
Figure 6: Track length distributions of KITTI-STEP (left) and MOTChallenge-STEP (right).

Cityscapes-VPS (val) Person Rider Car Truck Bus Train Motorcycle Bicycle All things

Total instances 621 87 791 24 19 2 29 174 1747
Single frame instances 306 48 343 16 8 1 16 80 818
Spanning tracks 315 39 448 8 11 1 13 94 929
Average instance length 3.2 2.9 3.5 2.0 2.5 3.5 3.0 3.6 3.3

Table 4: Per-class statistics of the validation set of Cityscapes-VPS [34]. Only half of all instances
need to actually be tracked, i.e., appear in more than one frame. On average, instances appear for
only 3 frames showing the focus on short trajectories.

A Appendix

In this supplementary material, we provide

B. Benchmark checklist,
C. An extended tracking difficulty discussion (Sec. C),
D. More of our collected dataset statistics, and details about merging our semantic segmentation

annotations with existing MOTS instance annotations [61] (Sec. D),
E. More discussion about metric design choices (Sec. E),
F. Network architecture details of our proposed unified STEP model, Motion-DeepLab (B4)

(Sec. F),
G. More details on the experiments described in the main paper (Sec. G),
H. STQ on Cityscapes-VPS (Sec. H),
I. Video of qualitative results: https://youtu.be/NHBAvT0DXVw,
J. Code: https://github.com/google-research/deeplab2.

B Benchmark Checklist

Code. https://github.com/google-research/deeplab2 includes instructions and code to
reproduce our baselines.

KITTI. http://cvlibs.net/datasets/kitti/eval_step.php includes links to the dataset,
setup instructions and the test server.

MOTCh. https://motchallenge.net/data/STEP-ICCV21/ includes links to the dataset, setup
instructions and the test server.

ICCV. The proposed benchmarks are part of the 6th BMTT workshop at ICCV: https://
motchallenge.net/workshops/bmtt2021/.

Resp. The authors of this work take full responsibility for the presented work. The maintainers
and creators of the original KITTI and MOTChallenge benchmarks and the MOTS datasets
did consent to this project. We respect their dataset license and release the test servers in
their framework.

Hosting. The benchmarks will be hosted on the long-standing benchmark servers of KITTI and
MOTChallenge. The newly provided dataset annotations will be hosted by Google. We take
responsibility for the maintenance and ensure that the datasets will be accessible.

License. We release the benchmarks with the corresponding licenses of the original datasets. The
code lincense can be found at the corresponding website.

Format. The dataset annotations are released as PNGs.
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KITTI-STEP (val) Person Car All things

Total instances 151 68 219
Single frame instances 0 0 0
Spanning tracks 151 68 219
Average instance length 53.2 49.2 51.9

MOTChallenge (val) Person

Total instances 26
Single frame instances 0
Spanning tracks 26
Average instance length 183.6

Table 5: Per-class statistics of the validation set of KITTI-STEP (left) and MOTChallenge-STEP
(right).

C Tracking Difficulty Discussion

We provide a per-class breakdown of track numbers for the validation sets of Cityscapes-VPS [34]
(Tab. 4), KITTI-STEP and MOTChallenge-STEP (Tab. 5). Furthermore, we show the track length
distribution for both datasets in Fig. 6.

Why do only ‘pedestrians’ and ‘cars’ have tracking IDs? In Fig. 3 in the main paper, we illustrate
the class-wise histograms, i.e., amount of pixels in the whole dataset. As shown in the figure, for
KITTI-STEP, both ‘cars’ and ‘pedestrians’ contain significantly more pixels compared to the rest
of the classes, while for MOTChallenge-STEP, the ‘pedestrians’ dominate the others. Due to the
available annotation budget we therefore decided to focus on tracking the most salient object classes
‘pedestrians’ and ‘cars’ for KITTI-STEP, and only ‘pedestrians’ for MOTChallenge-STEP. This
follows the original approach by KITTI-MOTS and MOTSChallange. We note that the number
of tracking classes does not causally relate to the tracking difficulty. The latter is influenced
by simultaneously present objects, occlusions and sequence length. The tracking difficulty and
detection difficulty are changed by different factors. As our proposed benchmarks aim to balance
segmentation/detection and tracking, we focus on increasing tracking difficulty w.r.t. previous work
in this area.

