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A Saddle-Point Computation in Multiscale Games

One application of online learning is computing approximate mixed-strategy Nash equilibria in finite
two-player zero-sum games (and more generally, to approximate saddle points of convex-concave
functions). Here, we investigate a multiscale version of that problem. Our main focus is to find
methods whose performance does not depend on the maximum scale, but on the relevant scale to
the problem instance at hand. In this case, this means the scale of the payoffs in the subset of
rows and columns in the support of the Nash equilibrium. In Section A.1 we lay out the setup
of two-player zero-sum finite games. In Section A.2 we define the suboptimality gap, the main
measure of performance in judging the solution to these games. In Section A.3 we define the payoff
matrices used in the experiments that produced Figure 4. We conjecture that MUSCADA achieves fast
scale-dependent convergence in Section A.5 and provide the additional details of the experiments
that produced Figure 4(right) in Section A.6.

A.1 Two-player zero-sum finite games

Given a payoff matrix A ∈ RK×M (specifying losses for the row player and gains for the column
player) we are looking for the mixed-strategy saddle point (p∗, q∗) ∈ P(K)× P(M) such that

min
i

e⊺i Aq∗ ≥ max
j

p⊺
∗Aej .

Our approach will be based on oracle access to the matrix-vector products q 7→ Aq and p 7→ A⊺p.
We will use the scheme of running two online learners against each other, with loss vectors ℓrow

t = Aqt
and ℓcol

t = −A⊺pt and optimistic estimates given by the past loss vector mrow/col
t = ℓrow/col

t−1 . For the
same-scale case, Rakhlin and Sridharan [2013] show that uncoupled adaptive schemes benefit from
convergence of the gap of the pair of iterate averages at rate O(σmax

lnK+lnM
T ), while recently Hsieh

et al. [2021] showed last iterate convergence as well. Here we investigate the advantage of using
adaptive multiscale learners to improve the dependence in σmax.
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A.2 The metric of success: suboptimality gap

We are looking for the equilibrium in mixed strategies, i.e. minp maxq p
⊺Aq. The social exploitabil-

ity of a candidate saddle point pair p, q is defined as the gap
gap(p, q) = max

j
p⊺Aej −min

i
e⊺i Aq.

We use the common technique of employing online learning with linear loss functions p 7→ Aqt and
q 7→ −A⊺pt. A standard analysis [Freund and Schapire, 1997] bounds the gap of the iterate averages
p̄t =

1
t

∑
s≤t ps and q̄t =

1
t

∑
s≤t qs from above by the social (sum-of) regret

gap(p̄t, q̄t) = max
j

p̄⊺
tAej −min

i
e⊺i Aq̄t =

1

t

max
j

∑
s≤t

p⊺
sAej −min

i

∑
s≤t

e⊺i Aqs


=

1

t
max
i,j

(∑
s≤t

p⊺
sAej −

∑
s≤t

p⊺Aps︸ ︷︷ ︸
Rq

t (j)

+
∑
s≤t

p⊺Aps −
∑
s≤t

e⊺i Aqs︸ ︷︷ ︸
Rp

t (i)

)
.

Having multiscale regret bounds at our disposal, it is natural to look at multiscale payoff matrices.

A.3 Multiscale structure

We will assume that our payoff matrix is multiscale in the sense that we are given row and column
range vectors σrow and σcol such that |Aij | ≤ min{σrow

i , σcol
j }. The main point is to learn the saddle

point faster if the maximum range is much larger than the range in the support of the saddle point, i.e.
σrow
max ≫ σrow

real := max{σrow
i | e⊺i p∗ > 0} and/or σcol

max ≫ σcol
real := max{σcol

j | e⊺j q∗ > 0}. We will
denote that largest relevant scale by σreal = max

{
σrow
real, σ

col
real

}
. Our aim is to get gap bounds that

scale with σreal, not σmax.
Example A.1 (Simple multiscale Game). For the purpose of our experiment, we will construct our
multiscale payoff matrices following the template

A =

[
B −11⊺

11⊺ C

]
where Bij are i.i.d. Rademacher {±1} and Cij are i.i.d. Rademacher {±σmax} for some pre-specified
σmax ≫ 1. By construction, any saddle point for the submatrix B is (upon padding with zeros) also
a saddle point for the full matrix A. Moreover, it is a strict saddle point for A if it is a strict saddle
point for B with value minp maxq p

⊺Bq ∈ (±1). We will assume throughout that we are in this
latter strict case. Here σreal = 1 regardless of σmax.

A.4 What can one hope to achieve?

Throughout the remainder we assume for simplicity that the saddle point p∗, q∗ of the payoff matrix A
is unique (a common situation). We define the optimality gap of row i by δrow(i) = (ei−p∗)

⊺Aq∗ ≥
0 and of column j by δcol(j) = p⊺

∗A(q∗ − ej) ≥ 0. We are interested in scenarios where at least
one player has strictly positive optimality gap on the action(s) of largest scale. We will show that
multiscale regret bounds allow the learning to accelerate. Moreover, the learner does not need to
know about this structure and will adapt automatically.

Let us assume without loss of generality that δrow(k) > 0 while σrow
k = maxi σ

row
i where σrow

i =
maxj |Ai,j |. The general idea now is to use that p̄T → p∗. This means that from some point t on,

max
j

p̄⊺
tAej = max

j:q∗(j)>0
p̄⊺
tAej =

1

t
max

j:q∗(j)>0

∑
s≤t

p⊺
sAej ≤ 1

t

∑
s≤t

p⊺
sAqs + max

j:q∗(j)>0

1

t
Rcol

t (j)

A similar argument for the row player then allows us to conclude

gap(p̄t, q̄t) ≤ 1

t

∑
s≤t

p⊺
sAqs + max

j:q∗(j)>0
Rcol

t (j)−
∑
s≤t

p⊺
sAqs + max

i:p∗(i)>0
Rrow

t (i)


=

1

t

(
max

j:q∗(j)>0
Rcol

t (j) + max
i:p∗(i)>0

Rrow
t (i)

)
.
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The main point is that this bound scales with maxi:p∗(i)>0 σ
row
i +maxj:q∗(j)>0 σ

col
j and not with the

respective unconstrained maxima.
Proposition A.2. Any pair of multiscale online learning algorithms with bounds of order Ri

t ≤
O(σi

√
T ), including MUSCADA with Tuning 3 (see Lemma B.1), ensures iterate average gap

gap(p̄t, q̄t) = O(σreal/
√
t)

as t → ∞.

Note that same-scale algorithms would only deliver the weaker guarantee O(σmax/
√
t).

A.5 Why our approach may achieve the hope optimistically

Rakhlin and Sridharan [2013] show that using optimism in saddle point interactions can improve
the rate to O(σmax/t). We first show that this is true for MUSCADA as well, after which we will
investigate achieving O(σreal/t). The mechanism for this proof is to show that the social regret is
constant. Technically, one would explicitly keep track of the slack in (17) and (18), and use these
harvested slacks to cancel the

√
t term of the regret bound. Only the constant-order term measuring

the entropy of the initial weights remains. For this to be a constant, we further need that the learning
rate stops decreasing once the regret stabilizes. Following exactly the steps of Rakhlin and Sridharan
[2013], we can prove the following proposition.
Proposition A.3. For same-scale games, the optimistic version (see Figure 3) of MUSCADA with
Tuning 3 and uniform prior (see Lemma B.1) achieves average iterate gap gap(p̄t, q̄t) = O(σmax/t)
as t → ∞.

