
Under review as a conference paper at ICLR 2024

A APPENDIX 1

A.1 LOGIC SYNTHESIS

Logic synthesis transforms a hardware design in register transfer level (RTL) to a Boolean gate-level
network, optimizes the number of gates/depth, and then maps it to standard cells in a technology
library Brayton et al. (1984). Well-known representations of Boolean networks include sum-of-
product form, product-of-sum, Binary decision diagrams, and AIGs which are a widely accepted
format using only AND (nodes) and NOT gates (dotted edges). Several logic minimization heuristics
(discussed in Section A.2)) have been developed to perform optimization on AIG graphs because of its
compact circuit representation and directed acyclic graph (DAG)-based structuring. These heuristics
are applied sequentially (“synthesis recipe”) to perform one-pass logic optimization reducing the
number of nodes and depth of AIG. The optimized network is then mapped using cells from
technology library to finally report area, delay and power consumption.

A.2 LOGIC MINIMIZATION HEURISTICS

We now describe optimization heuristics provided by industrial strength academic tool ABC Brayton
& Mishchenko (2010):

1. Balance (b) optimizes AIG depth by applying associative and commutative logic function tree-
balancing transformations to optimize for delay.

2. Rewrite (rw, rw -z) is a directed acyclic graph (DAG)-aware logic rewriting technique that
performs template pattern matching on sub-trees and encodes them with equivalent logic functions.

3. Refactor (rf, rf -z) performs aggressive changes to the netlist without caring about logic sharing.
It iteratively examines all nodes in the AIG, lists out the maximum fan-out-free cones, and replaces
them with equivalent functions when it improves the cost (e.g., reduces the number of nodes).

4. Re-substitution (rs, rs -z) creates new nodes in the circuit representing intermediate functionalities
using existing nodes; and remove redundant nodes. Re-substitution improves logic sharing.

The zero-cost (-z) variants of these transformation heuristics perform structural changes to the
netlist without reducing nodes or depth of AIG. However, previous empirical results show circuit
transformations help future passes of other logic minimization heuristics reduce the nodes/depth and
achieve the minimization objective.

A.3 MONTE CARLO TREE SEARCH

We discuss in detail the MCTS algorithm. During selection, a search tree is built from the current
state by following a search policy, with the aim of identifying promising states for exploration.

where Qk
MCTS(s, a) denotes estimated Q value (discussed next) obtained after taking action a from

state s during the kth iteration of MCTS simulation. Uk
MCTS(s, a) represents upper confidence tree

(UCT) exploration factor of MCTS search.

Uk
MCTS(s, a) = cUCT

√
log

(∑
a N

k
MCTS(s, a)

)
Nk

MCTS(s, a)
, (5)

Nk
MCTS(s, a) denotes the visit count of the resulting state after taking action a from state s. cUCT

denotes a constant exploration factor Kocsis & Szepesvári (2006).

The selection phase repeats until a leaf node is reached in the search tree. A leaf node in MCTS tree
denotes either no child nodes have been created or it is a terminal state of the environment. Once
a leaf node is reached the expansion phase begins where an action is picked randomly and its roll
out value is returned or R(sL) is returned for the terminal state sL. Next, back propagation happens
where all parent nodes Qk(s, a) values are updated according to the following equation.

Qk
MCTS(s, a) =

Nk
MCTS(s,a)∑

i=1

Ri
MCTS(s, a)/N

k
MCTS(s, a). (6)

13



Under review as a conference paper at ICLR 2024

A.4 ABC-RL AGENT PRE-TRAINING PROCESS

As discussed in Section 2.3, we pre-train an agent using available past data to help with choosing
which logic minimization heuristic to add to the synthesis recipe. The process is shown as Algorithm 1.

