
Published as a conference paper at ICLR 2025

ORSO: ACCELERATING REWARD DESIGN VIA ONLINE
REWARD SELECTION AND POLICY OPTIMIZATION

Chen Bo Calvin Zhang∗†‡, Zhang-Wei Hong†, Aldo Pacchiano§¶, Pulkit Agrawal†
Improbable AI Lab, Massachusetts Institute of Technology† ETH Zurich‡

Boston University§ Broad Institute of MIT and Harvard¶

ABSTRACT

Reward shaping is critical in reinforcement learning (RL), particularly for com-
plex tasks where sparse rewards can hinder learning. However, choosing effective
shaping rewards from a set of reward functions in a computationally efficient man-
ner remains an open challenge. We propose Online Reward Selection and Policy
Optimization (ORSO), a novel approach that frames the selection of shaping re-
ward function as an online model selection problem. ORSO automatically identi-
fies performant shaping reward functions without human intervention with prov-
able regret guarantees. We demonstrate ORSO’s effectiveness across various con-
tinuous control tasks. Compared to prior approaches, ORSO significantly reduces
the amount of data required to evaluate a shaping reward function, resulting in su-
perior data efficiency and a significant reduction in computational time (up to 8×).
ORSO consistently identifies high-quality reward functions outperforming prior
methods by more than 50% and on average identifies policies as performant as
the ones learned using manually engineered reward functions by domain experts.
Code is available at https://github.com/Improbable-AI/orso.

1 INTRODUCTION

Reward functions are crucial in reinforcement learning (RL; Sutton & Barto (2018)) as they guide
the learning of successful policies. In many real-world scenarios, the ultimate objective involves
maximizing long-term rewards that are not immediately available (Vecerik et al., 2017; Rengarajan
et al.; Vasan et al.), making optimization challenging. To address this, practitioners often introduce
shaping rewards (Margolis & Agrawal, 2022; Liu et al., 2024; Mahmood et al., 2018; Ng et al., 1999;
Park et al., 2024) to provide additional guidance during training. Instead of directly maximizing
the task reward (R), it is therefore common for the RL algorithm to maximize an easier-to-optimize
shaped reward function F in the hope of obtaining high performance as measured by the task reward,
R. While shaping rewards are designed to guide the agent to complete a task, maximizing them does
not necessarily solve the task. For instance, an agent tasked with finding an exit (i.e., longer-term
reward in the future) may be provided with shaping rewards to avoid obstacles. However, the task’s
success ultimately depends on reaching the exit, not just avoiding obstacles. If poorly designed,
the shaped rewards F can mislead the agent because prioritizing the maximization of F may not
maximize R (Chen et al., 2022; Agrawal, 2021; Hadfield-Menell et al., 2017; Ng et al., 1999),
leading to training failure or suboptimal performance.

Designing effective shaping reward functions F is therefore challenging and time-consuming. It
requires multiple iterations of training agents with different shaping rewards, evaluating their per-
formance on the task reward R, and refining F accordingly. This process is inefficient due to the
lengthy training runs and because the performance measured early in training may be misleading,
making it challenging to quickly iterate over different shaping rewards.

To address this challenge, we propose treating the selection of the shaping reward function as an
exploration-exploitation problem and solving it using provably efficient online decision-making al-
gorithms similar to those in multi-armed bandits (Auer et al., 2002; Auer, 2002) and model selection
(Agarwal et al., 2017; Pacchiano et al., 2020; Dann et al., 2024; Foster et al., 2019; Lee et al., 2021).

∗Correspondence to cbczhang@mit.edu, pulkitag@mit.edu.

1

https://github.com/Improbable-AI/orso

Published as a conference paper at ICLR 2025

In this setup, each shaping reward function F corresponds to an arm or model. The utility of a
shaping reward function is J (πf), the expected cumulative reward of the policy πf under the task
reward R. We aim to efficiently select the shaping reward function that leads to the best policy un-
der the task reward R. To achieve this, we allocate computational resources strategically, exploring
each reward function sufficiently to evaluate its potential while avoiding excessive exploration so
that enough computational budget is left to optimize the policy using the best reward function.

This approach presents unique challenges. Unlike standard multi-armed bandit settings with sta-
tionary reward distributions, the utility of a shaping reward function in our case is nonstationary. As
the agent explores new parts of the state space during training, the task reward distribution changes.
Additionally, we must balance exploration and exploitation of a set of shaping reward functions
to efficiently allocate training time among these shaping rewards without committing too early to
high-performing options or wasting time on low-performing ones.

We introduce Online Reward Selection and Policy Optimization (ORSO), an algorithm that effi-
ciently selects the best shaping reward function from a set of candidate shaping reward functions that
maximize the task performance. ORSO provides regret guarantees and adaptively allocates training
time to each shaping reward based on a model selection algorithm at each step. Our empirical re-
sults across various continuous control tasks using the Isaac Gym simulator (Makoviychuk et al.,
2021) demonstrate that ORSO identifies performant reward functions with 56% better performance
on average compared to methods like EUREKA (Ma et al., 2024) within a fixed interaction bud-
get. Moreover, ORSO consistently selects reward functions that are comparable to, and sometimes
surpass, those designed by domain experts, all while using up to 8× less compute.

2 PRELIMINARIES

Reinforcement Learning (RL) In RL, the objective is to learn a policy for an agent (e.g., a robot)
that maximizes the expected cumulative reward during the interaction with the environment. The in-
teraction between the agent and the environment is formulated as a Markov decision process (MDP)
(Puterman, 2014),M = (S,A, P, r, γ, ρ0), where the S and A denote state and action spaces, re-
spectively, P : S × A → ∆S

1 is the state transition dynamics, r : S × A → ∆R denotes the
reward function, γ ∈ [0, 1) is the discount factor, and ρ0 ∈ ∆S is the initial state distribution.
At each timestep t ∈ N of interaction, the agent selects an action at ∼ π(· | st) based on its
policy π, receives a (possibly) stochastic reward rt ∼ r(st, at), and transitions to the next state
st+1 ∼ P (· | st, at) according to the transition dynamics. Here, r is the task reward, also referred
to as extrinsic reward (Chen et al., 2022). RL algorithms aim to find a policy π⋆ that maximizes the
discounted cumulative reward, i.e.,

π⋆ ∈ argmax
π

J (π) := E

[∞∑
t=0

γtrt

∣∣∣∣∣ s0 ∼ ρ0, at ∼ π(· | st),
rt ∼ r(st, at), st+1 ∼ P (· | st, at)

]
. (1)

Notation We denote A a reinforcement learning algorithm that takes an MDP M =
(S,A, P, r, γ, ρ0), a reward function f , a number of interaction steps with the environment N , and
an initial policy π0 as input and returns a policy πf = Af (M, N, π0).

3 METHOD: REWARD DESIGN AS SEQUENTIAL DECISION MAKING

As previously stated, the reward function r encodes the task objective but can be difficult to optimize
using RL methods directly. We formalize the reward design problem as follows.
Definition 3.1 (Reward Design). Given M and A, the reward design problem aims to find a re-
ward function f : S × A → ∆R, with f ∈ R, the space of reward functions, such that the
policy πf = Af (M) achieves an expected return under the task reward r, such that J

(
πf
)
≈

maxr′∈R J (πr′) = J (π⋆).

While this could be achieved by running the algorithm A on every possible reward function r′ ∈ R,
this is computationally prohibitive. The reward space R can be extremely large, and attempting to

1∆S denotes the set of probability distributions over S.

2

Published as a conference paper at ICLR 2025

0.0 0.5 1.0
0

2

Ta
sk

 R
ew

ar
d

Too Exploitative

0.0 0.5 1.0
Interaction Budget

0

2

Too Explorative

0.0 0.5 1.0
0

2

Just Right
t f1 f2

Figure 1: Comparison of three reward selection strategies given a fixed interaction budget. The
green dashed line represents the task reward of the optimal policy, π⋆. The red and blue curves
show the task rewards for policies trained with reward functions f1 and f2, respectively. The yellow
curve, π⋆

t , tracks the maximum of the red and blue curves. Left: This selection strategy is overly
exploitative, greedily selecting the reward function that seems to perform best early on but plateaus
later in training. Center: On the other hand, this strategy continuously switched between f1 and
f2, exploring the suboptimal reward function too much. Right: The ideal strategy initially explore
f1 and f2, but quickly latches onto the better reward function.

optimize over all possible rewards is impractical, especially when the available interaction budget is
constrained.

To make the problem tractable, we assume access to a finite set of candidate shaping reward func-
tions RK =

{
f1, . . . , fK

}
∼ G(R), where G is a distribution over the set of reward functions,

that contains at least one near-optimal reward function and a budget of interactions B. If the budget
does not allow training on each f i ∈ RK , we need to allocate resources to gather useful informa-
tion about the quality of each candidate, while simultaneously optimizing the most promising ones.
This introduces a fundamental exploration-exploitation tradeoff. On the one hand, we must explore
various rewards to identify high performers; on the other, we need to exploit promising candidates
to train performant policies.

Figure 1 shows a simple example with two reward functions, f1 and f2, and three selection strate-
gies. The selection strategies on the left and center are too exploitative and too explorative re-
spectively. The exploitative selection strategy greedily spends the interaction budget on the reward
function that performs best early in training, neglecting the potential of f2. On the other hand, the
selection strategy in the center equally explores both reward functions, even when one is clearly
preferred. The exploration strategy on the right initially explores both reward functions but quickly
latches onto the best one and spends the remaining interaction budget on the better reward function.
The suboptimality gap at iteration t of training can be measured via the regret of the best policy so
far defined as reg(t) = J (π⋆) − J (π⋆

t), where π⋆
t := argmaxπℓ,ℓ∈[t] J (πℓ). The choice of π⋆

t

reflects a practical preference, as we are more interested in the best-performing solution available
at a given point, rather than the most recent update. For instance, in deploying a robotic running
policy, one would select the fastest policy observed thus far – assuming the objective is to run as fast
as possible.

A further discussion of the online model selection problem can be found in Appendix B.

3.1 ORSO: ONLINE REWARD SELECTION AND POLICY OPTIMIZATION

In this section, we introduce ORSO (Online Reward Selection and Optimization), a novel approach
to efficiently and effectively select shaping reward functions for reinforcement learning. Our method
operates in two phases: (1) reward generation and (2) online reward selection and policy optimiza-
tion.

Reward Generation In the first phase of ORSO, we generate a set of candidate reward functions
RK for the online selection phase. Given an MDPM = (S,A, P, r, ρ0) and a stochastic generator
G, we sample a set of K reward function candidates,RK = {f1, . . . , fK | ∀i ∈ [K], f i : S×A →
∆R, f i ∼ G}, from G during the reward design phase. The generator G can be any distribution

3

Published as a conference paper at ICLR 2025

over the reward function space R. For instance, if the set of possible reward functions is given by
a linear combination of two reward components c1, c2, which are functions of the current state and
action, such that r(s, a) = w1c1(s, a) + w2c2(s, a), then the generator G can be represented by the
means and variances of two normal distributions, one for each weight w1, w2.

Online Reward Selection and Policy Optimization Our algorithm for online reward selection
and policy optimization is described in Algorithm 1. On a high level, the algorithm proceeds as
follows. Given an MDPM = (S,A, P, r, γ, ρ0), an RL algorithm A and a reward generator G, we
sample set of K reward functions RK ∼ G and initialize K distinct policies π1, . . . , πK . At step
t of the reward selection process, the algorithm selects a learner it ∈ [K] according to a selection
strategy. We then run algorithm A, updating the policy corresponding to reward function it to obtain
πit . Policy πit is simultaneously evaluated under the task reward function r and the necessary
variables for the model selection algorithm are then updated (e.g., reward estimates, reward function
visitation counts, and confidence intervals). The algorithm returns the reward function f⋆

T and the
corresponding policy π⋆

T that performs the best under the task reward function r. We discuss the
implementation details in Section 5.