The same-scale assumption makes all σ equal, while the uniform-prior assumption in addition makes
all η equal. This makes the standard argument from the literature apply.

We further forward the natural conjecture that we state next.
Conjecture A.4. For the multiscale case, the optimistic version (see Figure 3) of MUSCADA with
Tuning 3 and any nondegenerate prior (see Lemma B.1) achieves average iterate gap bounded by
gap(p̄t, q̄t) = O(σreal/t).

The reason that our Tuning 3 has any chance here is that no terms (not even the additive constant) in
the regret bound scale with σmax. This in contrast to the algorithms of Foster et al. [2017], Cutkosky
and Orabona [2018], Bubeck et al. [2019], Chen et al. [2021], whose existing multiscale analyses all
result in a lower-order term scaling with σmax.2 We next provide empirical support for our conjecture.

A.6 Numerical results

We investigate three algorithms: Hedge with classic time-decreasing learning rate ηt =
√

ln(K)
σ2
maxt

,
MUSCADA with all scales set to σmax and MUSCADA with actual knowledge of the multiscale vectors.
All algorithms are run in optimistic mode with guesses mt = ℓt−1, the loss vector of the previous
round (and m1,k = 0). We choose a matrix of structure given in Example A.1, with B and C of size
10× 10, and pick σmax = 100. We give all algorithms the uniform prior πk = 1/20. The results are
displayed in Figure 5, where we show the saddle point gap for the average iterate, the last iterate
and the theoretical regret bounds that we obtain from the analysis. In the main text, Figure 4(right)
shows only the saddle point gap for the average iterate of optimistic MUSCADA with the optimistic
modification of Tuning 3 from Figure 6. Generating this figure with the code from the supplementary
material takes 30 minutes on an Intel i7-7700 processor. Memory usage is negligible.

We see in Figure 5 that the gap of optimistic Hedge decays at the slow rate O(σmax/
√
t). This means

that optimism alone is insufficient to obtain a faster O(σmax/t) convergence rate; it is also necessary
that the learning rates stop decreasing when the regret plateaus. It is also apparent that MUSCADA
tuned to σmax has the fast O(1/t) rate, but at the σmax scale. Finally, the numerical experiments
show evidence that our multiscale algorithm does exploit the small scale of the actions in the support
of the saddle point, exhibiting the desired O(σreal/t) regret conjectured above. The plot also includes
the quality of the last iterate. Hsieh et al. [2021] prove convergence of the last iterate for the common

2Which is hard to spot in some of the literature because of a global σmax = 1 convention.
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Figure 5: Quality of average iterate (solid) and last iterate (dotted) for three optimistic algorithms,
compared to their relevant bounds (dashed). The multiscale-aware algorithm (red) outperforms the
non-scale-aware competitors by the factor σmax/σreal = 100. See Section A.6 for further discussion.

Tuning 3 u = π σmin

σk
, η0,k = 1

2σk
, γ = 8 ln(1/uk), and

H1,k(vt) =
d

dvt

[
vt√

1 + vt/γk

]
=

vt/γk + 2

2(1 + vt/γk)3/2
.

Figure 6: Tuning 3 for MUSCADA

scale, common prior case. In our experiment the iterate average can be seen to converge quickly in
the multiscale case, but convergence is terribly slow in the same-scale case. This is not inconsistent;
no rates are currently known for the last iterate.

B Tuning 3

In this section we describe a third tuning, defined in Figure 6. In contrast to Tunings 1 and 2, the
learning rates in Tuning 3 start higher, namely at 1/(2σk) instead of 1/(2σmax). The downside of
this aggressive tuning is that the variance bound is not available (though the weaker, uncentered
second-moment analog is). The upside is that the resulting regret bound compared to expert k features
only σk and has no occurrence of σmax whatsoever, not even in the additive constants.

Lemma B.1. Let π be a probability distribution on K experts. MUSCADA run with Tuning 3 depicted
in Figure 6 guarantees that, for any t = 1, 2, . . . ,

Rt,k ≤ 2σk

√
2vt ln(1/uk) + cσ,πσmin

√
2vt + 8σk ln(1/uk) + 4σmin +

σk

2
max
s≤t

∆vs, (13)
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where cσ,π =
∑

k∈K πk(1/
√
ln(1/uk)) and uk = πk

σmin

σk
. Additionally, vt ≤ 4

∑
s≤t

⟨w̃s,ℓ
2
s⟩

⟨w̃s,σ2⟩ ≤
4t, where, for each t = 1, 2, . . . , the weights are w̃t,k ∝ wt,kηt−1,k.

Proof. Follow the same steps as in the proof of the regret bound for Tuning 1 in Lemma 2.3. Obtain
that

µt,k ≤ σk

√
2vt ln(1/uk) + 4σk ln(1/uk) (14)

ln(1/uk)

ηt,k
≤ σk

√
2vt ln(1/uk) + 4σk ln(1/uk), and (15)∑

k∈K

uk

ηk
≤ cσ,πσmin

√
2vt + 4σmin (16)

with cσ,π =
∑

k∈K πk

(
1√

ln(1/uk)

)
. Use Proposition 2.3 to conclude the first claim. For the

additional claim, use Lemma G.2 with λ = 0.

C Algorithm Analysis

The only step in the algorithm that may be problematic is the definition of ∆vt at every round, which
one might think can take infinite values. We show in Proposition G.1 that this is not the case and that
consequently t 7→ vt is well defined.

C.1 Untuned regret bound, proof of Proposition 2.2

We prove that the potential t 7→ Φt is decreasing for optimistic MUSCADA. The result for the
nonoptimistic version follows by setting the guesses mt to 0. Recall from (4) in Section 2 that the
potential Φt is defined by

Φt = Φ(Rt − µt,ηt) = max
w∈P(K)

⟨w,Rt − µt⟩ −Dηt
(w,u).

Proof of Lemma 2.1. We prove the result in the optimistic case. The nonoptimistic case is recovered
for mt = 0 and replacing 4σ2

k, which is a bound on |mt,k − ℓt,k|2, by σ2
k, which bounds |ℓt,k|2. The

result is a consequence of the following inequalities:

Φt ≤ Φ(Rt − µt,ηt−1) η 7→ Dη decr. (17)

= Φ(Rt − µt−1 − 4ηt−1σ
2∆vt,ηt−1) by def. of µt

= Φ(Rt−1 + ⟨wt,µt⟩ −mt − µt−1,ηt−1) by def. of ∆vt
= max

w∈P(K)
⟨w,Rt−1 + ⟨wt,mt⟩ −mt − µt−1⟩ −Dηt−1

(w,u) by def. of Φ

= ⟨wt,Rt−1 + ⟨wt,mt⟩ −mt − µt−1⟩ −Dηt−1
(wt,u) by def. of wt

= ⟨wt,Rt−1 − µt−1⟩ −Dηt−1(wt,u) ⟨wt,mt⟩ cancels
≤ max

w∈P(K)
⟨w,Rt−1 − µt−1⟩ −Dηt−1

(w,u) since wt ∈ P(K) (18)

= Φ(Rt−1 − µt−1,ηt−1) = Φt−1 by def. of Φ, Φt.

