NeRF methods focus 407
on objects with surrounding views or small bounded indoor 408
environments. Important exceptions are: NeRF-OSR [60], 409
which assumes access to multiple lighting sources for de- 410
composition, and NeRF meets explicit geometry [74], which 411
either uses multiple lighting or exploits depth sensing, such 412
as LiDAR. In contrast, our proposed approach only requires 413
a single video captured under the same, unknown illumina- 414
tion, making it more applicable to a broader range of scenes. 415

Differentiable rendering techniques make inverse graph- 416
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ics tasks more flexible and convenient [12, 44, 55]. Most417
render meshes are suitable for object-level rendering, and so418
are challenging to apply to large urban scenes. In contrast,419
we leverage neural radiance fields (NeRF) [51].420

Shadow modeling using images is challenging. Methods421
trained to cast shadows from images [71, 84] are tailored for422
particular objects (pedestrians, cars, etc). Learned methods423
can detect and remove shadows from 2D images [21, 22, 70].424
But inverse graphics require modeling the full 3D geometry,425
intrinsic scene properties, and ensuring temporal consistency.426
Model-based optimization methods can infer shadows but427
rely on accurate scene geometry [33, 67, 75]. Using visi-428
bility fields to model shadows results in difficulty provid-429
ing consistent shadows in relation to the underlying geom-430
etry [60, 66, 76, 87]. In contrast, our method combines the431
strengths of learning-based monocular shadow prediction432
and removal and model-based inverse graphics.433
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