Long-term tracking. In Fig. 6, we show the histograms for tracklet lengths for both datasets. As
shown in the figure, our KITTI-STEP and MOTChallenge-STEP present a challenge for long term
consistency in segmentation and tracking.

Do more instances or classes lead to harder tracking? Even though, our datasets provide twice
the number of masks for the trainval set compared to Cityscapes-VPS, Cityscapes-VPS provides
significantly more unique instances. Here, instances refer to unique objects not distinguishing for
how many frames they are visible. We refrain from calling them tracks, as tracks are usually implied
to last more than a single frame. When comparing these numbers directly, Tab. 4 shows that the
validation set provides 1747 unique instances, while KITTI-STEP and MOTChallenge-STEP (Tab. 5)
provide only 219 and 26 instances. In the following we provide several reasons why more instances
does not imply harder tracking:

1. In Cityscapes-VPS, almost half (818) of all instances (1747) only last for a single frame,
hence requiring no tracking at all. This shows the strong focus of Cityscapes-VPS on the
segmentation aspect.

2. The average length of instances is 3.3 on Cityscapes-VPS, i.e., instances need to be tracked
for 2.3 frames after being detected. Hence, Cityscapes-VPS is not suitable to measure
tracking performance. On KITTI-STEP and MOTChallenge-STEP, the average length are
51.9 and 183.6 frames, respectively.

3. The validation set of Cityscapes-VPS consists of 50 clips while our datasets contain 10
videos in the validation set. Naturally, every new clip and video always introduces a new set
of instances. However, in long videos, instances continue to exist throughout (part of) the
video resulting in less new instances. Yet, exactly these instances are the ones that need to
be tracked and the ones that make tracking challenging.

We therefore infer that the proposed datasets KITTI-STEP and MOTChallenge-STEP are significantly
more suitable when evaluating segmentation and tracking than Cityscapes-VPS. Measuring tracking
requires (long) trajectories in the data.
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 Semantic label mask (e.g. car)

 MOTS label mask (e.g. car)

 Dilated region

 Car (crowd)

 Car (with instance id)

 Void

Merging

Figure 7: Illustration of how we merge the semantic and MOTS annotations. A large dilation region
is chosen for illustration purpose.

D Extended Dataset Discussion

Merging annotation. We merge our new semantic segmentation annotation with the existing track-
ing instance ground-truth, i.e., instance identity from the KITTI-MOTS and MOTS-Challenge [61].
We refer to their annotations as MOTS annotations for simplicity. Fig. 2 from the main paper gives an
example of our annotation process. During the merging process, potential inconsistencies between our
annotated semantic labels for the classes ‘pedestrian’ and ‘car’ and the MOTS instance annotations
need to be carefully handled. For example, following the ‘pedestrian’ definition in Cityscapes [17],
our semantic annotation includes items carried (but not touching the ground) by the person, while
MOTS annotations exclude those items. With the aim to build a dataset that is compatible for both
Cityscapes and MOTS definitions, we adopt the following strategy to merge the semantic annotations.
For the cases where our annotated semantic mask is larger than MOTS annotated mask, we dilate
the MOTS instance annotations with a kernel size of 15. The difference between the intersection
of our annotation with the the enlarged and with the original MOTS annotations is re-labeled as
‘VOID’. In practice, the union regions are detected by dilating the MOTS instance annotations with a
kernel size 15. For the cases where our annotated semantic mask is smaller than MOTS annotated
mask, the inconsistent regions are overwritten with MOTS annotations. As a result, the consistent
‘pedestrian’ masks are annotated with both semantic class and tracking IDs. Small regions along
the masks are annotated with ‘void’, while personal items are annotated with only the semantic
class (and tracking ID 0). Additionally, the ignored regions in the MOTS annotations are filled with
our semantic annotation. For the crowd regions, e.g., a group of ‘pedestrians’ that could not be
distinguished by annotators, semantic labels are annotated but their tracking ID is set to 0. More
technically, we denote each MOTS instance mask with semantic label l and instance ID i as M i

l , and
the semantic annotation mask with label k as Sk. We first dilate M i

l using a kernel with 15 pixels.
There are three cases for each Sk:

Case I: Sk intersects with M i
l . The intersection is overwritten with label l with instance ID = i.

Case II: Sk intersects with the expanded dilated region. The intersection is re-labeled as ‘void’ if
k = l.

Case III: The semantic label of the rest without any intersection remains the same.

This process is summarized in Fig. 7. We refer to the merged datasets as KITTI-STEP and
MOTChallenge-STEP, respectively.

E Extended Metric Discussion

In addition to the overview of metrics in the main paper, we discuss one more common metric in
video instance segmentation [65], and explain why it is unsuitable for STEP. After that, we will
discuss our design choices of Segmentation and Tracking Quality (STQ).

E.1 Track-mAP (AP track)

For the task of Video Instance Segmentation [65], a variant ofAPmask [24, 40] is used to measure the
quality of predictions. Like APmask, AP track allows overlapping predictions, and hence requires
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confidence scores to rank instance proposals. These predictions are then matched with an IoU
threshold. Moreover, as established in prior work [43], this metric can be gamed by making lots of
low-confidence predictions, and the removal of correct detections with wrong track ID can improve
scores. We therefore consider this metric unsuitable for our benchmark.

E.2 STQ Design Choices

As stated in the main paper, we define the association quality (AQ) as follows:

AQ(g) =
1

|gtid(g)|
∑

p,|p∩g|6=∅

TPA(p, g)× IoUid(p, g),

AQ =
1

|gt_tracks|
∑

g∈gt_tracks

AQ(g). (12)

Precision and Recall. While it is common for recognition and segmentation tasks to consider
both recall and precision, this has not been widely adapted for tracking yet. For example, MOTSA
does not consider precision for association. However, precision is important to penalize predicted
associations that are false, i.e., false positive associations. Consider the following example: All cars
in a sequences are segmented perfectly and are assigned the same track ID. As all ground-truth pixels
are covered, this gives perfect recall. Yet, the overall prediction is far from being perfect by assigning
the same track ID to different cars. Hence, precision is an important aspect of measuring the quality
of a prediction. The other aspect to consider is recall. Considering the same example with perfect
segmentation, a perfect association precision can be trivially achieved by assigning a different track
ID to every pixel. As there are no false positives associations, the overall score is perfect. Yet, this
does not fulfill the purpose of measuring the quality of association. Therefore, both aspects, precision
and recall, have to be considered for a good metric measuring association.

IoU vs. F1. The two most common approaches to combine precision and recall in computer vision are
Intersection-over-Union, also known as the Jaccard Index, and F1, also known as the dice coefficient.
IoU and F1 correlate positively and are thus both valid measures. We chose IoU for two reasons:

1. We already adopted the IoU metric for measuring segmentation. Using it for association as
well leads to a more consistent formulation.

2. When comparing F1 and the IoU score, the F1 score is the harmonic mean of precision
and recall and therefore closer to the average of both terms. On the other hand, IoU is
somewhat closer to the minimum of precision and recall. Choosing IoU over F1 therefore
emphasizes that good predictions need to consider recall and precision for association as
well as highlighting innovation better.