Hence, Φt ≤ Φt−1, as we were to show.

Proof of Proposition 2.2. Lemma 2.1 shows that the potential t 7→ Φ(Rt − µt,ηt) is decreasing in
t and that consequently Φ(Rt − µt,ηt) ≤ Φ(R0 − µ0,η0) = −Dη0(w1,u). The maximal nature
of the definition of Φ implies that, for any probability distribution p ∈ P(K),

⟨p,Rt⟩ ≤ ⟨p,µt⟩+Dηt(p,u)−Dη0(w1,u). (19)

The second claim contained in (8) follows from the special case where p = δk, the probability
distribution that puts all of its mass on expert k, and by bounding the last term in (19) by zero. The
last statement contained in (9) is proven in Lemma F.3. This is all that we had set ourselves to
prove.
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C.2 Tuning, proof of Proposition 2.3

Proof of Proposition 2.3. The main tool that is employed here to derive the regret bounds is Proposi-
tion 2.2. The fact that the learning rates at hand are decreasing is a consequence of Lemma F.4; we
give more details in the following. A slightly stronger result than what we claim could be obtained by
replacing directly the learning rates in Proposition 2.2. However, the result is not amenable to an
easy interpretation, and we use upper bounds on the learning rates and their reciprocals. Recall that
γk = 8

σ2
max

σ2
k

ln(1/uk). The learning rate is of the form ηt,k = η0,kH1,k(vt) = η0,kh(vt/γk) with

h(x) = d
dx

[√
x2

1+x

]
= x+2

2(1+x)3/2
and η0,k = 1/(2σmax). That this choice of learning rate is indeed

nondecreasing can be proven using Lemma F.4. We use the following two elementary inequalities in
relation to this specific choice of function h.

Lemma C.1. Let x ≥ 0. The function h(x) = x+2
2(1+x)3/2

satisfies∫ x

0

h(x′)dx′ ≤ min
{
x,

√
x
}
≤ max

{
1,
√
x
}
, and (20)

1

h(x)
≤

{
1 + x if x ≤ 1

2
√
x if x > 1

}
≤ 2max

{
1,
√
x
}
, (21)

where the first minimum is equalized at x = 1.

Using these upper bounds and the choice uk = πk
σmin

σk
in Proposition 2.2 gives the claimed result.

Indeed, recall that Proposition 2.2 implies that

Rt,k ≤ σ2
kη0,k

∫ vt

0

h(x/γk)dx+
ln(1/uk)

ηt,k
+
∑
j∈K

uj

ηt,j
+ σ2

kη0,k max
s≤t

∆vs. (22)

We now focus on bounding each term. First,∫ vt

0

h(x/γk)dx = γk

∫ vt/γk

0

h(x′)dx′ ≤ max {γk,
√
vtγk} .

Consequently,

σ2
kη0,k

∫ vt

0

h(x/γk)dx ≤ σk

√
2vt ln(1/uk) + 4σmax ln(1/uk). (23)

Next,

1

ηk
=

2σmax

h(v/γk)
≤ 4σmax max

{
1,

√
vt
γk

}
≤ 4σmax + σk

√
2vt

ln(1/uk)
.

With this at hand, the second and third term on the right hand side of (22) can be bounded by
ln(1/uk)

ηt,k
≤ σk

√
2vt ln(1/uk) + 4σmax ln(1/uk), and (24)∑

j∈K

uj

ηj
≤ cσ,πσmin

√
2vt + 4σmax (25)

with cσ,π =
∑

k∈K πk

(
1√

ln(1/uk)

)
. Replace (23), (24), and (25) in the the regret bound (22) to

obtain the result. In order to prove the second claim we follow a similar path; we use Proposition 2.2
as our main tool. Recall that in this case the learning rate is of the form ηt,k = η0,kH2,k(vt) with
η0,k = 1/(2σmax) and

H2,k(x) =
d

dx

[√
α2
k

{(
1 +

x

αk

)
ln

(
1 +

x

αk

)
− x

αk

}
+

x2

2(1 + x/(2γk))

]
with αk = 32

σ2
max

σ2
k

and γk = αk ln(1/πk). The fact that k 7→ H2,k(x) is decreasing follows from
Lemma F.4 after performing the change of variable x′ = x/αk. We use the inequalities for H2,k that
are proven in the following lemma.
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Lemma C.2. Let βk = ln(1/πk). The function H2,k satisfies∫ x

0

H2,k(x
′)dx′ ≤

√
αkx(ln(1 + x/αk) + βk), and (26)

1

H2,k(x)
≤ 2

√
x/αk

ln(1 + x/αk)

√
1 +

min{βk,
1
2

x
αk

}
ln(1 + x/αk)

. (27)

We can now compute the analogs of (23), (24), and (25) to obtain that

σ2
kη0,k

∫ vt

0

H2,k(x)dx ≤ 2σk

√
2vt

(
ln
(
1 +

σ2
k

32σ2
max

vt

)
+ ln(1/πk)

)
,

ln(1/πk)

ηt,k
≤ σk ln(1/πk)

√
vt

2 ln
(
1 +

σ2
k

32σ2
max

vt

)
1 +

√√√√√min{ln(1/πk),
σ2
k

16σ2
max

vt}

ln
(
1 +

σ2
k

32σ2
max

vt

)
 ,

∑
j∈K

uj

ηj
≤
∑
j∈K

πj

σj

√√√√ vt

2 ln
(
1 +

σ2
j

32σ2
max

vt

)
1 +

√
min{ln(1/πj),

σ2
j

16σ2
max

vt}√
ln
(
1 +

σ2
j

32σ2
max

vt

)

 ,

and employ them in Proposition 2.2 to obtain the result.

Proof of Lemma C.1. The relations are clear for x = 0. Let x > 0. Recall that
∫ x

0
h(x′)dx′ = x√

1+x
.

We start by proving (20). The fact that x√
1+x

≤ x is clear. The inequality x√
1+x

≤
√
x follows

from dividing both sides of the inequality x ≤
√
x2 + x by

√
1 + x. Thus, the first inequality in (20)

follows, and the second is direct after observing that x ≤
√
x ≤ 1 for x ≤ 1. We now turn to proving

(21). Recall that 1/h(x) = 2(1+x)3/2

2+x . We start by showing that 1/h(x) ≤ 1 + x for all x > 0. Note

that 2(1+x)3/2

2+x = (1 + x) 2
√
1+x

2+x . Thus, the claim holds if and only if 2
√
1 + x ≤ 2 + x, which is

easily checked to be the case. Now let x > 1. Observe that the second claim in the first inequality
holds if and only if 2(1+ x)3/2 ≤ 2

√
x(2+ x). Square both members and rearrange to conclude that

the sought relation holds if and only if 0 ≤ 4x2 + 4x− 4, which is the case as x > 1. The second
inequality in (21) is clear.