Algorithm 1 ABC-RL: Policy agent pre-training

1: procedure TRAINING(θ)
2: Replay buffer (RB) ← ϕ, Dtrain = {AIG1, AIG2, ..., AIGn}, num_epochs=N , Recipe

length=L, AIG embedding network: Λ, Recipe embedding network: R, Agent policy πθ := U
(Uniform distribution), MCTS iterations = K, Action space = A

3: for AIGi ∈ Dtrain do
4: r ← 0, depth← 0
5: s← Λ(AIGi) +R(r)
6: while depth < L do
7: πMCTS = MCTS(s, πθ,K)
8: a = argmaxa′∈AπMCTS(s, a

′)
9: r ← r + a, s′ ← A(AIGi) +R(r)

10: RB ← RB
⋃
(s, a, s′, πMCTS(s, ·))

11: s← s′, depth← depth+ 1

12: for epochs < N do
13: θ ← θi − α∇θL(πMCTS , πθ)

B NETWORK ARCHITECTURE

B.1 AIG NETWORK ARCHITECTURE

Starting with a graph G = (V,E) that has vertices V and edges E, the GCN aggregates feature
information of a node with its neighbors’ node information. The output is then normalized using
Batchnorm and passed through a non-linear LeakyReLU activation function. This process is
repeated for k layers to obtain information for each node based on information from its neighbours
up to a distance of k-hops. A graph-level READOUT operation produces a graph-level embedding.
Formally:

hk
u = σ(Wk

∑
i∈u∪N(u)

hk−1
i√

N(u)×
√
N(v)

+ bk), k ∈ [1..K] (7)

hG = READOUT ({hk
u;u ∈ V })

The embedding for node u, generated by the kth layer of the GCN, is represented by hk
u. The

parameters Wk and bk are trainable, and σ is a non-linear ReLU activation function. N(·) denotes
the 1-hop neighbors of a node. The READOUT function combines the activations from the kth layer
of all nodes to produce the final output by performing a pooling operation. In our work, we choose
k = 2 and global average and max pooling concatenated as READOUT operation.

C EXPERIMENTAL DETAILS

C.1 REWARD NORMALIZATION

In our work, maximizing QoR entails finding a recipe P which is minimizing the area-delay product
of transformed AIG graph. We consider as a baseline recipe an expert-crafted synthesis recipe
resyn2 Mishchenko et al. (2006) on top of which we improve our ADP.

R =

{
1− ADP (S(G,P ))

ADP (S(G,resyn2)) ADP (S(G,P )) < 2×ADP (S(G,P )),

−1 otherwise.

14



Under review as a conference paper at ICLR 2024

20 40 60 80 100
Iterations

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

Re
du

ct
io

n 
(%

)

(a) b9

20 40 60 80 100
Iterations

2.5
5.0
7.5

10.0
12.5
15.0
17.5

(b) apex2

20 40 60 80 100
Iterations

2
4
6
8

10
12
14

(c) prom1

20 40 60 80 100
Iterations

10
20
30
40
50

(d) i9

20 40 60 80 100
Iterations

5.0
7.5

10.0
12.5
15.0
17.5
20.0

Re
du

ct
io

n 
(%

)

(e) m4

20 40 60 80 100
Iterations

0.0
2.5
5.0
7.5

10.0
12.5
15.0

(f) pair

20 40 60 80 100
Iterations

7.5
10.0
12.5
15.0
17.5
20.0
22.5

(g) max1024

20 40 60 80 100
Iterations

5
10
15
20
25

(h) c7552

Figure 7: Area-delay product reduction (in %) compared to resyn2 on MCNC circuits. GREEN:
SA+Pred. Chowdhury et al. (2022), BLUE: MCTS Neto et al. (2022), RED: ABC-RL

D RESULTS

D.1 PERFORMANCE OF ABC-RL AGAINST PRIOR WORKS AND BASELINE MCTS+LEARNING

D.1.1 MCNC BENCHMARKS

Figure 7 plots the ADP reductions over search iterations for MCTS, SA+Pred, and ABC-RL. In m4,
ABC-RL’s agent explores paths with higher rewards whereas standard MCTS continues searching
without further improvement. A similar trend is observed for prom1 demonstrating that a pre-trained
agent helps bias search towards better parts of the search space. SA+Pred. Chowdhury et al. (2022)
also leverages past history, but is unable to compete (on average) with MCTS and ABC-RL in part
because SA typically underperforms MCTS on tree-based search spaces. Also note from Figure 5
that ABC-RL in most cases achieves higher ADP reductions earlier than competing methods (except
pair). This results in significant geo. mean run-time speedups of 2.5× at iso-QoR compared to
standard MCTS on MCNC benchmarks.