Algorithm 1 ORSO: Online Reward Selection and Policy Optimization

Require: MDPM = (S,A, P, r, γ, ρ0), algorithm A, generator G
1: Sample K reward functionsRK =

{
f1, . . . , fK

}
∼ G

2: Initialize K policies
{
π1, . . . , πK

}
3: for t = 1, 2, . . . , T do
4: Select an model it ∈ [K] according to a selection strategy
5: Update πit ← Afit (M, πit)

6: Evaluate J (πit)← Eval(πit)
7: Update variables (e.g., reward estimates and confidence intervals)
8: end for
9: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)

Choice of Selection Algorithm While ORSO is a general algorithm that can employ any selection
method to pick the reward function to train on, the performance depends on the choice of algorithm.

For instance, using a simple selection method like ε-greedy introduces an element of exploration by
occasionally selecting a random reward function (with probability ε), but it risks overcommitting to
a seemingly promising reward function early on. This can lead to suboptimal performance if the
chosen reward function causes the task performance to plateau in the long run. However, greedier
methods, such as ε-greedy, can achieve lower regret if they commit to the optimal reward function
early in the process. These methods are particularly effective when early performance signals are
strong indicators of long-term success.

However, if initial performance is not a reliable predictor of future outcomes, these greedy ap-
proaches may struggle, as they risk prematurely locking onto suboptimal rewards. In contrast,
more exploratory algorithms like the exponential-weight algorithm for exploration and exploita-
tion (Exp3) (Auer et al., 2002) maintain a broader search, potentially discovering better rewards in
the long run, especially in environments where early signals are less informative. We empirically
validate different choices of selection algorithms in Section 5.

4 THEORETICAL GUARANTEES

In this section, we provide regret guarantees for ORSO with the Doubling Data-Driven Regret Bal-
ancing (D3RB) algorithm by Dann et al. (2024). A discussion of the intuition behind the D3RB
algorithm and the full pseudo-code for ORSO with D3RB is provided in Appendix C.

We first introduce some useful definitions for our analysis.
Definition 4.1 (Definition 2.1 from Dann et al. (2024)). The regret scale of learner i after being

played t times is
∑t

ℓ=1 reg(πi
(ℓ))√

t
where reg(πi

(ℓ)) = J (π
⋆) − J (πi

(ℓ)) and πi
(ℓ) = Afi(M, ℓ) in the

reward design problem.

4

Published as a conference paper at ICLR 2025

For a positive constant dmin > 0, the regret coefficient of learner i after being played for t rounds is
di(t) = max{dmin,

∑t
ℓ=1 reg(π

i
(ℓ))/
√
t}. That is, di(t) ≥ dmin is the smallest number such that the

incurred regret is bounded as
∑t

ℓ=1 reg(π
i
(ℓ)) ≤ di(t)

√
t.

Dann et al. (2024) use
√
t as this is the most commonly targeted regret rate in stochastic settings.

The main idea underlying our regret guarantees is that the internal state of all suboptimal reward
functions is only updated up to a point where the regret equals that of the best policy so far.

We assume there exists a learner that monotonically dominates every other learner.
Assumption 4.2. There is a learner i⋆ such that at all time steps, its expected sum of rewards
dominates any other learner, i.e., ui⋆

(t) ≥ ui
(t), for all i ∈ [K], t ∈ N and such that its average

expected rewards are increasing, i.e.,
ui⋆
(t)

t ≤
ui⋆
(t+1)

t+1 , ∀t ∈ N. This is equivalent to saying that
di⋆(t) ≥ di⋆(t+1), for all t ∈ N.

Assumption 4.2 guarantees that the cumulative expected reward of the optimal learner i⋆ is always at
least as large as the cumulative expected reward of any other learner and that its average performance
increases monotonically.

Following the notation of Dann et al. (2024), we refer to the event that the confidence intervals for
the reward estimator are valid as E .
Definition 4.3 (Definition 8.1 from Dann et al. (2024)). We define the event E as the event in which
for all rounds t ∈ N and learners i ∈ [K] the following inequalities hold

−c
√
ni
t ln

K lnni
t

δ
≤ ûi

t − ui
t ≤ c

√
ni
t ln

K lnni
t

δ
(2)

for the algorithm parameter δ ∈ (0, 1) and a universal constant c > 0, where ni
t =

∑t
ℓ=1 1(iℓ = i).

Then we can refine Lemma 9.3 from Dann et al. (2024) in the case where Assumption 4.2 holds.
Lemma 4.4. Under event E and Assumption 4.2, with probability 1− δ, the regret of all learners i
is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (3)

where di⋆T = di⋆
(ni⋆

T)
.

We provide the proof for Lemma 4.4 in Appendix D. Lemma 4.4 implies that when Assumption 4.2
holds, the regrets are perfectly balanced. This is in stark contrast with the regret guarantees of
Dann et al. (2024) that prove the D3RB algorithm’s overall regret to scale as

(
d̄i⋆T
)2√

T where
d̄i⋆t = maxℓ≤t d

i⋆
ℓ . Instead, our results above depend not on the monotonic regret coefficients d̄i⋆t

but on the true regret coefficients di⋆t . Even if learner i⋆ has a slow start (and therefore a large d̄i⋆T),
as long as monotonicity holds and the i⋆-th learner recovers in the later stages of learning, our results
show that D3RB will achieve a regret guarantee comparable with running learner i⋆ in isolation.

5 PRACTICAL IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present a practical implementation2 of ORSO and its experimental results on
several continuous control tasks. We study the ability of ORSO to design effective reward functions
with varying budget constraints. We also study how different sample sizes, K, of the set of reward
functionsRK influence the performance of ORSO and compare different selection algorithms.

This section is structured as follows. First, we present the experimental setup, including the environ-
ments and baselines, and the practical consideration of the reward generator G and the algorithms
used in the online reward selection phase. Then, we present the main results and ablate our design
choices. Further experimental results can be found in Appendix H

2The code for ORSO is available at https://github.com/Improbable-AI/orso

5

https://github.com/Improbable-AI/orso

Published as a conference paper at ICLR 2025

5.1 EXPERIMENTAL SETUP

Environments and RL Algorithm We evaluate ORSO on a set of continuous control tasks us-
ing the Isaac Gym simulator (Makoviychuk et al., 2021). Specifically, we consider the following
tasks: CARTPOLE and BALLBALANCE, which are relatively simple; two locomotion tasks, ANT
and HUMNAOID, which have dense but unshaped task rewards – for instance, the agent is rewarded
for running fast, but the reward function lacks terms to encourage upright posture or smooth move-
ment; and two complex manipulation tasks, ALLEGROHAND and SHADOWHAND, which feature
sparse task reward functions.

Our policies are trained using the proximal policy optimization (PPO) algorithm (Schulman et al.,
2017), with our implementation built on CleanRL (Huang et al., 2022). We chose PPO because
Makoviychuk et al. (2021) provide hyperparameters, which we use, that enable it to perform well
on these tasks when using the human-engineered reward functions.

5.1.1 BASELINES

In our experiments, we consider three baselines. We analyze the performance of policies trained
using each reward function detailed below. We evaluate the reward function selection efficiency of
ORSO compared to more naive selection strategies.

No Design (Task Reward with No Shaping) We train the agent with the task reward function r for
each MDP. These reward functions can be sparse (for manipulation) or unshaped (for locomotion).
We use the same reward definitions as prior work (Ma et al., 2024), which we report in Appendix E.

Human We consider the human-engineered reward functions for each task provided by (Makoviy-
chuk et al., 2021). We note that these are constructed such that training PPO with the given hyperpa-
rameters yields a performant policy with respect to the task reward function. The function definitions
are reported in Appendix E.

Naive Selection A naive selection strategy involves sampling a set of reward functions and training
policies on each reward to convergence. While this approach is simple and widely used (Ma et al.,
2024), it can be inefficient because it uniformly explores each reward function for a fixed number of
iterations, regardless of the task performance.

5.1.2 IMPLEMENTATION

Reward Generation Similarly to recent works on reward design, which demonstrate that LLMs
can generate effective reward functions for training agents (Park et al., 2024; Ma et al., 2024; Xie
et al., 2024; Yu et al., 2024), we follow this paradigm by using GPT-4 (Achiam et al., 2023) to
avoid manually designing reward function components. The language model is prompted to generate
reward function code in Python based on some minimal environment code describing the observation
space and useful class variables. We employ prompts similar to those used by Ma et al. (2024). Since
the exact prompts are not the primary focus of our work, we do not detail them here; instead, we
refer readers to our codebase for further details on the prompt construction.

While the LLM produces seemingly good code, this does not guarantee that the sampled code is
bug-free and runnable. In ORSO, we employ a simple rejection sampling technique to construct sets
of only valid reward functions with high probability. We also note that the initial set of generated re-
ward functions in ORSO might not contain an effective reward function.3 To address this limitation,
we introduce a mechanism for improving the reward function set through iterative resampling and
in-context evolution of new setsRK . We provide more details on the rejection sampling mechanism
and the iterative refinement process Appendix F.

Online Reward Selection Algorithms We evaluate multiple reward selection algorithms from
the multi-armed bandit and online model selection literature: explore-then-commit (ETC), ε-greedy
(EG), upper confidence bound (UCB) (Auer, 2002), exponential-weight algorithm for exploration

3An effective reward function is one that leads to high performance with respect to the task reward r when
used for training.

6

Published as a conference paper at ICLR 2025

and exploitation (Exp3) (Auer et al., 2002), and doubling data-driven regret balancing (D3RB) (Dann
et al., 2024). We provide the pseudocode and the hyperparameters used for each selection algorithm
in Appendix G. For every environment, we set the number of iterations N in Algorithm 1 used to
train the policy before we select a different reward function to N = n iters/100, where n iters
is the number of iterations used to train the baselines, i.e., we perform at least 100 iterations of online
reward selection before the iterative resampling.

5.2 RESULTS

In this section, we present the experimental results of ORSO. We evaluate ORSO’s ability to effi-
ciently select reward functions with varying budget constraints and reward function set size K. We
consider interaction budgets B ∈ {5, 10, 15} × n iters and sample sizes K ∈ {4, 8, 16}.

Cart
po

le

Bala
nc

e
Ant

Hum
an

oid

Alle
gro

Sha
do

w
0.0

0.5

1.0

1.5

Ta
sk

 R
ew

ar
d

5 10 15
Interaction Budget

0.50

0.75

1.00

1.25

Ta
sk

 R
ew

ar
d +56%

Human No Design Naive ORSO (D3RB)

Figure 2: Left: Normalized task rewards averaged over interaction budgets and seeds. ORSO con-
sistently matches or surpasses human-designed reward functions. Right: Normalized task reward
as a function of interaction budget, averaged across tasks. ORSO scales effectively with increased
budgets, achieving a 56% higher task reward than the naive strategy at the highest budget. Vertical
bars in the plots indicate standard errors.

ORSO Surpasses Human-Designed Reward Functions Figure 2 (left) illustrates the average
performance of ORSO compared to human-designed reward functions, the task reward function, and
the naive selection strategy across different tasks. We observe that ORSO consistently matches or
exceeds human-designed rewards, particularly in more complex environments. For each task, the
results are averaged over 3 interaction budgets, 3 reward function set sizes and with 3 seed per
configuration, totaling 27 runs. The full breakdown is reported in Appendix H.