Proof of Lemma C.2. The inequalities contained in (26) and (27) are a consequence of the fact that∫ x

0

H2(x
′)dx′ =

√
α2
{(

1 +
x

α

)
ln
(
1 +

x

α

)
− x

α

}
+

x2

2(1 + x/(2γ))

and the inequalities

(1 + x′) ln(1 + x′)− x′ ≤ x′ ln(1 + x′) and
a2x′2

2(1 + x′/(2b))
≤ min{bx′, 1

2a
2x′2},

that hold for x′, a, b ≥ 0. From this, (26) is immediate once we use the substitutions x′ = x/α,
a = α, and b = β. To prove (27), use the same substitution and estimate

1

H(x′)
= 2

√
(1 + x′) ln(1 + x′)− x′ + x′2

2(1+x′/(2b))

ln(1 + x′) + 1
2
2x′+x′2/(2b)
(1+x′/(2b))2

≤ 2

√
x′ ln(1 + x′) + min{bx′, 1

2x
′2}

ln(1 + x′)

= 2

√
x′

ln(1 + x′)

√
1 +

min{b, 1
2x

′}
ln(1 + x′)

≤ 2

√
x′

ln(1 + x′)

1 +

√
min{b, 1

2x
′}

ln(1 + x′)

 .
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This is all we set ourselves to prove.

D Optimism, proof of Proposition 4.1

Proof of Proposition 4.1. In Lemma 2.1 we show that the potential t 7→ Φt is decreasesing. The rest
of the proof is identical to that of Proposition 2.3 after multiplying all scales by 2. The “furthermore”
claim follows from a direct modification of Proposition G.1.

E Luckiness

This appendix contains the proofs of the luckiness results in Section 3.

E.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Let st =
∑

s≤t
varw̃s (ℓt)
⟨w̃s,σ2⟩ . It is shown in Proposition G.1 that vt can be

bounded in terms of st. Indeed, in any case vt ≤ 4, and because the learning rates are low enough
at the start of the protocol, namely ηt,k ≤ 1/(2σmax), the upper bound vt ≤ 4st also holds. A
verification of the regret bound obtained in Proposition 2.2 shows that it is increasing in vt, and
consequently the same regret bound holds once we replace vt with the larger quantity 4st, and the
proof of Proposition 2.3 can be repeated with no problems. Consequently the regret bounds in
Proposition 2.3 are available with 4st occupying the place of vt. The next step that we follow is to
show that EP[st] ≲ EP[Rt,k∗ ], which is done in the following lemma.

Lemma E.1. Under Massart’s condition (see Definition 1.3),
EP[st] ≤ kMEP[Rt,k∗ ],

where kM = cM maxi,j∈K supv≥0

{
η0,iHi(v)

η0,jHj(v)σ2
j

}
satisfies

kM ≤ 2cM max
i,j∈K

{
1

σiσj

ln(1/πi) + ln(σi/σmin)

ln(1/πj) + ln(σj/σmin)

}
.

From the previous discussion, a small modification of Proposition 2.3 shows that this tuning guaran-
tees a regret bound of the form

Rt,k∗ ≤ a′
√
st + b (28)

with a′ = 4σk∗
√
2 ln(1/uk∗) + 2

√
2cσ,πσmin and b = 8σmax ln(1/uk∗) + 4σmax + 2σk∗ . Take

P-expectations in the last display, use the concavity of x 7→
√
x to invoke Jensen’s inequality, and

use Lemma E.1 to obtain that

EP[Rt,k∗ ] ≤ a′
√

kMEP[Rt,k∗ ] + b. (29)

This implies that the expected regret satisfies EP[Rt,k∗ ] ≲ 1. Indeed, using Lemma E.2 yields that

EP[Rt,k∗ ] ≤ a′
2
kM + b. (30)

The upper bound for kM is contained in Lemma E.3. Given the definition of a in the claim, this is
what we set ourselves to prove.

Proof of Lemma E.1. Recall that st =
∑

s≤t ∆ss =
∑

s≤t
varw̃s (ℓs)
⟨w̃s,σ2⟩ with the weights w̃t,k ∝

wt,kηt−1,k. Define ℓ∗s = ℓs,k∗ to be the loss of the best expert k∗, and use that the variance varw̃s
(ℓs)

satisfies varw̃s
(ℓs) ≤ ⟨w̃s, (ℓs − ℓ∗s)

2⟩ to obtain the estimate

∆ss ≤
⟨w̃s, (ℓs − ℓ∗s)

2⟩
⟨w̃s,σ2⟩

.

Recall that, under P, the loss vector ℓs is assumed to be independent of ℓs−1. This implies that

EP[∆ss] ≤
∑
k∈K

(
EP

[
w̃s,k

⟨w̃s,σ2⟩

]
EP

[
(ℓs,k − ℓ∗s)

2
])

≤ cM
∑
k∈K

(
EP

[
w̃s,k

⟨w̃s,σ2⟩

]
EP [ℓs,k − ℓ∗s]

)
.

19



Sum the last display over rounds, and use the fact that the weights w̃t,k ∝ wt,kηt−1,k to deduce that

EP [st] ≤ cM

∥∥∥∥max
s≤t

{
maxk∈K ηs−1,k

mink∈K ηs−1,kσ2
k

}∥∥∥∥
∞

EP [Rt,k∗ ] ,

where ∥·∥∞ is the infinity norm w.r.t. P (recall that ηt−1,k depend on the random losses ℓt−1).
Since, for any s = 1, . . . , and k ∈ K, the learning rate ηs−1,k = η0,kHk(v), we can deduce that

cM

∥∥∥maxs≤t

{
maxk∈K ηs−1,k

mink∈K ηs−1,kσ2
k

}∥∥∥
∞

≤ kM, where kM is as defined in the claim of the proposition.
This implies what we set ourselves to prove.

Lemma E.2. Let y, a, b ≥ 0. If y2 ≤ ay + b then y ≤ b+
√
a.

Proof. The quadratic polynomial y2 − ay − b has a zero at y∗ = b+
√
b2+4a
2 ≤ b +

√
a. Hence, if

y2 ≤ ay + b, then y ≤ y∗, and the result follows.

E.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Call ∆t,k = Ls,k − Ls,k∗ , and dk = EP[∆t,k]. Since ℓs and ℓs−1 are
independent, the expected value of the increment of the regret Rt,k∗ is

EP[∆Rt,k∗ ] =
∑
k ̸=k∗

EP[wt,k]EP[ℓt,k − ℓt,k∗ ] (31)

=
∑
k ̸=k∗

EP[wt,k]dk. (32)

We seek to prove that for k ̸= k∗, in an event Ωt,k which we define next, the weight wt,k is small.
Define, for each k ̸= k∗ and t ≥ 1, the event Ωt,k by

Ωt,k =

{
Lt,k∗ − Lt,k ≤ µt,k − µt,k∗ − 1

ηt,k∗
ln (1/πk∗)− 1

ηt,k
ln

(
1

πkεt

)}
,

for deterministic constants εt = 1/t2. Recall that the weights have the form wt,k =

πke
−ηt,k(Lt,k+µt,k+a∗

t ), where a∗t is such that
∑

k wt,k = 1. Next, we show that, in each event
Ωt,k, for carefully chosen ãt = − 1

ηt,k∗ ln (1/πk∗) − Lt,k∗ − µt,k∗ , it holds that a∗t ≥ ãt. Indeed,

this follows because, by design πk∗e−ηt,k(Lt,k+µt,k+ãt) = 1, and consequently,∑
k∈K

πk(e
−ηt,k(Lt+µt,k+ãt,k)) ≥ 1 =

∑
k∈K

πk(e
−ηt,k(Lt+µt,k+a∗

t,k)),

which implies a∗t ≥ ãt. We use this in the weight wt,k of expert k to conclude that

EP[wt,k1 {Ωt,k}] ≤ πk(e
−ηt,k(Lt+µt,k+ãt,k)) = πkεt,

hence
EP[wt,k] ≤ πkεt +P

{
Ωc

t,k

}
.