D.1.2 EPFL ARITHMETIC BENCHMARKS

Figure 8 illustrates the performance of ABC-RL in comparison to state-of-the-art methods: Pure
MCTS Neto et al. (2022) and SA+Prediction Chowdhury et al. (2022). In contrast to the scenario
where MCTS+Baseline underperforms pure MCTS (as shown in 2), here we observe that ABC-
RL effectively addresses this issue, resulting in superior ADP reduction. Remarkably, ABC-RL
achieved a geometric mean 5.8× iso-QoR speed-up compared to MCTS across the EPFL arithmetic
benchmarks.

20 40 60 80 100
Iterations

15
20
25
30
35

Re
du

ct
io

n 
(%

)

(a) bar

20 40 60 80 100
Iterations

0
10
20
30
40
50

(b) div

20 40 60 80 100
Iterations

2
4
6
8

10
12
14
16

(c) square

20 40 60 80 100
Iterations

5

10

15

20

25

MCTS
SA+Pred.
ABC-RL

(d) sqrt

Figure 8: Area-delay product reduction (in %) compared to resyn2 on EPFL arithmetic benchmarks. GREEN:
SA+Pred. Chowdhury et al. (2022), BLUE: MCTS Neto et al. (2022), RED: ABC-RL

15



Under review as a conference paper at ICLR 2024

D.1.3 EPFL RANDOM CONTROL BENCHMARKS

20 40 60 80 100
Iterations

4
6
8

10
12
14
16
18
20

Re
du

ct
io

n 
(%

)

(a) cavlc

20 40 60 80 100
Iterations

10

15

20

25

30

(b) mem_ctrl

20 40 60 80 100
Iterations

0
5

10
15
20
25
30
35
40

(c) router

20 40 60 80 100
Iterations

16
18
20
22
24
26
28
30

MCTS
SA+Pred.
ABC-RL

(d) voter

Figure 9: Area-delay product reduction (in %) compared to resyn2 on EPFL random control benchmarks. On
cavlc and router, ABC-RL perform better than MCTS where baseline MCTS+Learning under-perform.
GREEN: SA+Pred. Chowdhury et al. (2022), BLUE: MCTS Neto et al. (2022), RED: ABC-RL.

D.2 PERFORMANCE OF BENCHMARK-SPECIFIC ABC-RL AGENTS

ABC-RL+MCNC agent: For 6 out of 12 MCNC benchmarks, ABC-RL guided by the MCNC agent
demonstrated improved performance compared to the benchmark-wide agent. This suggests that
the hyper-parameters (δth and T ) derived from the validation dataset led to optimized α values for
MCNC benchmarks. However, the performance of the MCNC agent was comparatively lower on
EPFL arithmetic and random control benchmarks.

ABC-RL+ARITH agent: Our EPFL arith agent resulted in better ADP reduction compared to
benchmark-wide agent only on A4(sqrt). This indicate that benchmark-wide agent is able to learn
more from diverse set of benchmarks resulting in better ADP reduction. On MCNC benchmarks, we
observe that ARITH agent performed the best amongst all on C6(m4) and C10 (c7552) because
these are arithmetic circuits.

ABC-RL+RC agent: Our RC agent performance on EPFL random control benchmarks are not that
great compared to benchmark-wide agent. This is primarily because of the fact that EPFL random
control benchmarks have hardware designs performing unique functionality and hence learning from
history doesn’t help much. But, ABC-RL ensures that performance don’t detoriate compared to pure
MCTS.

D.3 ABC-RL VERSUS MCTS+L+FT

MCNC Benchmarks: In Fig. 10, we depict the performance comparison among MCTS+finetune
agent, ABC-RL, and pure MCTS. Remarkably, ABC-RL outperforms MCTS+finetune on 11 out of
12 benchmarks, approaching MCTS+finetune’s performance on b9. A detailed analysis of circuits
where MCTS+finetune performs worse than pure MCTS (i9, m4, pair, c880, max1024,
and c7552) reveals that these belong to 6 out of 8 MCNC designs where MCTS+learning performs
suboptimally compared to pure MCTS. This observation underscores the fact that although finetuning
contributes to a better geometric mean over MCTS+learning (23.3% over 20.7%), it still falls short
on 6 out of 8 benchmarks. For the remaining two benchmarks, alu4 and apex4, MCTS+finetune
performs comparably to pure MCTS for alu4 and slightly better for apex4. Thus, ABC-RL
emerges as a more suitable choice for scenarios where fine-tuning is resource-intensive, yet we seek
a versatile agent capable of appropriately guiding the search away from unfavorable trajectories.