Weighting factor TPA. A simpler version of equation (12) would compute the average IoUid score
without any weighting, and by normalizing with the number of partially overlapping predictions
w.r.t. the ground-truth track. However, this formulation has the disadvantage that it does not consider
long-term consistency of each track. Given two predicted tracks A and B, whether the IoU to the
single ground-truth track are 3/5 and 2/5 or 4/5 and 1/5, both would achieve the exact same result:

1

2
×
(

3

5
+

2

5

)
=

1

2
×
(

4

5
+

1

5

)
=

1

2
(13)

As our goal is long-term consistency, we weight each IoUid with the TPA. This factor increases the
importance of long-term prediction:

1

5
×
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3× 3

5
+ 2× 2

5

)
=
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25
(14)
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×
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4× 4
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+ 1× 1
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)
=
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25
(15)
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Thus, our formulation of AQ fulfills the property of getting a higher score for predictions that have
overall higher long-term consistency.

Normalization by ground-truth size. When considering the normalization factor of equation (12),
one natural question that could come up is, why do we propose this denominator instead of the sum
of all TPA. The reason is that otherwise the removal of correctly segmented regions with wrong track
ID could achieve a higher score. Consider two predicted car tracks overlapping a ground-truth car
track with IoU 4/5 and 1/5, respectively. Changing the denominator would lead to the following
scores, with and and without the removal of the second track:

1

5
×
(

4× 4

5
+ 1× 1

5

)
=

17

25
(16)

1

4
×
(

4× 4

5

)
=

16

20
=

20

25
(17)

Hence, the removed segment leads to a higher score. In contrast, in our current formulation we
achieve the following scores in this scenario:

1
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×
(

4× 4

5
+ 1× 1

5

)
=

17

25
(18)

1
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×
(

4× 4

5

)
=

16

25
(19)

Therefore, it will always be better to recognize cars (or other objects) than not to detect them. This
still holds when looking at the overall metric. Even though the removal of correct segments is
already penalized in the segmentation quality, that penalty would would rarely be noticeable when the
association quality score would increase in that case. Hence, setting the denominator to the ground-
truth size aligns with the importance of not removing predictions. For example, in an autonomous
driving scenario, it is critical that correct pedestrian predictions are kept, even though they have a
wrong track ID.

Class-aware vs. Class-agnostic Association. In previous metrics, VPQ [34] and PTQ [29] tracks
must have the correct semantic class assigned to count as true positives. Such design couples
segmentation and association errors, e.g., a car track mistaken for a van would receive a score of 0
even though is is perfectly tracked throughout a sequence. In our setting, we compare three options
to design the association score w.r.t. to semantic classes.

1. Require the correct semantic class of predicted tracks to be matched to ground-truth tracks
to compute association sores.

2. Require one (but any) semantic class of predicted tracks to be matched to ground-truth
tracks to compute association sores.

3. Allow any semantic thing class to be assigned to pixels of predicted tracks.

Option 1 penalizes wrong semantic segmentation twice and therefore completely couples segmen-
tation and association errors like VPQ and PTQ. The 2nd option has the problem that correcting
semantic classes receives a lower score than not correcting them. A prediction that at first mistakes a
van for a car should not be penalized, when the semantic class is changed to the correct one. When
requiring one semantic class, a prediction that changes the semantic class would create a new track.
This would result in an overall reduced score, which violates the goal of not penalizing the correction
of mistakes. Therefore, we have chosen the 3rd option for the design of our STQ metric.

Implementation Details. We need to consider two special cases for the implementation of the STQ
metric. The first case is the crowd region. For far away or highly overlapping objects, it can be
impossible for human annotators to distinguish different instances. In those cases, we can still assign
the correct semantic class to these pixels. During evaluation, we cannot measure any association
quality, but also do not want to penalize (potentially correct) track ID assignment by a network.
We therefore consider the semantic class of these regions for measuring the segmentation quality.