ORSO Achieves 56% Higher Task Reward Figure 2 (right) shows how task performance scales
with the interaction budget. While both ORSO and naive selection benefit from larger budgets,
ORSO is consistently superior and surpasses human-designed rewards when B ≥ 10. Moreover,
ORSO achieves 56% higher reward than the naive strategy at the highest budget level. This demon-
strates that ORSO can more effectively make use of the additional interactions with the environment,
allocating more compute to better reward functions. Detailed per-task and per-budget results are
reported in Appendix H.

ORSO Can Reach Human Performance with Fewer GPUs One advantage of the naive selection
strategy is that it can be easily parallelized on many GPUs. Figure 3 reports the estimated time
required to achieve the same performance as policies trained with human-designed reward functions
as a function of the number of GPUs used. Notably, ORSO performs at a comparable speed to the
naive selection strategy even when the latter leverages up to 8 GPUs in parallel, achieving similar
performance within the same timeframe. It should be noted that the plotted time is an approximation
based on the time needed to complete one iteration of PPO for each task, where one iteration consists
of collecting a batch of trajectories, updating the policy, and the value function. We report the results
for all interaction budgets in the Appendix H.

7

Published as a conference paper at ICLR 2025

1 2 4 8 16
Number of GPUs

0

1

2

3

4
Ti

m
e

to
 H

um
an

 P
er

fo
rm

an
ce

 (h
)

Ant (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e
to

 H
um

an
 P

er
fo

rm
an

ce
 (h

)

Allegro Hand (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e
to

 H
um

an
 P

er
fo

rm
an

ce
 (h

)

Shadow Hand (B = 15)

Naive
ORSO (D3RB)

Naive ORSO (D3RB)

Figure 3: Median time to human-level performance as a function of number of parallel GPUs.
Policies trained with ORSO can achieve the same performance as policies trained with the human-
engineered reward functions with up to 8× fewer GPUs.

5.3 ABLATION STUDY

Choice of Selection Algorithm In Figure 4, we compare different selection algorithms for ORSO.
We find that D3RB performs best on average, consistently outperforming other algorithms, followed
closely by Exp3. These algorithms allow ORSO to balance exploration and exploitation effectively,
leading to superior performance compared to more greedy approaches like UCB, ETC, and EG.
Interestingly, even simpler strategies like EG and ETC substantially outperform the naive strategy,
which highlights the importance of properly balancing exploration and exploitation for efficient
reward selection. By framing reward design as an exploration-exploitation problem, we demonstrate
that even basic strategies offer considerable gains over static, inefficient methods.

0 3 6 9 12 15
Interaction Budget

0.0

0.5

1.0

Ta
sk

 R
ew

ar
d

D3RB Exp3 UCB ETC EG Naive
0.0

0.5

1.0

No Design
Human

Naive
EG

ETC
UCB

Exp3
D3RB

Figure 4: Comparison of different rewards selection algorithms for ORSO. Left: Number of itera-
tions necessary for human-level performance. Right: Average normalized task reward for different
selection algorithms. We provide a more granular breakdown in Appendix H.

Regret of Different Selection Algorithms To further quantify ORSO’s performance, we analyze
its regret with respect to human-engineered reward functions.4 This formulation is motivated by two
key considerations. First, we lack access to the true optimal policy with respect to the task reward
function π⋆. Second, the PPO hyperparameters used in our experiments were specifically tuned for
the human-engineered reward function, making the policy trained with it a reasonable proxy for the
optimal policy. Regret provides a useful metric for understanding how much performance is lost due
to suboptimal reward selection over time. Lower regret indicates that a method quickly identifies
high-quality reward functions, reducing the number of iterations wasted on poorly performing ones.
Figure 5 shows the normalized regret for different selection algorithms. Notably, ORSO’s regret can
become negative, indicating that it finds reward functions that outperform the human-designed ones.

4The normalized regret with respect to the human-engineered reward functions is defined as Human−J (π⋆
t)

Human .

8

Published as a conference paper at ICLR 2025

0 1 2 3 4 5
Interaction Budget

0.00

0.25

0.50

0.75

1.00
N

or
m

al
iz

ed
 R

eg
re

t

B = 5

0 2 4 6 8 10
Interaction Budget

0.0

0.5

1.0
B = 10

0 5 10 15
Interaction Budget

0.0

0.5

1.0
B = 15

Naive EG ETC UCB Exp3 D3RB

Figure 5: Regret of different selection algorithms with varying budgets. We recall that a budget B
indicates that the ORSO has been run for B × n iters iterations.

ORSO is Effective with Large Reward Sets Previous experiments considered at most 16 reward
functions at once, raising the question of whether ORSO remains effective when the candidate set
is significantly larger. A larger set could pose challenges: excessive exploration might leave in-
sufficient time for learning, while premature commitment could lead to suboptimal performance.
To investigate this, we evaluate ORSO with different selection algorithms on the ANT task, using a
interaction budget of B = 15 and reward sets of sizes K ∈ {48, 96}.

0 3 6 9 12 15
Intercation Budget

0

5

10

Ta
sk

 R
ew

ar
d

K = 48

0 3 6 9 12 15
Intercation Budget

0

5

10

Ta
sk

 R
ew

ar
d

K = 96

Uniform EG ETC UCB Exp3 D3RB Human

Figure 6: Comparison of multiple selection algorithms for the ANT task with a high number of
reward function candidates. The shaded areas represent standard errors over 5 different seeds. The
order of the reward functions is randomized for each seed.

In this setting – with a fixed budget and reward function set5 – algorithms that commit to a selec-
tion earlier can allocate more iterations to training on the chosen reward functions. On the other
hand, exploring for longer may allow us to find the optimal reward function but potentially leave
insufficient time for training.

As illustrated in Figure 6, D3RB consistently identifies and selects an effective reward function
from the set. In contrast, “greedier” methods such as ε-greedy, explore-then-commit, and UCB can
depend more on the stochasticity of training and on average do not surpass human-designed reward
functions. Exp3 and uniform exploration, while more exploratory, may overemphasize exploration
at the expense of exploiting promising reward functions, leading to suboptimal performance. We
report the task reward of each reward function in Table 3 to validate that ORSO with D3RB truly
selects the best reward functions.

6 RELATED WORK

Traditionally, researchers manually specified reward components and tuned their coefficients (Ng
et al., 1999; Margolis & Agrawal, 2022; Liu et al., 2024), a method that often requires significant
domain expertise and involves numerous iterations of trial and error.

Recent work has increasingly explored the potential of foundation models in reward design. Ap-
proaches like L2R (Yu et al., 2023) leverage large language models to generate reward functions by

5In this experiment, we do not perform iterative improvement. That is, the set of reward functions is fixed
over the entire training.

9

Published as a conference paper at ICLR 2025

converting natural language descriptions into code using predefined reward API primitives, though
this requires notable effort in manual template design. Other works such as EUREKA (Ma et al.,
2024) and Text2Reward (Xie et al., 2024) use language models to generate dense reward functions
based on task descriptions and environment codes.

Foundation models have also been directly employed as reward models. Researchers have used
cosine similarity of CLIP embeddings (Rocamonde et al., 2024), vision language models for trajec-
tory preference labeling (Wang et al., 2024), and large language models for constructing preference
datasets and intrinsic reward modeling (Klissarov et al., 2024; Kwon et al., 2023).

Non-stationary scenarios have been extensively explored in the bandit literature, with the restless
bandit model (Whittle, 1988; Weber & Weiss, 1990) being a prominent example. In this model,
each arm evolves according to a potentially unknown Markov decision process (MDP). Various
solution approaches have been developed for this setting, including those leveraging the Whittle
Index (Gittins et al., 2011). However, the restless bandit framework does not fully capture the
problem considered in this work. Unlike a setting where each base learner corresponds to a fixed
MDP, the problem of reward selection involves base learners that when chosen advance their internal
state never to revisit it. This forms the basis of the online model selection literature that has addressed
the challenge of dynamically choosing suitable models in sequential decision-making environments
(Agarwal et al., 2017; Foster et al., 2019; Pacchiano et al., 2020; Lee et al., 2021).

A more comprehensive review of related work is provided in Appendix A.

7 CONCLUSION

In this paper, we introduce ORSO, a novel approach for reward design in reinforcement learning
that significantly accelerates the design of shaped reward functions. We find that even simple strate-
gies like ε-greedy and explore-then-commit yield substantial improvements over naive selection,
suggesting that reward design can be effectively framed as a sequential decision problem. ORSO
reduces both time and computational costs by more than half compared to earlier methods, making
reward design accessible to a wider range of researchers. What once required a larger amount of
computational resources can not be done on a single desktop in a reasonable time. By formalizing
the reward design problem and providing a theoretical analysis of ORSO’s regret when using the
D3RB algorithm, we also contribute to the theoretical understanding of reward design in RL.

Looking ahead, our work opens several promising directions for future research, including the devel-
opment of more sophisticated exploration strategies tailored for reward design, and the application
of our approach to more complex, real-world RL problems.

7.1 LIMITATIONS AND FUTURE WORK

Our experiments explored up to 16 reward functions with resampling of the reward function set and
up to 96 without resampling. We find that using 8 reward functions with as much interaction budget
as possible yields the best results. We leave the study of even larger reward function sets for future
work.

A key limitation of ORSO is its reliance on a predefined task reward, which is typically straightfor-
ward to construct for simpler tasks but can be challenging for more complex ones or for tasks that
include a qualitative element to them, e.g., making a quadruped walk with a “nice” gait. Future work
could explore eliminating the need for such hand-crafted task rewards by leveraging techniques that
translate natural language instructions directly into evaluators, potentially using vision-language
models, similarly to Wang et al. (2024); Rocamonde et al. (2024). Another alternative is to use
preference data to learn a task reward model (Christiano et al., 2017; Zhang & Ramponi, 2023) and
use the latter as a signal for the model selection algorithm.

Finally, in principle, ORSO could be run on multiple GPUs in parallel, with results from different
runs aggregated for improved efficiency. Investigating parallelization strategies and their impact on
reward selection remains an interesting direction for future study.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

We thank members of the Improbable AI Lab for helpful discussions and feedback. We are grate-
ful to MIT Supercloud and the Lincoln Laboratory Supercomputing Center for providing HPC re-
sources. This research was supported in part by Hyundai Motor Company, Quanta Computer Inc., an
AWS MLRA research grant, ARO MURI under Grant Number W911NF-23-1-0277, DARPA Ma-
chine Common Sense Program, ARO MURI under Grant Number W911NF-21-1-0328, and ONR
MURI under Grant Number N00014-22-1-2740. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Office or the United States Air Force or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes, notwithstanding any copyright notation herein.

AUTHOR CONTRIBUTIONS

• Chen Bo Calvin Zhang: Led the project, wrote the manuscript, ideated the method, im-
plemented the algorithm, and conducted the experiments.

• Zhang-Wei Hong: Provided guidance on the types of experiments to run and assisted with
the implementation of saving and loading the simulator state in Isaac Gym. Drafted the
introduction and advised on writing.

• Aldo Pacchiano: Contributed to the theoretical aspects of the work, specifically the model
selection part, including the development and proof of key concepts.

• Pulkit Agrawal: Oversaw the project, assisted with positioning the paper, and contributed
to the writing and presentation of the results.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of
bandit algorithms. In Conference on Learning Theory, pp. 12–38. PMLR, 2017.