Consequently, using (32),

EP[Rt,k∗ ] =
∑
s≤t

∑
k ̸=k∗

dkEP[wt,k]dk (33)

≤
∑
s≤t

∑
k ̸=k∗

{πkdkεs + dkP{Ωs,k}} (34)

≤ 2
∑
k∈K

πkdk +
∑
s≤t

∑
k ̸=k∗

dkP{Ωc
s,k}, (35)

where we used that
∑

s εs ≤ π2/6 ≤ 2. We now focus on bounding the probabilities P{Ωc
s,k}. We

use that ∆µt,k ≥ 0 to deduce that

P
{
Ωc

t,k

}
= P

{
Lt,k∗ − Lt,k > µt,k − µt,k∗ − 1

ηt,k∗
ln (1/πk∗)− 1

ηt,k
ln (1/εt)

}
≤ P

{
Lt,k∗ − Lt,k > −µt,k∗ − 1

ηt,k∗
ln(1/πk∗)− 1

ηt,k
ln(1/εt)

}
.
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In order to continue, we derive an upper bound on µt,k∗ , and a lower bound on ηt,k, and ηt,k∗

consisting of deterministic functions of time. Recall from Lemma G.1 that vt ≤ 4t, and that
Lemma C.2 can be used to bound µt,k∗ in terms of the integral of the function x 7→ H2,k∗(x) (see
proof of Proposition 2.3) to obtain that

µt,k∗ ≤ σ2
k∗η0,k∗

∫ 4t

0

H2,k∗(v)dv + 4σ2
k∗η0,k∗

≤ 4σk∗
√
2t(ln(1 + t/8) + ln(1/π∗)) + 4σk∗

Now fix k ∈ K, and use again that vt ≤ 4t and that x 7→ H2,k(x) is decreasing (see Lemma F.4)

to deduce that ηt,k = η0,kHk(vt) ≥ η0,kHk(4t). From these observations, P
{
Ωc

t,k

}
can be further

bounded by
P
{
Ωc

t,k

}
≤ P {Lt,k∗ − Lt,k > −Fk(t)} ,

where the complicated Fk(t) = 4σk∗
√

2t(ln(1 + t/8) + ln(1/πk∗)) + 4σk∗ + ln(1/πk∗ )
η0,k∗H2,k∗ (4t) +

ln(1/εt)
η0,kH2,k(4t)

is a deterministic function of time. Recall that the gap dmin was defined as dmin =

mink ̸=k∗ dk and that is assumed to be strictly positive. Recall that ∆t,k = Lt,k − Lt,k∗ is the gap in
losses between expert k and the best expert k∗. Hoeffding’s inequality implies that

P {Lt,k∗ − Lt,k > Fk(t)} = P {tdk −∆t,k > tdk − Fk(t)}

≤ exp

(
− t

2σ2
max

((dk − Fk(t)/t)+)
2

)
= exp

(
− td2k
2σ2

max

((1− Fk(t)/(dkt))+)
2

)
,

where x 7→ (x)+ = max{0, x}. We now seek a bound on the point t⋆k at which Fk(t
⋆
k)/t

⋆
k = dk/2.

For these values t⋆k, we have, using (35), that

EP[Rt,k∗ ] ≤ 2
∑
k∈K

πkdk +
∑
k ̸=k∗

(t⋆kdk +
∑
s≥t⋆

dkP{Ωc
t,k}). (36)

We now concentrate on bounding t⋆k and the probability of the event Ωc
t,k for each k. In the limit that

dk → 0, the time t⋆k → ∞. A quick computation shows that, as t → ∞, H2,k(t) ∼
√

2 ln t
t , and,

in the same limit, 4σk∗
√
2t(ln(1 + t/8) + ln(1/π∗)) + 4σk∗ ∼ 4σk∗

√
2t ln t. Hence, as t → ∞,

the function Fk satisfies Fk(t) ∼ (4σk∗ + 2σmax)
√
2t ln t. We now give a bound on the solution x⋆

k

to the equation xdk/2 = (4σk∗ + 2σmax)
√
2x lnx that holds asymptotically as dk → 0. Call c =

dk/(2
√
2(4σk∗ + 2σmax)). Our equation of interest can be rewritten as xc2 = lnx. Linearize x lnx

around x = 2/c2, and use its concavity to obtain that ln(x) ≤ ln(2/c2) + (c2/2)(x− 2/c2). With
this estimate at hand, the solution to the simpler, linear equation xc2 = ln(2/c2) + (c2/2)(x− 2/c2)
is an upper bound on x⋆

k. From this discussion it follows that the point t⋆k of interest satisfies
t⋆k ≤ 2 ln(1/c2)

c2 − 2
c2 . Hence, as dk → 0,

dkt
⋆
k ≤ 2(4σk∗ + 2σmax)

2

dk

{
ln

(
8(4σk∗ + 2σmax)

2

d2k

)
− 1

}
= O

(
σ2
max

dk
ln

(
σ2
max

d2k

))
. (37)

We deduce that, as dk → 0, for t ≥ t⋆k and any k ̸= k∗, the probability P{Ωc
t,k} ≤ exp

(
− t

8σ2
max

d2k

)
.

We sum P{Ωc
t,k} over rounds to conclude that

EP[Rt,k∗ ] ≤ 2
∑
k∈K

πkdk +
∑
k ̸=k∗

(t⋆kdk +
∑
s≥t⋆

dkP{Ωc
t,k}). (38)

We now concentrate on bounding t⋆k and the probability of the event Ωc
t,k for each k. In the limit that

dk → 0, the time tk → ∞. A quick computation shows that, as t → ∞, H2,k(t) ∼
√

2 ln t
t , and, in

the same limit, 4σk∗
√
2t(ln(1 + t/8) + ln(1/π∗)) + 4σk∗ ∼ 4σk∗

√
2t ln t. Hence, as t → ∞, the

function Fk satisfies Fk(t) ∼ (4σk∗ + 2σmax)
√
2t ln t. We know give a bound on the solution x⋆

k
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to the equation xdk/2 = (4σk∗ + 2σmax)
√
2x lnx that holds asymptotically as dk → 0. Call c =

dk/(2
√
2(4σk∗ + 2σmax)). Our equation of interest can be rewritten as xc2 = lnx. Linearize x lnx

around x = 2/c2, and use its concavity to obtain that ln(x) ≤ ln(2/c2) + (c2/2)(x− 2/c2). With
this estimate at hand, the solution to the simpler, linear equation xc2 = ln(2/c2) + (c2/2)(x− 2/c2)
is an upper bound on x⋆

k. From this discussion it follows that the point t⋆k of interest satisfies

t⋆k ≤ 2
ln(1/c2)

c2
− 2

c2
= O

(
σmax

d2k
ln

σ2
max

d2k

)
, (39)

as dk → 0. Hence, again, as dk → 0,∑
t≥t⋆

dkP
{
Ωc

t,k

}
≤
∑
t≥t⋆

dke
−td2

k/(8σ
2
max) ≤ dk

1− e−d2
k/(8σ

2
max)

. (40)

We use (39) and (40) in (38), and the fact that d/(1 + ed
2/σ2

) = O(σ2/d) as d → 0 to conclude the
proof.