18



#1 #2 #3 #4 #5

SQ 1.0 1.0 1.0 1.0 0.75
AQ 1

2×2 ( 2×2
4 + 2×2

4 ) = 0.5 1
5 ( 2×2

5 + 3×3
5 ) = 13

25
1
5 ( 1×1

5 + 4×4
5 ) = 17

25
1
4 ( 1×1

4 + 3×3
4 ) = 5

8
1
4 ( 3×3

4 ) = 9
16

STQ
√

1× 0.5 = 0.71
√

1× 13
25 = 0.72

√
1× 17

25 = 0.82
√

1× 5
8 = 0.79

√
3
4 ×

9
16 = 0.65

PTQ 4−0
4+0+0 = 1.0 5−1

5+0+0 = 0.8 5−1
5+0+0 = 0.8 4−1

4+0+0 = 0.75 3−0
3+ 1

2+0
= 0.86

VPQ† 0
0+ 1

2+2× 1
2

= 0 0.6
1+ 1

2+0
= 0.4 0.8

1+ 1
2+0

= 0.53 0.75
1+ 1

2+0
= 0.5 0.75

1+0+0 = 0.75

Table 6: Intermediate computation steps for Fig. 3 of the main paper. VPQ† refers to the VPQ
evaluation over the complete scene.

For the association quality, these pixel regions are ignored, which means there is no penalty for
assigning track IDs to these regions. The second case to consider is the ignore label. Ignore labels are
commonly used by annotators for regions, which can not be assigned to one of the limited semantic
classes and should therefore be ignored during evaluation. However, [36] introduced this concept for
predictions, too. Predicted ignore segments do not count as false positives, which lead to common
post-processing steps in the field of panoptic segmentation. Specifically, small predicted segments
are overwritten with the void label. Since we would not like to encourage such tricks, we adopt the
following strategy to handle void label. For the segmentation quality, we allow an additional class
void, which is handled like all other classes, except that all ignore regions in the ground-truth will not
be considered. Thus, there is no advantage of predicting void labels, but we still allow to evaluate
output of methods that require such predictions by design.

Detailed metric scores of illustration. We provide intermediate computation steps to obtain the
results of Fig. 3 of the main paper in Tab. 6.

F Network Architecture

Single-frame baselines. Our single-frame baselines build on top of Panoptic-DeepLab [15] by
additionally using three different methods to infer the tracking IDs. The adopted separate architectures
are therefore the same as the original works [15, 58].

Multi-frame baseline. Motivated by [4, 67], our multi-frame baseline, ‘Motion-DeepLab’, extends
Panoptic-DeepLab [15] by adding another prediction head, Previous Center Regression, which
assists in associating predicted instances between two consecutive frames. Additionally, same as
CenterTrack [67], the previous predicted center heatmap and the previous image frame are given as
additional inputs to the network. The network architecture is visualized in Fig. 8.

G Experimental Results

Training Protocol. Using Panotic-DeepLab [14] as our base network, we follow closely the same
training protocol as in [14]. Specifically, all our models are trained using TensorFlow [1] on 16 TPUs
and batch size 32. We use the ‘poly’ learning rate policy [41], fine-tune the batch normalization
parameters [31], adopt random scale data augmentation during training with Adam [35] optimizer.
Our model is pretrained on Cityscapes [17] (only image panoptic annotations are exploited) for 60k
iterations with an initial learning rate of 2.5e-4. For the single-frame baselines (B1-B3), we fine-tune
on KITTI-STEP and MOTChallenge-STEP with an initial learning rate of 1e-5 for 30k and 1.4k
iterations, respectively. For our Motion-DeepLab baseline (B4), we have to conduct net-surgery on
the weights of the first convolution of the ResNet pre-trained checkpoint [26]. The baseline B4 takes
7 channels as input (3 channels for current frame, 3 channels for previous frame, and 1 channel for
the previous frame center heatmap). We therefore take the weights of the first 7 × 7 convolution
and duplicate them to get to 6 channels. Finally, the weights of the last channel are obtained by
taking another duplicate and average over the channel dimension. With these pre-trained weights,
we fine-tune on KITTI-STEP and MOTChallenge-STEP with a learning rate of 1e-5 for 50k and
2k iterations, respectively. For VPSNet [34], we use the default training settings to pre-train on
Cityscapes-VPS without the tracking head. Then, we fine-tune the full network on KITTI-STEP
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Figure 8: The architecture of the Motion-DeepLab baseline (B4).