Pulkit Agrawal. The task specification problem. In 5th Annual Conference on Robot Learn-
ing, Blue Sky Submission Track, 2021. URL https://openreview.net/forum?id=
cBdnThrYkV7.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Eric R Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic re-
wards via constrained policy optimization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=36Yz37cEN_Q.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

11

https://openreview.net/forum?id=cBdnThrYkV7
https://openreview.net/forum?id=cBdnThrYkV7
https://openreview.net/forum?id=36Yz37cEN_Q

Published as a conference paper at ICLR 2025

Chris Dann, Claudio Gentile, and Aldo Pacchiano. Data-driven online model selection with regret
guarantees. In International Conference on Artificial Intelligence and Statistics, pp. 1531–1539.
PMLR, 2024.

Dylan J Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for contextual bandits.
Advances in Neural Information Processing Systems, 32, 2019.

John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation indices. John
Wiley & Sons, 2011.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoÃĢo GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=tmBKIecDE9.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=10uNUgI5Kl.

Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill. Online
model selection for reinforcement learning with function approximation. In International Con-
ference on Artificial Intelligence and Statistics, pp. 3340–3348. PMLR, 2021.

Minghuan Liu, Zixuan Chen, Xuxin Cheng, Yandong Ji, Ri-Zhao Qiu, Ruihan Yang, and Xiaolong
Wang. Visual whole-body control for legged loco-manipulation. In 8th Annual Conference on
Robot Learning, 2024. URL https://openreview.net/forum?id=cT2N3p1AcE.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=IEduRUO55F.

A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots. In Conference on robot
learning, pp. 561–591. PMLR, 2018.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance GPU based physics simulation for robot learning. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. URL
https://openreview.net/forum?id=fgFBtYgJQX_.

Gabriel B. Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for generalization
with multiplicity of behavior. In 6th Annual Conference on Robot Learning, 2022. URL https:
//openreview.net/forum?id=52c5e73SlS2.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, and
Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in Neural
Information Processing Systems, 33:10328–10337, 2020.

Younghyo Park, Gabriel B. Margolis, and Pulkit Agrawal. Position: Automatic environment shaping
is the next frontier in RL. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=dslUyy1rN4.

12

https://openreview.net/forum?id=tmBKIecDE9
https://openreview.net/forum?id=10uNUgI5Kl
https://openreview.net/forum?id=cT2N3p1AcE
https://openreview.net/forum?id=IEduRUO55F
https://openreview.net/forum?id=fgFBtYgJQX_
https://openreview.net/forum?id=52c5e73SlS2
https://openreview.net/forum?id=52c5e73SlS2
https://openreview.net/forum?id=dslUyy1rN4

Published as a conference paper at ICLR 2025

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep Kalathil, and Srinivas Shakkottai. Rein-
forcement learning with sparse rewards using guidance from offline demonstration. In Interna-
tional Conference on Learning Representations.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=N0I2RtD8je.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Gautham Vasan, Yan Wang, Fahim Shahriar, James Bergstra, Martin Jägersand, and A Rupam Mah-
mood. Revisiting sparse rewards for goal-reaching reinforcement learning. In Reinforcement
Learning Conference.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstra-
tions for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
RL-VLM-f: Reinforcement learning from vision language foundation model feedback. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=YSoMmNWZZx.

Richard R Weber and Gideon Weiss. On an index policy for restless bandits. Journal of applied
probability, 27(3):637–648, 1990.

Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of applied proba-
bility, 25(A):287–298, 1988.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=tUM39YTRxH.

Chao Yu, Hong Lu, Jiaxuan Gao, Qixin Tan, Xinting Yang, Yu Wang, Yi Wu, and Eugene Vinit-
sky. Few-shot in-context preference learning using large language models. arXiv preprint
arXiv:2410.17233, 2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted
Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa,
and Fei Xia. Language to rewards for robotic skill synthesis. In 7th Annual Conference on Robot
Learning, 2023. URL https://openreview.net/forum?id=SgTPdyehXMA.

Chen Bo Calvin Zhang and Giorgia Ramponi. HIP-RL: Hallucinated inputs for preference-
based reinforcement learning in continuous domains. In ICML 2023 Workshop The Many
Facets of Preference-Based Learning, 2023. URL https://openreview.net/forum?
id=PRm1KxRrWI.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

13

https://openreview.net/forum?id=N0I2RtD8je
https://openreview.net/forum?id=N0I2RtD8je
https://openreview.net/forum?id=YSoMmNWZZx
https://openreview.net/forum?id=YSoMmNWZZx
https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=SgTPdyehXMA
https://openreview.net/forum?id=PRm1KxRrWI
https://openreview.net/forum?id=PRm1KxRrWI

Published as a conference paper at ICLR 2025

A RELATED WORK

Reward Design for RL Designing effective reward functions for reinforcement learning has been
a long-standing challenge. Several approaches have been proposed to tackle it.

Traditionally, researchers manually specify reward components and tune their coefficients (Ng et al.,
1999; Margolis & Agrawal, 2022; Liu et al., 2024). This method often demands significant domain
expertise and can be highly resource-intensive, involving numerous iterations of trial and error in
designing reward functions, training policies, and adjusting reward parameters.

Another approach is to learn reward functions from expert demonstrations via methods like appren-
ticeship learning (Abbeel & Ng, 2004) and maximum entropy inverse RL (Ziebart et al., 2008).
While these methods can capture complex behaviors, they often rely on high-quality demonstrations
and may struggle in environments where such data is scarce or noisy.

Preferences can also be used to learn reward functions (Zhang & Ramponi, 2023; Christiano et al.,
2017). This approach involves collecting feedback in the form of preferences between different
trajectories, which are then used to infer a reward function that aligns with the desired behavior.
This method is particularly useful in scenarios where it is difficult to explicitly define a reward
function or obtain expert demonstrations, as it allows for more intuitive and accessible feedback
from users.

Foundation Models and Reward Functions Recent work has explored the use of large lan-
guage/vision models (LL/VMs) to aid in the reward design process. L2R (Yu et al., 2023) leverages
large language models to generate reward functions for RL tasks by first creating a natural language
“motion description” and then converting it into code using predefined reward API primitives. While
innovative, L2R has notable limitations: it requires significant manual effort in designing templates
and primitives and is constrained by the latter. EUREKA (Ma et al., 2024) and Text2Reward (Xie
et al., 2024) use LLMs to generate dense reward functions for RL given the task description in
natural language and the environment code.

Foundation models have also been directly used as reward models. Rocamonde et al. (2024) uses the
cosine similarity of CLIP embeddings of language instructions and renderings of the state as a state-
only reward model. Similarly, Wang et al. (2024) automatically generates reward functions for RL
using a vision language model to label pairs of trajectories with preference, given a task description.
Motif (Klissarov et al., 2024) first constructs a pair-wise preferences dataset using a large language
model (LLM), learns a preference-based intrinsic reward model with the Bradley-Terry (Bradley &
Terry, 1952) model, and then uses this reward model to train a reinforcement learning agent. Kwon
et al. (2023) uses a similar approach, where an LLM is used during training to evaluate an RL policy,
given a few examples of successful behavior or a description of the desired behavior.

Online Model Selection The problem of model selection in sequential decision-making environ-
ments has gained significant attention in recent years (Agarwal et al., 2017; Foster et al., 2019; Pac-
chiano et al., 2020; Lee et al., 2021). This area of research addresses the challenge of dynamically
choosing the most suitable model or algorithm from a set of candidates while learning.

Agarwal et al. (2017) introduced CORRAL, a method to combine multiple bandit algorithms in a
master algorithm. Foster et al. (2019) proposed model selection guarantees for linear contextual
bandits. Pacchiano et al. (2020) extend the CORRAL algorithm and propose Stochastic CORRAL.
Lastly, Lee et al. (2021) propose Explore-Commit-Eliminate (ECE), an algorithm for model selec-
tion in RL with function approximation. A common requirement across all these approaches is the
need to know the regret guarantees of the base algorithms.

Our work is closely related to Dann et al. (2024), which removes the need for known regret guaran-
tees and instead uses realized regret bounds for the base learners. In our setting, the set of models
comprises the reward functions set and their corresponding policies.

14

Published as a conference paper at ICLR 2025

B ONLINE MODEL SELECTION

In this section, we introduce the model selection problem and some necessary notation modified
from Dann et al. (2024) for our analysis.

We consider a general sequential decision-making process consisting of a meta learner interacting
with an environment over T ∈ N rounds via a set of base learners. At each round of interaction
t = 1, 2, . . . , T , the meta learner selects a base learner bt and after executing bt, the environment
returns a model selection reward Rt ∈ R. The objective of the meta learner is to sequentially choose
base learners b1, . . . , bT to maximize the expected cumulative sum of model selection rewards, i.e.,
maxE

[∑T
t=1 Rt

]
. We denote by vb = E[R | b] the expected model selection reward, given that

the learner chooses base learner b, i.e., the value of base learner b. The total model selection reward
accumulated by the algorithm over T rounds is denoted by uT =

∑T
t=1 v

bt . The objective is to
minimize the cumulative regret after T rounds of interaction,

Reg(T) :=

T∑
t=1

reg(bt) =

T∑
t=1

v⋆ − vbt , (4)

where v⋆ is the value of the optimal base learner.

In our setting, each base learner corresponds to a reward function f and its associated policy π,
i.e., b = (f, π). In this case, choosing to execute base learner b means training with algorithm A
starting from checkpoint π and using RL reward function f . The model selection reward R is then
the evaluation of the trained policy under the task reward r, i.e., J (π). The regret of base learner
b can therefore be written as reg(b) = v⋆ − vb = J (π⋆) − J (π), where π⋆ is the optimal policy.
Therefore the objective becomes minimizing

Reg(T) =

T∑
t=1

J (π⋆)− J (πt) . (5)

Notation The policy associated with base learner i at round t is denoted by πi
t, so that πt = πit

t .
We denote the number base learner i has been played up to round t as ni

t =
∑t

ℓ=1 1 {iℓ = i} and
the total cumulative reward for learner i as ui

t =
∑t

ℓ=1 1 {iℓ = i} vπi
ℓ , where we use vπ

i
ℓ = vb

i
ℓ to

highlight that the policy associated with base learner i changes over time, but the reward function
used for RL does not. We denote the internal clock for each base learner with a subscript (k) such
that πi

(k) is the policy of learner i when chosen for the k-th time, i.e., πi
t = πi

(ni
t)

.

We note an important difference between the online model selection problem and the multi-armed
bandit (MAB) problem. In model selection, the meta learner interacts with an environment over
T rounds, selecting from K base learners. In each round t, the meta learner picks a base learner
it ∈ [K] (index of base learner chosen at step t) and follows its policy, updating the base learner’s
state with new data. Unlike MAB problems, where mean rewards are stationary, the mean rewards
here are non-stationary due to the stateful nature of base learners (the base learners are learning as
they see more data), making the design of effective model selection algorithms challenging.

Remark 1. The cumulative regret in Equation (5) is an upper bound for the cumulative regret with
respect to the best so far.

Proof. This is straightforward to see. Let us first note that, by definition, for all t ∈ [T], we have

J (π⋆
t) ≥ J (πt) . (6)

Therefore,

T∑
t=1

J (π⋆)− J (π⋆
t) ≤

T∑
t=1

J (π⋆)− J (πt) , (7)

concluding the proof.

15

Published as a conference paper at ICLR 2025

C ORSO WITH DOUBLING DATA-DRIVEN REGRET BALANCING

Here, we present the complete ORSO algorithm with Doubling Data-Driven Regret Balancing
(D3RB) as the model selection algorithm.