E.3 In Lemma E.1, kM is bounded

Lemma E.3. In Lemma E.1, the constant kM is bounded for Tuning 1, shown in Figure 2. More
precisely,

kM ≤ 2 max
i,j∈K

{
1

σiσj

ln(1/πi) + ln(σi/σmin)

ln(1/πj) + ln(σj/σmin)

}
.

Proof. Recall that in both tunings of the algorithm we use the starting learning rate η0,k = 1/(2σmax),
a constant over the experts. As long as this is the case, the constant of interest kM can be bounded by

kM ≤ max
i,j∈K

sup
v

Hi(v)

σ2
jHj(v)

. (41)

Recall from Figure 2 that H1,k(v) =
v/γk+2

2(1+v/γk)3/2
with γk = 8

σ2
max

σ2
k
(ln(1/πk) + ln(σk/σmin)). We

can estimate the ratio

Hi(v)

Hj(v)
=

v/γi + 2

(1 + v/γi)3/2
(1 + v/γj)

3/2

v/γj + 2

≤ 2v/γi + 2

(1 + v/γi)3/2
(1 + v/γj)

3/2

v/γj + 1

= 2

√
1 + v/γj
1 + v/γi

≤ 2max

{
1,

√
γi
γj

}
.

Hence

kM ≤ 2 max
i,j∈K

{
1

σiσj

ln(1/πi) + ln(σi/σmin)

ln(1/πj) + ln(σj/σmin)

}
,

as it was to be shown.

F Technical Lemmas

In this appendix we gather technical results used in previous sections.

F.1 For showing that the potential decreases

Lemma F.1. For fixed X , the function η 7→ Φ(X,η) is increasing, that is, if ηk ≤ η′k, then, for
fixed X , it holds that Φ(X,η) ≤ Φ(X,η′).
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Proof. It follows from the definition of Φ and the fact that, for all x ≥ 0, the function x 7→
− ln(x)− 1 + x is nonnegative. Indeed, for any w ∈ P(K), it holds that

Dη(w,u) =
∑
k∈K

wk

(
ln(wk/uk)− (1− uk/wk)

ηk

)
≥
∑
k∈K

wk

(
ln(wk/uk)− (1− uk/wk)

η′k

)
= Dη′(w,u).

The result follows from the definition of Φ contained in (4).

Lemma F.2. Fix vectors X,m ∈ RK and u,η ∈ RK
+ . Let w be the optimum value w =

argmaxp∈P(K)⟨p,X +m⟩ −Dη(p,u). Then,

Φ(X +m− ⟨w,m⟩,η) ≤ Φ(X,η)

Proof. The result follows from the chain of inequalities

Φ(X +m− ⟨w,m⟩,u) = ⟨w,X +m− ⟨w,m⟩⟩ −Dη(w,u)

= ⟨w,X⟩ −Dη(w,u)

≤ Φ(X,η).

F.2 For bounding µ with v

The following is the consequence of a standard result in the theory of Riemann integration.
Lemma F.3. Let x 7→ H(x) be a decreasing, positive, real, and continuous function such that
H(x) < ∞ on 0 ≤ x < ∞. If ∆vs ≥ 0 for s = 1, 2, . . . , t then∑

s≤t

H(vs−1)∆vs ≤
∫ vt

0

H(x)dx+ (H(0)−H(vt))max
s≤t

∆vt,

where vt =
∑

s≤t ∆vs.

Proof. Because H is decreasing and t 7→ vt =
∑

s≤t ∆vt is nondecreasing,∫ vt

0

H(x)dx ≥
∑
s≤t

H(vs)∆vs.

Use this observation to deduce that∑
s=1

H(vs)∆vs −
∫ vt

0

H(x)dx ≤
∑
s≤t

(H(vs−1)−H(vs))∆vs

≤ (H(0)−H(vs))max
s≤t

∆vs,

which is what we set ourselves to prove.

F.3 The learning rates decrease

Lemma F.4. The functions f(x) = x+2
2(1+x)3/2

and g(x) =
ln(1+x)+

2x+x2/a

(1+x/a)2√
(1+x) ln(1+x)−x+ x2

2(1+x/a)

are decreasing

in x ≥ 0 for any fixed a > 0 .

Proof. The function f is differentiable in x ≥ 0, and its derivative is f ′(x) = − x+4
(1+x)5/2

, a negative
function. Thus, f is decreasing. We turn our attention to the function g. Let h1(x) = ln(1 + x),
h2(x) =

2x+x2/a
(1+x/a)2 , and let H1(x) =

∫ x

0
h1(s)ds = (1+x) ln(1+x)−x, and H2(x) =

∫ x

0
h2(s)ds =
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x2

2(1+x/a) . Then, the function g is of the form h/(2
√
H) with h = h1 + h2, and H = H1 + H2.

Since g(x) is differentiable in x ≥ 0, it is enough to prove that g′ ≤ 0. We compute the derivative

g′ =
h′(x)

√
H(x)−h2(x)/(2

√
H(x))

H(x) and conclude that g′ ≤ 0 if and only if

h′(x)H(x) ≤ 1

2
h2(x). (42)

Since h1/
√
H1 =

√
2
2 f(x/a), the analog of the last display holds for the pair h1, H1. We will show

that the same holds true for the pair h2, H2 at the end of the proof. For now, use that (42) holds for
both pairs, replace the definition of h and H , and conclude that it is enough to show that

h′
1H2 + h′

2H1 ≤ h1h2.

We now focus on showing that δ⋆ = h1h2 − h′
1H2 − h′

2H1 is nonnegative. Define δ(x) = (1 +
x/a)3(x+1)2a3δ⋆(x). It is clear that it is sufficient to our purposes to show that δ(x) ≥ 0 for x ≥ 0.
Computation shows that

δ(x) = a3x2 − 2 a2x3 − ax4 + 2 a3x+(
(4 a+ 1)x4 + x5 − 2 a3x+ 5 a2x2 +

(
5 a2 + 4 a

)
x3 − 2 a3

)
ln (x+ 1) .

Since δ(0) = 0, it is enough to show that its derivative is positive; that δ′(x) ≥ 0 for x ≥ 0.
Computation shows that

δ′(x) = 2 a3x− a2x2 + x4+(
4 (4 a+ 1)x3 + 5x4 − 2 a3 + 10 a2x+ 3

(
5 a2 + 4 a

)
x2
)
ln (x+ 1) .

We now pay attention to the first three summands of the previous display. We use that 2a3x− a2x2 +
x4 = x(2a3 − a2x+ x3) ≥ ln(1 + x)(2a3 − a2x+ x3), which follows from the fact that last factor
of the last equation is a depressed cubic that is nonnegative for x, a ≥ 0. This fact, the previous
display, and a short computation together imply that

δ′(x)

ln(1 + x)
≥ (16 a+ 5)x3 + 5x4 + 9 a2x+ 3

(
5 a2 + 4 a

)
x2,

which shows that δ′(x) ≥ 0 for x ≥ 0. This in turn shows that the function δ is positive, that
consequently the relation (42) holds, and finally, that the original function of interest g is decreasing.