Baseline Pretrained STQ AQ SQ PQ RQ SQ

B3: Mask Propagation 7 0.57 0.59 0.55 0.36 0.46 0.72
B3: Mask Propagation 3 0.67 0.63 0.71 0.47 0.57 0.79
B4: Motion-DeepLab 7 0.54 0.55 0.53 0.34 0.43 0.69
B4: Motion-DeepLab 3 0.58 0.51 0.67 0.43 0.54 0.78

Table 7: Effect of pretraining on Cityscapes with results on KITTI-STEP.

and MOTChallenge-STEP again with the optimized default settings. As we observe overfitting on
MOTChallenge-STEP, we reduce the training iterations to 1/3 of the original number.

Qualitative Results. Please refer to the attached files for video visualization of our dataset ground
truth and our model predictions (B3).

Effect of pre-training. In Tab. 7, we report the effect of pretraining our networks on Cityscapes
before finetuning on KITTI-STEP. As shown in the table, pretraining brings 10%, and 4% improve-
ment of STQ for baselines B3 and B4, respectively. For B4, we observe performance gain in SQ,
and slightly degradation in AQ, presenting a challenging research problem to efficiently develop a
unified STEP model. When comparing the non-pretrained networks, the unified model B4 has a much
smaller gap to the B3 model than with pretraining. We hope our baseline could serve as a strong
baseline to facilitate the research along the direction of developing a better unified STEP model.

H STQ on Cityscapes VPS

In Tab. 9 and Tab. 8, we show scores of our metric with VPSNet on Cityscapes-VPS. In the following,
we draw insights from these numbers.

Metric insights on Cityscapes-VPS. In Tab. 8, we provide STQ scores of VPSNet on Cityscapes-
VPS. Notably, the AQ score is lower than on KITTI-STEP but higher than on MOTChallenge-STEP.
In the following, we study the behavior of AQ. For that we also provide per-class scores on Cityscapes-
VPS in Tab. 9.

Due to our unified treatment of space and time, STQ can evaluate single frame performance, short
clip performance as well as long video performance. Depending on the dataset, the AQ score will

Cityscapes-VPS (val) STQ AQ SQ VPQ VPQTh VPQSt

VPSNet 0.50 0.35 0.72 0.57 0.44 0.67

Table 8: VPSNet evaluated on Cityscapes-VPS [34]. Scores obtained from official code and models.

20



Cityscapes-VPS (val) Person Rider Car Truck Bus Train Motorcycle Bicycle All things All

VPQ (K = 4) 0.32 0.35 0.45 0.32 0.34 0.43 0.27 0.28 0.34 0.52
STQ 0.51 0.48 0.63 0.46 0.38 0.31 0.26 0.44 0.50 0.50
AQ 0.30 0.30 0.42 0.29 0.20 0.18 0.18 0.27 0.35 0.35

Table 9: Per-class breakdown of thing scores of VPSNet evaluated on the validation set of Cityscapes-
VPS [34]. Scores obtained from official code and models. VPQ with K = 4 annotated frames, is the
longest and hardest evaluation of VPQ under the official settings.

therefore adapt to the given characteristics. Naturally, AQ cannot measure tracking when the dataset
focus is on segmentation as discussed above. Hence, AQ will measure pixel-precise image and small
clip instance segmentation on Cityscapes-VPS. A lower AQ on Cityscapes-VPS does therefore not
imply that tracking is harder than on KITTI-STEP. Moreover, all instances contribute equally towards
the final score independent of the instance size. With almost 50% instances not being tracks, 50% of
the score will be image instance segmentation.

As a reminder, VPQ is averaged over the scores when evaluating PQ on one, two, three, and four
frames. In this example, AQ behaves similar as VPQK when evaluated on K = 4 frames.
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