D3RB is built upon the idea of regret balancing, which aims to optimize the performance of multiple
models by balancing their respective regrets. Imagine weighing two models on a balance scale where
the “weight” corresponds to their regret; the goal is to keep the regret of both models balanced. This
approach ensures that models with higher regret rates are selected less frequently, while those with
lower regret rates are favored.

Concretely, regret balancing involves associating each learner with a candidate regret bound. The
model selection algorithm then competes against the regret bound of the best-performing learner
among those that are well-specified – meaning their realized regret stays within their candidate
bounds. Traditional approaches often rely on known expected regret bounds. In contrast, D3RB
focuses on realized regret, allowing the model selection algorithm to compete based on the actual
regret outcomes of each base learner. The algorithm dynamically adjusts the regret bounds in a
data-driven manner, adapting to the realized regret of the best-performing learner over time. This
approach overcomes the limitation of needing known regret bounds, which are often unavailable for
complex problems.

D3RB maintains three estimators for each base learner: regret coefficients d̂it, average rewards ûi
t/n

i
t

and balancing potentials ϕi
t. At each step t, D3RB selects the base learner with the lower balancing

potential and executes it. Then it performs the misspecification test in Equation (8) to check if
the estimated regret coefficient for base learner it is consistent with the observed data. If the test
triggers, i.e., the d̂it is too small, then the algorithm doubles it. Lastly, D3RB sets the balancing

potential ϕi
t to d̂itt

√
nit
t .

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

< max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

(8)

16

Published as a conference paper at ICLR 2025

Algorithm 2 ORSO with D3RB

Require: MDP M = (S,A, P, r, γ, ρ0), algorithm A, generator G, minimum regret coefficients
dmin, failure probability δ

1: Sample K reward functionsRK =
{
f1, . . . , fK

}
∼ G

2: Initialize K policies
{
π1, . . . , πK

}
3: Initialize balancing potentials ϕi

1 = dmin for all i ∈ [K]

4: Initialize regret coefficients d̂i0 = dmin for add i ∈ [K]
5: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

6: for t = 1, 2, . . . , T do
7: Select a base learner it ∈ [K] ∈ argmini∈[K] ϕ

i
t

8: Update πit ← Afit (Mit , π
it)

9: Evaluate Rt = J
(
πit
)
← Eval(πit)

10: // Update necessary variables
11: Set ni

t = ni
t−1, û

i
t = ûi

t−1, d̂
i
t = d̂it−1, and ϕi

t+1 = ϕi
t for all i ∈ [K] \ {it}

12: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 +Rt

13: Perform misspecification test

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

< max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

(9)

14: if test is triggered then
15: Double the regret coefficient d̂i1t ← 2d̂itt−1
16: else
17: Keep the regret coefficient unchanged d̂i1t ← d̂itt−1
18: end if
19: Update the balancing potential ϕit

t+1 ← d̂itt

√
nit
t

20: end for
21: // Best policy and reward function under the task reward
22: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)

17

Published as a conference paper at ICLR 2025

D PROOF OF LEMMA 4.4

In this section, we present the complete proof of Lemma 4.4. We will start by showing that when
Assumption 4.2 holds, then with probability at least 1− δ, the estimated regret coefficient of learner
i⋆ will never double provided that dmin ≥ c, where c is the confidence multiplier in D3RB.

Lemma D.1 (Non-doubling regret coefficient). When E holds, and algorithm D3RB is in use

d̂i⋆t = dmin and ni
T ≤ ni⋆

T + 1 for all i ∈ [K] (10)

for all t ∈ N.

Proof. In order to show this result it is sufficient to show that when E holds, algorithm i⋆ does not
undergo any doubling event. Doubling of the regret coefficients only happens when the misspecifi-
cation test triggers for algorithm i⋆.

We will show this by induction.

Base Case (t = 1) At t = 1, for all algorithms i ∈ [K]:

• d̂i1 = dmin (by initialization)

• ni
1 = 1 if i is the first algorithm chosen, 0 otherwise

Therefore ni
1 ≤ ni⋆

1 + 1 holds

Inductive Step Inductive hypothesis: assume that for some t ≥ 1:

• d̂i⋆t−1 = dmin

• ni
t−1 ≤ ni⋆

t−1 + 1 for all i ∈ [K]

We need to show these properties hold for t. Let it = i⋆. When E holds, the left-hand side (LHS) of
D3RB’s misspecification test satisfies

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

=
ûi⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

+ c

√√√√ ln
K lnni⋆

t

δ

ni⋆
t

(it = i⋆)

≥ ui⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

(event E)

(i)
=

ui⋆
t

ni⋆
t

+
dmin

√
ni⋆
t

ni⋆
t

(11)

where (i) holds because by the induction hypothesis d̂i⋆t−1 = dmin. We will now show that ni⋆
t ≥ nj

t

for all j ∈ [K]. Since by the inductive hypothesis d̂i⋆ℓ = dmin for all ℓ ≤ t − 1, the potential

ϕi⋆
ℓ = dmin

√
ni⋆
ℓ−1 for all ℓ ≤ t.

For i ∈ [K] let t(i), be the last time – before time t – algorithm i was played. For i ̸= i⋆ we have
t(i) < t. Since i was selected at time t(i), by definition of the potentials,

d̂i⋆t(i)−1

√
ni⋆
t(i)−1 = dmin

√
ni⋆
t(i)−1 ≥ d̂it(i)−1

√
ni
t(i)−1 ≥ dmin

√
ni
t(i)−1

so that ni⋆
t(i)−1 ≥ ni

t(i)−1. Since both ni⋆
t = ni⋆

t(i)−1 + 1 and ni
t = ni

t(i)−1 + 1 we conclude that

ni⋆
t ≥ ni

t.

18

Published as a conference paper at ICLR 2025

We now turn our attention to the right-hand side (RHS) of D3RB’s misspecification test. When E
holds, the RHS of D3RB’s misspecification test satisfies,

max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

≤ max
j∈[K]

uj
t

nj
t

(i)

≤ max
j∈[K]

ui⋆

(nj
t)

nj
t

(ii)

≤ ui⋆
t

ni⋆
t

(12)

where inequalities (i) and (ii) hold because of Assumption 4.2. Combining inequalities 11 and 12
we conclude the misspecification test of algorithm D3RB will not trigger. Thus, d̂i⋆t remains at dmin

and for all i ∈ [K], ni
t ≤ ni⋆

t + 1 continues to hold. This finalizes the proof.

We are now ready to prove the regret bound on the base learners given in Lemma 4.4.

Lemma 4.4. Under event E and Assumption 4.2, with probability 1− δ, the regret of all learners i
is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (3)

where di⋆T = di⋆
(ni⋆

T)
.

Proof. Consider a fixed base learner i and time horizon T , and let t ≤ T be the last round where i
was played but the misspecification test did not trigger. If no such round exists, then set t = 0. By
Corollary 9.1 in Dann et al. (2024), i can be played at most 1 + log2

d̄i
T

dmin
times between t and T ,

where d̄iT = maxℓ≤T diℓ. Thus,

ni
T∑

k=1

reg
(
πi
(k)

)
≤

ni
t∑

k=1

reg
(
πi
(k)

)
+ 1 + log2

d̄iT
dmin

.

If t = 0, then the desired statement holds. Thus, it remains to bound the first term in the RHS above
when t > 0. Since i = it and the test did not trigger we have, for any base learner j with nj

t > 0,

ni
t∑

k=1

reg
(
πi
(k)

)
= ni

tv
⋆ − ui

t (definition of regret)

= ni
tv

⋆ − ni
t

nj
t

uj
t +

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

(
nj
tv

⋆ − uj
t

)
+

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

 nj
t∑

k=1

reg
(
πj
(k)

)+
ni
t

nj
t

uj
t − ui

t (definition of regret)

≤ ni
t

nj
t

(
djt

√
nj
t

)
+

ni
t

nj
t

uj
t − ui

t (definition of regret rate)

=

√
ni
t

nj
t

djt

√
ni
t +

ni
t

nj
t

uj
t − ui

t.

19

Published as a conference paper at ICLR 2025

We now focus on j = i⋆ and use the balancing condition in Lemma 9.2 in Dann et al. (2024) to

bound the first factor
√
ni
t/n

i⋆
t . This condition gives that ϕi

t+1 ≤ 3ϕi⋆
t+1. Since both ni⋆

t > 0 and

ni
t > 0, we have ϕi

t+1 = d̂it
√
ni
t and ϕi⋆

t+1 = d̂i⋆t

√
ni⋆
t . Thus, we get√

ni
t

ni⋆
t

=

√
ni
t

ni⋆
t

· d̂
i
t

d̂i⋆t
· d̂

i⋆
t

d̂it
=

ϕi
t+1

ϕi⋆
t+1

· d̂
i⋆
t

d̂it
≤ 3

d̂i⋆t

d̂it
≤ 3, (13)

where the last inequality holds because of Lemma D.1 and because d̂it ≥ dmin.

Plugging this back into the expression above and setting j = i⋆, we have

ni
t∑

k=1

reg
(
πi
(k)

)
≤ 3di⋆t

√
ni
t +

ni
t

ni⋆
t

ui⋆
t − ui

t.

To bound the last two terms, we use the fact that the misspecification test did not trigger in round t.
Therefore,

ui
t ≥ ûi

t − c

√
ni
t ln

K lnni
t

δ
(event E)

= ni
t

 ûi
t

ni
t

+ c

√
ln

K lnni
t

δ

ni
t

+
d̂it
√
ni
t

ni
t

− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t

≥ ni
t

ni⋆
t

ûi⋆
t −

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t. (test not triggered)

Rearranging terms and plugging this expression in the bound above gives

ni
t∑

k=1

reg(πi
(k)) ≤ 3di⋆t

√
ni
t +

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t (Equation (13))

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ 3d̂i⋆t

√
ni⋆
t

(Equation (13))

≤ 3di⋆t

√
ni
t + 3d̂i⋆t

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(max(ni

t, n
i⋆
t) ≤ t)

≤ 3di⋆t

√
ni
t + 3dmin

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(Lemma D.1)

Finally, Lemma D.1 also implies ni
t ≤ ni⋆

t + 1 and since dmin ≤ di⋆t ,

ni
t∑

k=1

reg(πi
(k)) ≤ 6di⋆t

√
ni⋆
t + 1 + 5c

√
(ni⋆

t + 1) ln
K ln t

δ
.

The statement follows by setting t = T .

20

Published as a conference paper at ICLR 2025

E REWARD FUNCTIONS DEFINITIONS

In this section, we present the definition of the human-engineered reward functions and the task
reward functions used to evaluate the generated reward in Table 1. The task reward functions are the
same as the ones used in Ma et al. (2024).

Table 1: Task reward functions definitions.

ENVIRONMENT TASK REWARD

CARTPOLE
∑

1 {agent is alive}
BALLBALANCE

∑
1 {agent is alive}

ANT current distance - previous distance
HUMNAOID current distance - previous distance
ALLEGROHAND

∑
1 {rotation distance < 0.1}

SHADOWHAND
∑

1 {rotation distance < 0.1}

The human-designed reward functions from (Makoviychuk et al., 2021) are

• CARTPOLE

r =
(
1.0− pole angle2 − 0.01 · |cart vel| − 0.005 · |pole vel|

)
.

The reward is additionally multiplied by −2.0 if |cart pos| > reset dist and multi-
plied by −2.0 once again if pole angle > π

2 .

• BALLBALANCE

r = pos reward× speed reward =
1

1 + ball dist
× 1

1 + ball speed
,

where

ball dist =
√
ball pos x2 + ball pos y2 + (ball pos z− 0.7)2,

where 0.7 is the desired height above the ground, and

ball speed = ∥ball velocity∥2 .