EPFL Arithmetic Benchmarks: In Fig. 11, we present the performance comparison with
MCTS+finetune. Notably, for designs bar and div, MCTS+finetune achieved equivalent ADP as
ABC-RL, maintaining the same iso-QoR speed-up compared to MCTS. These designs exhibited
strong performance with baseline MCTS+Learning, thus aligning with the expectation of favorable
results with MCTS+finetune. On square, MCTS+finetune nearly matched the ADP reduction
achieved by pure MCTS. This suggests that fine-tuning contributes to policy improvement from
the pre-trained agent, resulting in enhanced performance compared to baseline MCTS+Learning.
In the case of sqrt, MCTS+finetune approached the performance of ABC-RL. Our fine-tuning
experiments affirm its ability to correct the model policy, although it require more samples to converge
towards ABC-RL performance.

16



Under review as a conference paper at ICLR 2024

20 40 60 80 100
Iterations

5.0
7.5

10.0
12.5
15.0
17.5
20.0

Re
du

ct
io

n 
(%

)

(a) alu4

20 40 60 80 100
Iterations

8
10
12
14
16
18
20

(b) apex1

20 40 60 80 100
Iterations

2.5
5.0
7.5

10.0
12.5
15.0
17.5

(c) apex2

20 40 60 80 100
Iterations

2
4
6
8

10
12
14

MCTS
MCTS+finetune
ABC-RL

(d) apex4

20 40 60 80 100
Iterations

16
18
20
22
24

Re
du

ct
io

n 
(%

)

(e) b9

20 40 60 80 100
Iterations

6
8

10
12
14
16
18
20
22

(f) c880

20 40 60 80 100
Iterations

2
4
6
8

10
12
14

(g) prom1

20 40 60 80 100
Iterations

15
20
25
30
35
40
45
50
55

(h) i9

20 40 60 80 100
Iterations

0
5

10
15
20

Re
du

ct
io

n 
(%

)

(i) m4

20 40 60 80 100
Iterations

0
2
4
6
8

10
12
14
16

(j) pair

20 40 60 80 100
Iterations

7.5
10.0
12.5
15.0
17.5
20.0
22.5

(k) max1024

20 40 60 80 100
Iterations

5
10
15
20
25

(l) c7552

Figure 10: Area-delay product reduction (in %) compared to resyn2 on MCNC benchmarks. YELLOW:
MCTS+Finetune, BLUE: MCTS Neto et al. (2022), RED: ABC-RL

20 40 60 80 100
Iterations

15
20
25
30
35

Re
du

ct
io

n 
(%

)

(a) bar

20 40 60 80 100
Iterations

10
20
30
40
50

(b) div

20 40 60 80 100
Iterations

2
4
6
8

10
12
14
16

(c) square

20 40 60 80 100
Iterations

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

MCTS
MCTS+finetune
ABC-RL

(d) sqrt

Figure 11: Area-delay product reduction (in %) compared to resyn2 on EPFL arithmetic benchmarks. YELLOW:
MCTS+Finetune, BLUE: MCTS Neto et al. (2022), RED: ABC-RL

20 40 60 80 100
Iterations

4
6
8

10
12
14
16
18
20

Re
du

ct
io

n 
(%

)

(a) cavlc

20 40 60 80 100
Iterations

10

15

20

25

30

(b) mem_ctrl

20 40 60 80 100
Iterations

0
5

10
15
20
25
30
35
40

(c) router

20 40 60 80 100
Iterations

20
22
24
26
28
30

MCTS
MCTS+finetune
ABC-RL

(d) voter

Figure 12: Area-delay product reduction (in %) compared to resyn2 on EPFL random control benchmarks.
YELLOW: MCTS+FT, BLUE: MCTS Neto et al. (2022), RED: ABC-RL

17


	Appendix 1
	Logic Synthesis 
	Logic minimization heuristics
	Monte Carlo Tree Search
	ABC-RL Agent Pre-Training Process

	Network architecture
	AIG Network architecture 

	Experimental details
	Reward normalization

	Results
	Performance of ABC-RL against prior works and baseline MCTS+Learning
	MCNC benchmarks
	EPFL arithmetic benchmarks 
	EPFL random control benchmarks 

	Performance of benchmark-specific ABC-RL agents
	ABC-RL versus MCTS+L+FT