F.4 For bounding ∆v in terms of ∆s

Lemma F.5. Let y, x, b ∈ R be such that b ≥ 0, x ≤ b, and y > 0. Let φ = eb−1−b
1
2 b

2 ≥ 1. Then the
following statements hold.

1. For g(y) = φ−1−
√

(φ−1)2+2φy

φ − ln
(
φ−

√
(φ− 1)2 + 2φy

)
, we have

ex−g(y) − 1− x ≤ 1

2
φx2 − y

any time that y ≤ 2φ−1
φ .

2. Let c = φ/(φ− 1). For any 0 < s < 1/c it holds that

ex−s−h(cs) − 1− x ≤ 1

2
φx2 − s,

where

h(u) = −u− ln (1− u) ≤ 1

2

u2

1− u

for 0 < u < 1.
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Proof. Proving our claim is equivalent to proving that

g(z) ≥ x− ln

(
1− z + x+

1

2
φx2

)
.

The condition that z < 2φ−1
2φ ensures that the logarithm is well defined. The first claim follows

because g was chosen as the maximizer over x ≤ b of the right hand side of the previous display.

Indeed, the maximizer is −x⋆(z) with x⋆(z) = −φ−1−
√

(φ−1)2+2φz

φ ≥ 0. Now we turn to proving
the second claim, which will follow from a series of rewritings of the first claim. The previous display
can be rewritten as

g(z) = −x⋆(z)− ln(1− φx⋆(z)).

Let s′ = x⋆(z) so that z = 1
2φs

′2 + (φ − 1)s′. If we let h(u) = −u − ln(1 − u), the previous
display can be rewritten as

g(z) = (φ− 1)s′ + h(φs′).

In these terms, the first claim that we already proved takes the shape

ex−(φ−1)s′−h(φs′) − 1− x ≤ 1

2
φx2 − (φ− 1)s′ − 1

2
φs′

2

any time that s′ ≤ 1/φ. Define s = (φ − 1)s′. Replace this in the last display and bound the last,
negative term by 0 to obtain that, as long as s ≤ φ−1

φ ,

ex−s−h(cs) − 1− x ≤ 1

2
φx2 − s.

This is our claim. The additional bound on h is well known and can be proven with a term-wise
bound on the Taylor expansion of u 7→ −u− ln(1− u).

F.5 Dual formulation of ∆Φ

Recall from the definitions in Section 2 that the Bregman divergence Dη(p,u) between p and u, two
vectors in RK

+ , was defined in (3) as

Dη(p,u) =
∑
k∈K

pk

(
ln(pk/uk)− (pk − uk)

ηk

)
;

and the corresponding potential Φ, in (4) as

Φ(X,η) = sup
p∈P(K)

⟨p,X⟩ −Dη(p,u).

In the implementation of the algorithm, we rely on the dual formulation of the potential Φ and its
change ∆Φ between rounds. We compute these in the following two lemmas.
Lemma F.6 (Potential difference in dual form). Let X,∆X ∈ RK and u,η ∈ RK

+ , ∆Φ =
Φ(X +∆X,η)− Φ(X,η), and w = argmaxp∈P(K)⟨p,X⟩ −Dη(p,u). Then

∆Φ = inf
∆a∈R

∑
k∈K

wk

(
eηk(∆Xk−∆a) + ηk∆a− 1

ηk

)
.

Proof. From Lemma F.7 we know that

wk = uke
ηk(Xk−a∗),

where a∗ is such that
∑

k∈K wk = 1, and that

Φ(X,η) = a∗ +
∑
k∈K

uk

(
eηk(Xk−a∗) − 1

ηk

)
.

Use the same lemma and the change of variable a = a∗ +∆a to obtain that

Φ(X +∆X,η) = inf
∆a∈R

{
a∗ +∆a+

∑
k∈K

uk

(
eηk(Xk−a∗+∆Xk−∆a) − 1

ηk

)}
.

Substract these two displays and use the explicit expresion for w. In this way, we obtain the result.
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Lemma F.7 (Potential Dual). Let X ∈ RK be a vector, and let u,η ∈ RK
+ be positive vectors. Then

1. The potential Φ satisfies

Φ(X,η) = ⟨p∗,X⟩ −Dη(p
∗,u),

where p∗k = uke
ηk(Xk−a∗), and a∗ is such that

∑
k∈K p∗k = 1.

2. The potential Φ satisfies the identity

Φ(X,η) = inf
a∈R

{
a+

∑
k∈K

uk

(
eη(Xk−a) − 1

ηk

)}
.

Proof. Consider the optimization problem

sup
p∈P(K)

⟨p,X⟩ −Dη(p,u).

Its Lagrangian function is

L(a,p) = ⟨p,X⟩ −Dη(p,u)− a

(∑
k∈K

pk − 1

)
.

The strong duality relation

sup
p∈P(K)

⟨p,X⟩+Dη(p,u) = inf
a∈R

sup
p∈RK

L(a,p) (43)

holds, and the maximum on the right hand side can be computed by diferentiation. The gradient with
respect to p is

∇pLk = Xk − a− ln(pk/uk)

ηk
,

which is zero at
p∗k = uke

ηk(Xk−a).

Replace p∗ in the Lagrangian L to conclude that

L(a,p∗) = a+
∑
k∈K

uk

(
eηk(Xk−a) − 1

ηk

)
.

Replace this in (43) to obtain the second claim. For the first claim, differentiate infa∈R L(a, p∗) with
respect to a and equate to 0.

G Proof of Theorem 1.2

Recall that ∆vt is implicitly specified in the definition of MUSCADA, in Figure 1. The main intuition
driving the result contained in Theorem 1.2 stems from a Taylor approximation of the increment of
the potential function at round t for small learning rates. The duality computation for the potential
increment ∆Φ of Lemma F.6 implies that, at round t, ∆vt is the value of ∆v that satisfies

inf
λ∈R

∑
k∈K

wt,k

(
e−ηt−1,k(ℓt,k−λ)−η2

t−1,kσ
2
k∆v + ηt−1,k(ℓt,k − λ)− 1

ηt−1,k

)
= 0, (44)

where, in the notation of Lemma F.6, we used ∆X = ∆Rt and reparametrized by λ = ⟨wt, ℓt⟩−∆a.
For small values of η, the Taylor approximation eηx−η2b = 1 + ηx+ 1

2η
2(x2 − 2b) +O(η3) gives

that, if all the learning rates are small, the quantity being minimized in the previous display can be
approximated as∑

k∈K

wt,k

(
e−ηt−1,k(ℓt,k−λ)−η2

t−1,kσ
2
k∆v + ηt−1,k(ℓt,k − λ)− 1

ηt−1,k

)
≈

1

2

∑
k∈K

wt,kηt−1,k(ℓt,k − λ)2 −∆v
∑
k∈K

wt,kηt−1,kσ
2
k.