• ANT and HUMNAOID

r = rprogress + ralive × 1 {torso height ≥ termination height}+ rupright

+ rheading + reffort + ract + rdof

+ rdeath × 1 {torso height ≤ termination height} ,

where

rprogress = current potential - previous potential

rupright = ⟨torso up vector,up vector⟩ > 0.93

rheading = heading vector×
{
1.0, if norm angle to target ≥ 0.8
norm angle to target

0.8 , otherwise

ract = −
∑
∥actions∥2

reffort =

N∑
i=1

actionsi × normalized motor strengthi × dof velocityi

potential = −
∥ptarget − ptorso∥2

dt

21

Published as a conference paper at ICLR 2025

• ALLEGROHAND and SHADOWHAND

r = −10rdist + rrot − 2× 10−4ract

where

rdist = ∥pobj − ptarget∥2

rrot =
1

|rot dist|+ 0.1

ract =
∑
∥actions∥2

rot dist = 2× arcsin
(
max

(
1, ∥qobj, qtarget∥2

))
where q is the quaternion and q is its conjugate.

22

Published as a conference paper at ICLR 2025

E.1 REWARD FUNCTIONS SELECTED BY ORSO

We report the best reward function selected by ORSO below. The reward functions are reported as
is, with only the formatting of comments and spacing changed to fit within the box.

Reward Function for Allegro Hand

def compute_gpt_reward(
object_rot: torch.Tensor,
goal_rot: torch.Tensor,
shadow_hand_dof_pos: torch.Tensor,
shadow_hand_dof_vel: torch.Tensor,
actions: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

Configurable parameters
dist_reward_scale = float(2.0)
action_penalty_scale = float(0.05)
success_tolerance = float(0.05)
reach_goal_bonus = float(20.0)

Compute distance to goal rotation using Quaternion distance
q_diff = object_rot - goal_rot
dist_to_goal = torch.norm(q_diff, dim=-1)

Rotation distance reward (scaled)
rot_reward = torch.exp(-dist_reward_scale * dist_to_goal)

Action penalty (scaled)
action_penalty = torch.sum(actions**2, dim=-1)
action_penalty_scaled = action_penalty_scale * action_penalty

Check if the goal has been reached within the tolerance
success_mask = dist_to_goal < success_tolerance
goal_bonus = torch.where(

success_mask,
torch.tensor(reach_goal_bonus, device=dist_to_goal.device),
torch.tensor(0.0, device=dist_to_goal.device)

)

Total reward
reward = rot_reward - action_penalty_scaled + goal_bonus

Dictionary of individual reward components
reward_components = {

"rot_reward": rot_reward,
"action_penalty": action_penalty_scaled,
"goal_bonus": goal_bonus

}

return reward, reward_components

23

Published as a conference paper at ICLR 2025

Reward Function for Ant

def compute_gpt_reward(
root_states: torch.Tensor,
actions: torch.Tensor,
dt: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
Device
device = root_states.device

Extract necessary information from the root states
velocity = root_states[:, 7:10] # [vx, vy, vz]
torso_position = root_states[:, 0:3] # [px, py, pz]

Forward velocity along the x-axis
forward_velocity = velocity[:, 0]

Reward component: scaled forward velocity
Retain existing scaling factor
forward_reward = forward_velocity * 2.0

Penalty for large actions
(to avoid unnecessary or jerky movements)
action_penalty = torch.sum(actions**2, dim=-1)
Increased scaling factor for more impact
action_penalty_scaled = action_penalty * 1.0

Desired height range (e.g., 0.45 to 0.55)
target_height = torch.tensor(0.5, device=device)
height_diff = torch.abs(torso_position[:, 2] - target_height)
Adjusted temperature parameter to increase contribution
balance_temperature = 0.1
Retain existing scaling
balance_reward = torch.exp(-height_diff/balance_temperature) * 5.0

Additional penalty for deviation from target angle
(to encourage running straight)
target_angle = torch.tensor(0.0, device=device)
Assuming index 5 is yaw angle
angle_diff = torch.abs(root_states[:, 5] - target_angle)
angle_penalty = -torch.exp(-angle_diff / balance_temperature)

Survival bonus to encourage longer episode lengths
Reduced overall magnitude
survival_bonus = torch.ones_like(forward_velocity) * 0.5

Total reward calculation
reward = forward_reward + balance_reward +

angle_penalty - action_penalty_scaled +
survival_bonus

Dictionary of individual reward components for debugging
reward_components = {

’forward_reward’: forward_reward,
’action_penalty_scaled’: -action_penalty_scaled,
’balance_reward’: balance_reward,
’angle_penalty’: angle_penalty,
’survival_bonus’: survival_bonus

}

return reward, reward_components

24

Published as a conference paper at ICLR 2025

Reward Function for Ball Balance

def compute_gpt_reward(
ball_positions: torch.Tensor,
ball_linvels: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""
Compute the reward for keeping the ball on the table top
without falling.

Args:
- ball_positions: torch.Tensor of shape (N, 3) giving the

positions of the balls.
- ball_linvels: torch.Tensor of shape (N, 3) giving the

linear velocities of the balls.

Returns:
- reward: the total reward as a torch.Tensor of shape (N,)
- reward_components: dictionary with individual reward components.
"""

Assume ball_positions[:, 2] is the height z of the ball.
target_height = torch.tensor(0.5, device=ball_positions.device)

Reward for staying close to the target height
height_diff = torch.abs(ball_positions[:, 2] - target_height)
Decreased temperature for larger impact
height_temp = torch.tensor(5.0, device=ball_positions.device)
height_reward = torch.exp(-height_diff * height_temp)

Reward for having low linear velocity
ball_linvels_norm = torch.linalg.norm(ball_linvels, dim=1)
Increased scale for more significant impact
vel_scale = torch.tensor(10.0, device=ball_positions.device)
vel_reward = torch.exp(-ball_linvels_norm * vel_scale)

Penalty for being far from the center (in xy-plane)
center_xy = torch.tensor([0, 0], device=ball_positions.device)
xy_diff = torch.linalg.norm(

ball_positions[:, :2] - center_xy,
dim=1

)
Some threshold distance
xy_threshold = torch.tensor(0.5, device=ball_positions.device)
xy_penalty = torch.where(

xy_diff > xy_threshold,
-torch.exp(xy_diff - xy_threshold),
torch.tensor(0.0, device=ball_positions.device)

)

Combine the rewards
total_reward = height_reward + vel_reward + xy_penalty

Compile individual components into a dictionary
reward_components = {

"height_reward": height_reward,
"vel_reward": vel_reward,
"xy_penalty": xy_penalty

}

return total_reward, reward_components

25

Published as a conference paper at ICLR 2025

Reward Function for Cartpole

def compute_gpt_reward(
dof_pos: torch.Tensor,
dof_vel: torch.Tensor,

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

Extract pole angle and angular velocity
pole_angle = dof_pos[:, 1]
pole_ang_vel = dof_vel[:, 1]

Reward components
Reward for keeping the pole upright
upright_bonus_t = 10.0
upright_bonus = torch.exp(-upright_bonus_t*(pole_angle**2))

Penalty for pole’s angular velocity (to encourage stability)
ang_vel_penalty_t = 0.1
ang_vel_penalty = torch.exp(-ang_vel_penalty_t*(pole_ang_vel**2))

Sum the rewards and penalties
reward = upright_bonus + ang_vel_penalty

Create a dictionary of individual reward components for
debugging or further analysis
reward_components = {

’upright_bonus’: upright_bonus,
’ang_vel_penalty’: ang_vel_penalty,

}

return reward, reward_components

26

Published as a conference paper at ICLR 2025

Reward Function for Humanoid

def compute_gpt_reward(
root_states: torch.Tensor,
targets: torch.Tensor,
dt: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
Extract relevant components
velocity = root_states[:, 7:10]

Vector pointing to the target
torso_position = root_states[:, 0:3]
to_target = targets - torso_position
to_target[:, 2] = 0

Normalize to_target to get direction
direction_to_target = torch.nn.functional.normalize(

to_target,
p=2.0,
dim=-1

)

Project velocity onto direction to target to get velocity
component in the right direction
velocity_towards_target = torch.sum(

velocity * direction_to_target,
dim=-1,
keepdim=True

)

Reward for moving towards the target quickly
speed_reward = velocity_towards_target.squeeze()

Apply an exponential transformation to encourage higher speeds
temp_speed = 0.1
speed_reward_transformed = torch.exp(speed_reward/temp_speed)-1.0

Combine rewards (single component in this case)
total_reward = speed_reward_transformed

Reward components in a dictionary form
rewards = {"speed_reward": speed_reward_transformed}

return total_reward, rewards

27

Published as a conference paper at ICLR 2025

Reward Function for Shadow Hand

def compute_gpt_reward(
object_rot: torch.Tensor,
goal_rot: torch.Tensor,
actions: torch.Tensor,
success_tolerance: float,
reach_goal_bonus: float,
rot_reward_scale: float,
action_penalty_scale: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

Rotation Distance Reward with adjusted scaling
rot_dist = torch.norm(object_rot - goal_rot, dim=-1)
New temperature parameter for rotational reward
rot_reward_temp = 3.0
rot_reward = torch.exp(-rot_dist*rot_reward_scale/rot_reward_temp)

Goal Achievement Bonus
goal_reached = rot_dist < success_tolerance
goal_bonus = reach_goal_bonus * goal_reached.float()

Action Penalty with increased scale
Increasing the action penalty scale
increased_aps = 2.0 * action_penalty_scale
action_penalty = torch.sum(actions**2, dim=-1) * increased_aps

Intermediate Reward for making progress towards rotating to goal
interm_steps_temp = 0.5
intermediate_steps_reward = torch.exp(-rot_dist/interm_steps_temp)

Penalty for large deviations from goal orientation
deviation_scale = 0.2
deviation_penalty = rot_dist * deviation_scale

Calculate total reward
total_reward = rot_reward + goal_bonus +

intermediate_steps_reward - action_penalty -
deviation_penalty

Create a dictionary of individual rewards for monitoring
reward_dict = {

"rot_reward": rot_reward,
"goal_bonus": goal_bonus,
"intermediate_steps_reward": intermediate_steps_reward,
"action_penalty": action_penalty,
"deviation_penalty": deviation_penalty

}

return total_reward, reward_dict

28

Published as a conference paper at ICLR 2025

F IMPLEMENTATION DETAILS

Rejection Sampling While the LLM produces seemingly good code, this does not guarantee that
the sampled code is bug-free and runnable. In ORSO, we employ a simple rejection sampling tech-
nique to construct sets of only valid reward functions with high probability, such that reward func-
tions that cannot be compiled or produce ±∞ or NaN values are discarded.

Given criteria ϕ to be satisfied, our rejection sampling scheme repeats the steps in Algorithm 3 until
we have sampled the desired number, K, of valid reward functions.

Algorithm 3 Rejection Sampling in ORSO

1: Sample a candidate reward function f ∼ G
2: if ϕ(f) is satisfied then
3: Add f to the set of candidate reward functions
4: else
5: Reject reward function f
6: end if

In our practical implementation, checking if criteria ϕ are satisfied consists of instantiating an envi-
ronment with the generated reward function, running a random policy on it, and checking the values
produced by the reward function. If the environment cannot be instantiated or if the values returned
by the reward function are ±∞ or NaN, the reward function is rejected. It is worth making two im-
portant observations. First, this is much computationally cheaper than instantiating the environment
for training because one does not need to initialize large neural networks and can use fewer parallel
environments than the number necessary for training. Moreover, we note that the rejection sampling
mechanism only guarantees a higher probability of a valid reward function code as the policy used
to evaluate the function is random and the optimization process used during the training of an RL
algorithm could still induce undesirable values.

Iterative Improvement of the Reward Function Set In the initial phase of ORSO, the algorithm
generates a set of candidate reward functions RK for the online reward selection and policy opti-
mization step. While this approach is effective if RK contains an effective reward function, any
selection process will fail to achieve a high task reward if the set does not contain a good reward
function. To address this limitation, we introduce a mechanism for improving the reward function
set through iterative resampling and in-context evolution. This is similar to Ma et al. (2024), how-
ever, we introduce some important changes to prevent the in-context evolution from overfitting to
initially suboptimal reward functions.

Resampling is triggered when at least one reward function has been used to train a policy for the
number of iterations specified in the environment configuration or if all the reward functions in the
set incurred too large a regret compared to the previous best policy if the algorithm has undergone
at least one resampling step.

There are several strategies for resampling reward functions, each with its trade-offs. The simplest
approach is to sample new reward functions from scratch, using the same generator G that was used
in the initial phase. However, this method may not provide significant improvement, as it essentially
restarts the search process without leveraging the information gained from the previous iterations of
training.

A more sophisticated approach is to greedily in-context evolve the reward function from the best-
performing candidate so far as is done in Ma et al. (2024). This involves making incremental ad-
justments to the reward function that has shown the most promise, potentially moving it closer to an
optimal reward function. However, while this greedy strategy can lead to improvements, it also has
the risk of overfitting to an initially suboptimal reward function if, for example, the initial set does
not contain effective reward functions.

To mitigate the risk of overfitting, we introduce a simple strategy that allows the algorithm to be
more exploratory. Specifically, we combine greedy evolution with random sampling: half of the
reward functions are evolved in context from the best-performing candidate, while the other half
is sampled from scratch. This approach allows the algorithm to explore new regions of the reward

29

Published as a conference paper at ICLR 2025

function space while still exploiting the knowledge gained from previous iterations. We provide the
full pseudo-code for ORSO with rejection sampling and iterative improvement in Algorithm 4.

Algorithm 4 ORSO with Rejection Sampling and Iterative Improvement

Require: MDPM = (S,A, P, r, γ, ρ0), algorithm A, generator G, budget T , threshold n iters
1: Sample K valid reward functionsRK =

{
f1, . . . , fK

}
∼ G using Algorithm 3

2: Initialize K policies
{
π1, . . . , πK

}
3: Initialize selection counts NK = {0, . . . , 0}
4: Set t← 1
5: while t ≤ T do
6: Select a model it ∈ [K] according to a selection strategy
7: Update πit ← Afit (M, N, πit)

8: Evaluate J (πit)← Eval(πit)
9: Update selection counts: N it ← N it + 1

10: Update variables (e.g., reward estimates and confidence intervals)
11: if N it ≥ n iters or regret w.r.t. previous best is too high then
12: ResampleRK ∼ G (half in-context evolution, half from scratch)
13: Sample a new set of reward functionsRK =

{
f1, . . . , fK

}
using rejection sampling

14: Reset policies
{
π1, . . . , πK

}
15: Reset selection counts NK = {0, . . . , 0}
16: end if
17: t← t+ 1
18: end while
19: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)

30

Published as a conference paper at ICLR 2025

G SELECTION ALGORITHMS AND HYPERPARAMETERS

In this section, we present the pseudocode for all reward selection algorithms used in our experi-
ments with their associated hyperparameters in Table 2.

Algorithm 5 ε-Greedy

Require: Number of arms K, total time T , exploration probability ε
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . , T do
3: Select arm

it =

{
argmaxi(û

i
t/n

i
t), with probability 1− ε

i ∼ Uniform([K]), with probability ε

4: Play arm it and observe reward rt
5: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

6: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
7: end for

Algorithm 6 Explore-then-Commit

Require: Number of arms K, total time T , exploration phase length T0

1: Initialize counts ni
0 = 0 and total values ûi

0 = 0 for all i ∈ [K]
2: // Explore
3: for t = 1, . . . , T0 do
4: Select arm it = (t mod K) + 1
5: Play arm it and observe reward rt
6: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

7: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
8: end for
9: // Commit

10: i⋆ = argmaxi(u
i
t/n

i
t)

11: for t = T0 + 1 to T do
12: Play arm i⋆ and observe reward rt
13: end for

Algorithm 7 UCB (Upper Confidence Bound)

Require: Number of arms K, total time T , confidence multiplier c
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . ,K do
3: Select arm it = t
4: Play arm it and observe reward rt
5: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

6: end for
7: for t = K + 1, . . . , T do
8: Select arm

it = argmax
i

(
ûi
t

ni
t

+ c

√
2
ln t

ni
t

)
9: Play arm it and observe reward rt

10: Set ni
t = ni

t−1, and ûi
t = ûi

t−1 for all i ∈ [K] \ {it}
11: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

12: end for

31

Published as a conference paper at ICLR 2025

Algorithm 8 Exp3 (Exponential-weight algorithm for Exploration and Exploitation)

Require: Number of arms K, total time T , learning rate η
1: Initialize weights wi

0 = 1 and probabilities pi0 = 1/K for all i ∈ [K]
2: for t = 1, . . . , T do
3: Select arm it according to distribution Pt = [p1t , . . . , p

K
t]

4: Play arm it and observe reward rt
5: Estimate reward r̂t = rt/p

it
t

6: Update weight wit
t = wit

t−1 exp(ηr̂t/K)
7: Update probabilities

pit = (1− η)
wi

t∑K
j=1 w

j
t

+
η

K
for all i ∈ [K]

8: end for

Table 2: Hyperparameters for MAB Algorithms

ALGORITHM PARAMETER VALUE

EPSILON-GREEDY ε 0.1
EXPLORE-THEN-COMMIT T0 5 ·K
UCB c 1.0
EXP3 η 0.1

32

Published as a conference paper at ICLR 2025

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report additional experimental evaluations. In particular, we show how different
configurations of budget constraints B and sizes K of the reward function set perform with different
reward selection algorithms in different environments in Figures 7 to 10.

0 1 2 3 4 5
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

C
ar

tp
ol

e\
Ta

sk
 R

ew
ar

d

B = 5

0 2 4 6 8 10
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0 3 6 9 12 15
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

0 1 2 3 4 5
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

B
al

l B
al

an
ce

\T
as

k
R

ew
ar

d

B = 5

0 2 4 6 8 10
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0 3 6 9 12 15
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0
B = 15

0 1 2 3 4 5
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

A
nt

\T
as

k
R

ew
ar

d

B = 5

0 2 4 6 8 10
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0 3 6 9 12 15
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

B = 15

0 1 2 3 4 5
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
oi

d\
Ta

sk
 R

ew
ar

d

B = 5

0 2 4 6 8 10
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0
B = 10

0 3 6 9 12 15
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

B = 15

0 1 2 3 4 5
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

A
lle

gr
o

H
an

d\
Ta

sk
 R

ew
ar

d

B = 5

0 2 4 6 8 10
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2
B = 10

0 3 6 9 12 15
Iteration Budget

0.00

0.25

0.50

0.75

1.00

1.25

B = 15

0 1 2 3 4 5
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

do
w

 H
an

d\
Ta

sk
 R

ew
ar

d

B = 5

0 2 4 6 8 10
Iteration Budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2
B = 10

0 3 6 9 12 15
Iteration Budget

0.00

0.25

0.50

0.75

1.00

1.25
B = 15

Human Naive EG ETC UCB Exp3 D3RB

Figure 7: Number of iterations necessary to reach human-engineered reward function performance
with different computation budgets and tasks. The shaded areas represent standard errors.

33

Published as a conference paper at ICLR 2025

0 1 2 3 4 5
Interaction Budget

0.00

0.25

0.50

0.75

1.00

Ta
sk

 R
ew

ar
d

B = 5

0 2 4 6 8 10
Interaction Budget

0.0

0.5

1.0

B = 10

0 3 6 9 12 15
Interaction Budget

0.0

0.5

1.0

B = 15
Human Naive EG ETC UCB Exp3 D3RB

Figure 8: Number of iterations necessary to reach human-engineered reward function performance
with different computation budgets. The shaded areas represent standard errors.

Cartpole Balance Ant Humanoid Allegro Shadow
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 4

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 8

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 5, K = 16

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 4

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 8

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 10, K = 16

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 4

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 8

Cartpole Balance Ant Humanoid Allegro Shadow
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 T
as

k
R

ew
ar

d B = 15, K = 16

Human No Design Naive ORSO (D3RB)

Figure 9: Average performance with standard errors for ORSO with different interaction budget
constraints and reward function set size. The dashed horizontal line represents the policies trained
with the human-engineered reward function.

D3RB Exp3 UCB ETC EG Naive
0.00

0.25

0.50

0.75

1.00

Ta
sk

 R
ew

ar
d

B = 5, K = 4

D3RB Exp3 UCB ETC EG Naive
0.00

0.25

0.50

0.75

1.00

Ta
sk

 R
ew

ar
d

B = 5, K = 8

D3RB Exp3 UCB ETC EG Naive
0.00

0.25

0.50

0.75

1.00

Ta
sk

 R
ew

ar
d

B = 5, K = 16

D3RB Exp3 UCB ETC EG Naive
0.0

0.5

1.0

Ta
sk

 R
ew

ar
d

B = 10, K = 4

D3RB Exp3 UCB ETC EG Naive
0.0

0.5

1.0

Ta
sk

 R
ew

ar
d

B = 10, K = 8

D3RB Exp3 UCB ETC EG Naive
0.00

0.25

0.50

0.75

1.00

Ta
sk

 R
ew

ar
d

B = 10, K = 16

D3RB Exp3 UCB ETC EG Naive
0.0

0.5

1.0

Ta
sk

 R
ew

ar
d

B = 15, K = 4

D3RB Exp3 UCB ETC EG Naive
0.0

0.5

1.0

Ta
sk

 R
ew

ar
d

B = 15, K = 8

D3RB Exp3 UCB ETC EG Naive
0.0

0.5

1.0

Ta
sk

 R
ew

ar
d

B = 15, K = 16

Figure 10: Comparison of different reward selection algorithms for ORSO with different budget
constraints and reward function set size.

We also plot in Figure 11 the time necessary to achieve the same performance as policies trained
with human-designed reward functions as a function of the number of parallel GPUs available for
all budget constraints and all tasks considered.