(45)
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If this approximate expression could be plugged into (44), we could solve the infimum and obtain that

∆vt ≈
1

2

varw̃(ℓt)

⟨w̃,σ2⟩
with w̃t,k ∝ wt,kηt−1,k. However, this approximation is only valid under range restrictions in the
values of λ. This is the subject of Lemma G.2, whose main technical ingredient is the inequality
obtained in Lemma F.5, which contains an estimate that makes (45) precise. We gather theses results
in the following proposition. Used with b = 1, it implies Theorem 1.2 because the learning rates
from Figure 2 are all smaller than 1/(2σmax).
Proposition G.1. Fix t ≥ 1. Let w̃t,k ∝ wt,kηt−1,k, where wt are the weights played by MUSCADA
at round t, and ηt−1 its learning rates. The following statements hold.

1. If maxk 2ηt−1,kσk ≤ b and b ≤ 1, then

∆vt ≤ c0
⟨w̃t, ℓ

2
t ⟩

⟨w̃t,σ2⟩
≤ c0, (46)

where the constant c0 satisfies c0 ≤ 3.1 and depends only on b.

2. If maxk 2ηt−1,kσmax ≤ b for some b ≤ 1, and

∆st =
varw̃t

(ℓt)

⟨w̃t,σ2⟩
,

then
∆vt ≤ c1∆st + c2∆s2t , (47)

and consequently
vt ≤ c3st,

where c1 ≤ 0.72, c2 ≤ 2.4, and c3 = c1 + c2 ≤ 3.1 depend on b only.

Proof of Proposition G.1. First, we prove 1. Assume that maxk 2ηt−1,kσk ≤ b′ and that b′ ≤ 1. Our

objective is to use Lemma G.2 with λ = 0. To this end, let φ′ = eb
′
−b′−1
1
2 b

′2 ≥ 1, c′1 = b′2φ′2

8(φ′−1) , and

c′2 = φ′4b′2

8(φ′−1)2 − φ′3b′2

8(φ′−1) be as in Lemma G.2. Since we assumed that b ≤ 1, we have that c′1 ≤ 1/2,
and we can conclude that

∆vt ≤
φ′

2
∆st,0 +

1

2

c′2∆s2t,0
1− c′1∆st,0

with ∆st,0 =
⟨w̃t,ℓ

2
t ⟩

⟨w̃t,σ2⟩ ≤ 1. Use this to conclude that

∆vt ≤
φ′

2
+

1

2

c′2
1− c′1

.

This last display is exactly our first claim once we set c0 = φ′

2 + 1
2

c′2
1−c′1

. The value of c′0 depends
monotonically on that of b′. Compute the value of c′0 for b′ = 1 to confirm that c′0 ≤ 3.1.

We now turn our attention to the second claim. We proceed in a similar fashion as before. Assume
that maxk 2ηt−1,kσmax ≤ b for some b ≥ 1. Let φ, c1, c2 be defined as before but now in terms of b.
Use Lemma G.2 to obtain that

∆vt ≤
φ

2
∆st +

1

2

c2∆s2t
1− c1∆st

with ∆st =
varw̃t (ℓt)

⟨w̃t,σ2⟩ ≤ 1. Use this to conclude that

∆vt ≤
φ

2
∆st +

1

2

c2
1− c1

∆s2t .

This is exactly the second claim up to a redefinition of constants. The “consequenlty” part of the
claim follows from the observation that ∆s2t ≤ ∆st and a summation over time. The computation of
the upper bound on the constants is similar as before.

27



Lemma G.2. Let t ≥ 1, λ ∈ R, and let

∆st = ∆st(λ) =
⟨w̃t, (ℓt − λ)2⟩

⟨w̃t,σ2⟩
(48)

with w̃t,k ∝ wt,kηt−1,k. Then, whenever maxk ηt−1,k(ℓk,t − λ) ≤ b and maxk(2ηt−1,kσk) ≤ b for
some b ≥ 0, we have that

∆vt ≤
φ

2
∆st + c1∆vt∆st +

1

2
c2∆s2t , (49)

where φ = eb−b−1
1
2 b

2 ≥ 1, c1 = b2φ2

8(φ−1) , and c2 = φ4b2

8(φ−1)2 − φ3b2

8(φ−1) . If additionally c1∆vt < 1, then

∆vt ≤
φ

2
∆st +

1

2

c2∆s2

1− c1∆st
. (50)

Proof. Let t ≥ 1. First note that if c1∆st ≥ 1, our claim becomes trivial. We can safely assume that
that c1∆st < 1. We proceed in the following steps. Use Lemma F.6 to express the increase in the
potential function ∆Φt(∆v) = Φ(Rt −µt−1 −ησ2∆v,ηt−1)−Φ(Rt −µt,ηt−1) in dual form as

∆Φt(∆v) = inf
λ∈R

∑
k∈K

wt,k

(
e−ηt−1,k(ℓt,k−λ)−η2

t−1,kσ
2
k∆v + ηt−1,k(ℓt,k − λ)− 1

ηt−1,k

)
.

From now and until the end of the proof, omit the time indexes for readability.

Because of our assumption that ηk|ℓk − λ| ≤ b, Lemma F.5 can be used to obtain that

∆Φ(∆v) ≤ 1

2
φ
∑
k∈K

wk[ηk(ℓk − λ)2]−
∑
k∈K

wk

(
g−1(η2kσ

2
k∆v)

ηk

)
where g(x) = x+h(cx), h(u) = 1

2
u2

1−u and c = φ/(φ−1). Use the concavity of x 7→ g−1(∆vx)/x
and Jensen’s inequality to deduce that∑

k∈K

wk

(
g−1(η2kσ

2
k∆v)

ηk

)
=
∑
k∈K

wk

(
ηkσ

2
k

g−1(η2kσ
2
k∆v)

η2kσ
2
k

)

≥ ⟨w,ησ2⟩
g−1

(
∆v⟨ŵ,η2σ2⟩

)
⟨ŵ,η2σ2⟩

,

where we defined ŵk ∝ wkηkσ
2
k. This is useful for obtaining the bound

∆Φ(∆v) ≤ 1

2
φ
∑
k∈K

wk

(
ηk(ℓk − λ)2

)
− ⟨w,ησ2⟩

g−1
(
∆v⟨ŵ,η2σ2⟩

)
⟨ŵ,η2σ2⟩

.

Consequenlty, ∆Φ(∆v⋆) ≤ 0 for

∆v⋆ =
1

⟨ŵ,η2σ2⟩
g

(
1

2
φ⟨ŵ,η2σ2⟩ ⟨w̃, (ℓ− λ)2⟩

⟨w̃,σ2⟩

)
,

where w̃k ∝ wkηk. Use the definition of ∆v and the continuity of ∆Φ to conclude that ∆v ≤ ∆v⋆.
Unpack the definition of g to obtain that

∆v ≤ 1

2
φ∆s+

1

2

⟨ŵ,η2σ2⟩ (c′∆s)
2

1− c′⟨ŵ,η2σ2⟩∆s

with c′ = 1
2

φ2

φ−1 . Next, we will use use that ⟨ŵ,η2σ2⟩ ≤ 1
4b

2 to bound further ∆v. Use this
observation and the definition of c1 to deduce the inequality ⟨ŵ,η2σ2⟩c′∆s ≤ c1∆s < 1. Plug this
in the previous display and rearrange to obtain the result:

∆v ≤ 1

2
φ∆s+

1

2
∆s2

(
1

4
c′

2
b2 − 1

4
φc′b2

)
+

1

4
c′b2∆v∆s,

exactly what we claimed.
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