34

Published as a conference paper at ICLR 2025

1 2 4 8 16
Number of GPUs

0.000

0.002

0.004

0.006

0.008

0.010

0.012
C

ar
tp

ol
e

Ti
m

e
to

 H
um

an
 P

er
fo

rm
an

ce
 (h

) Budget = 5

1 2 4 8 16
Number of GPUs

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Budget = 10

1 2 4 8 16
Number of GPUs

0.000

0.002

0.004

0.006

0.008

0.010

Budget = 15

1 2 4 8 16
Number of GPUs

0.00

0.05

0.10

0.15

0.20

B
al

l B
al

an
ce

Ti
m

e
to

 H
um

an
 P

er
fo

rm
an

ce
 (h

) Budget = 5

1 2 4 8 16
Number of GPUs

0.0

0.1

0.2

0.3

0.4

Budget = 10

1 2 4 8 16
Number of GPUs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Budget = 15

1 2 4 8 16
Number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
nt

Ti
m

e
to

 H
um

an
 P

er
fo

rm
an

ce
 (h

) Budget = 5

1 2 4 8 16
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

Budget = 10

1 2 4 8 16
Number of GPUs

0

1

2

3

4
Budget = 15

1 2 4 8 16
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
um

an
oi

d
Ti

m
e

to
 H

um
an

 P
er

fo
rm

an
ce

 (h
) Budget = 5

1 2 4 8 16
Number of GPUs

0

1

2

3

4

5

6

Budget = 10

1 2 4 8 16
Number of GPUs

0

2

4

6

8

Budget = 15

1 2 4 8 16
Number of GPUs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

A
lle

gr
o

H
an

d
Ti

m
e

to
 H

um
an

 P
er

fo
rm

an
ce

 (h
) Budget = 5

1 2 4 8 16
Number of GPUs

0

5

10

15

20

25

30
Budget = 10

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Budget = 15

1 2 4 8 16
Number of GPUs

0

2

4

6

8

10

12

S
ha

do
w

 H
an

d
Ti

m
e

to
 H

um
an

 P
er

fo
rm

an
ce

 (h
) Budget = 5

1 2 4 8 16
Number of GPUs

0

5

10

15

20

25

Budget = 10

1 2 4 8 16
Number of GPUs

0

10

20

30

40
Budget = 15

Naive ORSO (D3RB)

Figure 11: Time necessary to achieve the same performance as policies trained with human-designed
reward functions as a function of the number of parallel GPUs.

H.1 CHOSEN REWARD FUNCTIONS FOR LARGE REWARD SET

In order to validate that ORSO with D3RB indeed chooses the optimal reward function, we train a
policy for each of the K = 96 reward functions for the ANT task in Figure 6. In Table 3, we report
the mean task reward with 95% confidence intervals over five seeds. Rewards are ordered from best
to worst, with those within one confidence interval of the best reward underlined. Bolded values
indicate the reward functions selected by ORSO across the seeds we ran.

35

Published as a conference paper at ICLR 2025

Table 3: Mean task reward for each Reward ID with 95% confidence intervals (CI).

REWARD ID MEAN (± CI)

34 10.24 ± 0.36
18 10.01 ± 0.63
71 9.98 ± 0.37
79 9.88 ± 0.73
21 9.77 ± 0.22
94 9.70 ± 0.38
66 9.67 ± 0.27
81 9.55 ± 0.80
70 9.51 ± 0.63
37 9.46 ± 0.55
33 9.34 ± 0.83
95 9.27 ± 0.33
47 9.24 ± 0.68
63 9.21 ± 0.76
54 9.20 ± 0.80
80 9.16 ± 0.25
62 8.88 ± 0.37
38 8.81 ± 0.45
49 8.81 ± 0.77
35 8.69 ± 1.07
5 8.61 ± 0.56
52 8.35 ± 1.43
67 8.32 ± 0.85
46 8.30 ± 0.89
68 8.20 ± 1.22
75 8.09 ± 0.40
84 8.05 ± 1.25
85 7.77 ± 0.97
72 7.64 ± 1.27
55 7.43 ± 1.46
20 7.26 ± 0.18
23 7.26 ± 1.12
86 7.15 ± 0.42
36 7.06 ± 0.68
91 6.93 ± 1.45
1 6.50 ± 1.17
31 6.36 ± 0.80
61 6.06 ± 0.93
19 5.78 ± 1.43
25 5.67 ± 1.41
48 5.65 ± 1.54
59 5.59 ± 1.02
26 5.50 ± 0.89
60 5.47 ± 1.17
44 5.47 ± 1.36
40 5.34 ± 1.73
73 5.33 ± 1.77
0 5.30 ± 1.38

REWARD ID MEAN (± CI)

56 5.05 ± 0.62
39 4.91 ± 0.64
74 4.88 ± 0.49
30 4.83 ± 0.78
78 4.83 ± 0.35
6 4.76 ± 0.91
2 4.69 ± 0.92
28 4.66 ± 1.21
8 4.65 ± 0.44
16 4.57 ± 1.08
29 4.53 ± 0.81
65 4.44 ± 0.62
50 4.23 ± 1.94
58 3.89 ± 0.43
53 3.86 ± 0.44
32 3.79 ± 0.73
22 3.74 ± 0.54
3 3.48 ± 1.66
69 3.22 ± 0.42
4 3.18 ± 0.42
88 3.18 ± 0.43
64 3.12 ± 0.16
9 3.11 ± 0.39
17 3.10 ± 0.15
93 3.02 ± 0.21
14 2.99 ± 0.52
45 2.89 ± 0.29
83 2.72 ± 0.82
27 2.50 ± 0.72
10 2.15 ± 0.43
57 1.69 ± 0.80
7 1.67 ± 1.01
82 1.03 ± 0.35
42 0.63 ± 0.80
41 0.37 ± 0.30
43 0.33 ± 0.16
76 0.22 ± 0.08
89 0.22 ± 0.07
24 0.21 ± 0.03
11 0.21 ± 0.08
12 0.19 ± 0.14
15 0.19 ± 0.14
92 0.14 ± 0.07
77 0.13 ± 0.04
13 0.05 ± 0.00
51 0.05 ± 0.00
87 0.05 ± 0.02
90 0.00 ± 0.00

36

Published as a conference paper at ICLR 2025

H.2 VISUALIZING ORSO

To better visualize how ORSO selects the best reward function, discards suboptimal ones efficiently,
and thanks to this, explores more reward functions, we provide further visualizations in this section.

Figures 12 and 13 show a full training of ORSO (D3RB) and the naive selection stratecy (EUREKA)
with a budget B = 15 and K = 16 on the ALLEGROHAND task, respectively. In both figures, the
top plot shows the task reward during training. The colors indicate the reward functions currently
in use. The middle plot more clearly shows the reward function being currently used. The vertical
axis contains the reward function indices. In both plots, the dashed vertical lines indicate that a
resampling has been triggered. Lastly, the bottom plot shows the unnormalized cumulative regret
during training.

Comparing the two figures, we can see that ORSO initially explores all reward functions near-
uniformly, but quickly finds a policy that surpasses the policy from the human-engineered reward
function, leading to a decrease in regret. On the other hand, EUREKA uniformly trains on each re-
ward function leading the algorithm to explore fewer reward functions. Moreover, we see that the
lack of rejection sampling can result in initial reward function sets that contain many invalid reward
functions – indicated by a × in the figures.

0 10000 20000 30000 40000 50000 60000 70000

0

5

10

15

20

25

30

Ta
sk

 R
ew

ar
d

AllegroHand D3RB with B=15, K=16

0 10000 20000 30000 40000 50000 60000 70000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

R
ew

ar
d

Fu
nc

tio
n

0 10000 20000 30000 40000 50000 60000 70000
Iteration

60000

40000

20000

0

C
um

ul
at

iv
e

R
eg

re
t

Figure 12: ORSO (D3RB) on ALLEGROHAND with B = 15 and K = 16.

37

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000 60000 70000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

AllegroHand EUREKA with B=15, K=16

0 10000 20000 30000 40000 50000 60000 70000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

R
ew

ar
d

Fu
nc

tio
n

0 10000 20000 30000 40000 50000 60000 70000
Iteration

0

5000

10000

15000

20000

25000

30000

35000

C
um

ul
at

iv
e

R
eg

re
t

Figure 13: EUREKA on ALLEGROHAND with B = 15 and K = 16.

0 5000 10000 15000 20000 25000

0.00

0.02

0.04

0.06

0.08

Ta
sk

 R
ew

ar
d

AllegroHand EUREKA with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

5000

10000

15000

20000

25000

C
um

ul
at

iv
e

R
eg

re
t

Figure 14: EUREKA on ALLEGROHAND with B = 5 and K = 8.

38

Published as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000

0

5

10

15

20

Ta
sk

 R
ew

ar
d

AllegroHand D3RB with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

8000

6000

4000

2000

0

2000

4000

C
um

ul
at

iv
e

R
eg

re
t

Figure 15: ORSO (D3RB) on ALLEGROHAND with B = 5 and K = 8.

0 5000 10000 15000 20000 25000

0

2

4

6

8

10

12

Ta
sk

 R
ew

ar
d

AllegroHand EXP3 with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

5000

10000

15000

20000

C
um

ul
at

iv
e

R
eg

re
t

Figure 16: ORSO (Exp3) on ALLEGROHAND with B = 5 and K = 8.

39

Published as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ta
sk

 R
ew

ar
d

AllegroHand UCB with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

10000

8000

6000

4000

2000

0

2000

C
um

ul
at

iv
e

R
eg

re
t

Figure 17: ORSO (UCB) on ALLEGROHAND with B = 5 and K = 8.

0 5000 10000 15000 20000 25000

0

2

4

6

8

10

12

Ta
sk

 R
ew

ar
d

AllegroHand ETC with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

1000

2000

3000

4000

C
um

ul
at

iv
e

R
eg

re
t

Figure 18: ORSO (ETC) on ALLEGROHAND with B = 5 and K = 8.

40

Published as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000

0

2

4

6

8

10

12

14

Ta
sk

 R
ew

ar
d

AllegroHand EG with B=5, K=8

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

R
ew

ar
d

Fu
nc

tio
n

0 5000 10000 15000 20000 25000
Iteration

0

5000

10000

15000

20000

C
um

ul
at

iv
e

R
eg

re
t

Figure 19: ORSO (EG) on ALLEGROHAND with B = 5 and K = 8.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

Ant EUREKA with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

1000

2000

3000

4000

5000

C
um

ul
at

iv
e

R
eg

re
t

Figure 20: EUREKA on ANT with B = 10 and K = 4.

41

Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

10

Ta
sk

 R
ew

ar
d

Ant D3RB with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

500

1000

1500

2000

C
um

ul
at

iv
e

R
eg

re
t

Figure 21: ORSO (D3RB) on ANT with B = 10 and K = 4.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

10

Ta
sk

 R
ew

ar
d

Ant EXP3 with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

500

250

0

250

500

750

1000

C
um

ul
at

iv
e

R
eg

re
t

Figure 22: ORSO (Exp3) on ANT with B = 10 and K = 4.

42

Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

10

Ta
sk

 R
ew

ar
d

Ant UCB with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

500

1000

1500

2000

2500

3000

C
um

ul
at

iv
e

R
eg

re
t

Figure 23: ORSO (UCB) on ANT with B = 10 and K = 4.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

Ant ETC with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

1000

2000

3000

4000

C
um

ul
at

iv
e

R
eg

re
t

Figure 24: ORSO (ETC) on ANT with B = 10 and K = 4.

43

Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2

4

6

8

Ta
sk

 R
ew

ar
d

Ant EG with B=10, K=4

0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

R
ew

ar
d

Fu
nc

tio
n

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0

1000

2000

3000

4000

5000

C
um

ul
at

iv
e

R
eg

re
t

Figure 25: ORSO (EG) on ANT with B = 10 and K = 4.

44

	Introduction
	Preliminaries
	Method: Reward Design as Sequential Decision Making
	Orso: Online Reward Selection and Policy Optimization

	Theoretical Guarantees
	Practical Implementation and Experimental Results
	Experimental Setup
	Baselines
	Implementation

	Results
	Ablation Study

	Related Work
	Conclusion
	Limitations and Future Work

	Related Work
	Online Model Selection
	Orso with Doubling Data-Driven Regret Balancing
	Proof of lem:baselearnerregret
	Reward Functions Definitions
	Reward Functions Selected by Orso

	Implementation Details
	Selection Algorithms and Hyperparameters
	Additional Experimental Results
	Chosen Reward Functions for Large Reward Set
	Visualizing Orso

