A IMPLEMENTATION DETAILS

The edge and the node model in GNN-based transition model, reward model, value model and actor
model are MLP’s which consists of two hidden layers of 512 units each, LayerNorm and ReLU
activations.

Target entropy parameter is set to -3 for Object Reaching task. For tasks with discrete action space

we use the scale the entropy of a uniform random policy with coefficient 0.6, which means 1.66 for
Navigation 5x5 and PushingNoAgent 5x5 tasks and 2 for Navigation 10x10 task.

Temp. Cooldown 1
Temp. Cooldown Steps 30000
LR for DVAE 0.0003
LR for CNN Encoder 0.0001
Learning LR for Transformer Decoder 0.0003
LR Warm Up Steps 30000
LR Half Time 250000
Dropout 0.1
Clip 0.05
Batch Size 24
Epochs 150
DVAE vocabulary size 4096
CNN Encoder Hidden Size 64
Iterations 3
Slot Heads 1
Slot Attention Slot Dim. 192
MLP Hidden Dim. 192
Pos Channels 4
Layers 4
Transformer Decoder Heads 4
Hidden Dim 192

Table 1: Hyperparameters for SLATE

Gamma 0.99
Buffer size 1000000
Batch size 128
Tpolyak 0.005
Buffer prefill size 5000
Number of parallel environments 16

Table 2: Hyperparameters for ROCA

B SOFT ACTOR CRITIC

B.1 SOFT ACTOR-CRITIC FOR CONTINUOUS ACTION SPACES

Soft Actor-Critic (SAC) (Haarnoja et al., 2018 2019) is a state-of-the-art off-policy reinforcement
learning algorithm for continuous action settings. The goal of the algorithm is to find a policy that
maximizes the maximum entropy objective:

n* = argmax, Y Ey,a)~d, [V (R(51,00) + aH(w(-]s1))]
=0



where « is the temperature parameter, H (7 (:|s;)) = —logn(-|s;) is the entropy of the policy 7 at
state s¢, d is the distribution of trajectories induced by policy 7. The relationship between the soft
state-value function and the soft action-value function is determined as

V(s¢) = Eq,mr(.1s)[Q(5t, as) — alog(m(ag|s;))] (D

The soft action-value function Qg(s, a;) parameterized using a neural network with parameters 0
is trained by minimizing the soft Bellman residual:

2
JQ(Q) = E(StAat)ND [(Qe(stv at) - R(St7 at) - 7E5t+1~T(st,at)‘/§(St+1)) ] 2

where D is a replay buffer of past experience and V9(5t+1) is estimated using a target network for
@ and a Monte Carlo estimate of (I)) after sampling experiences from the D.

The policy 7 is restricted to a tractable parameterized family of distributions. A Gaussian policy is
often parameterized using a neural network with parameters ¢ that outputs a mean and covariance.
The parameters are learned by minimizing the expected KL-divergence between the policy and the
exponential of the Q-function:

Jﬂ'((b) = Esth []Eatwﬂ¢(~|st) [a log(ﬂ¢(at|st)) - Q9<5t7 at)]] 3

After reparameterization of the policy with the standard normal distribution, the (3) becomes feasible
for backpropagation:

Jr(9) = Egunpeomn(0,1) [0 (g (fo (€t 1) [50)) — Qase, fo(ers 5¢))] “4)

where action are parameterized as a; = fy(€4; S¢).
The objective for the temperature parameter is given by:
J(@) =Eq, (|5 | — a(logm(ar|s,) + H)) 6)

where H is a hyperparameter representing the target entropy. In practice, two separately trained
soft Q-networks are maintained, and then the minimum of their two outputs are used to be the soft
Q-network output.

B.2 SOFT ACTOR-CRITIC FOR DISCRETE ACTION SPACES

While SAC solves problems with continuous action space, it cannot be straightforwardly applied
to discrete domains since it relies on the reparameterization of Gaussian policies to sample ac-
tion. A direct discretization of the continuous action output and Q value (SACD) was suggested
by (Christodoulou, [2019). In the case of discrete action space, 7, (a|s;) outputs a probability for
all actions instead of a density. Thus, the expectation (I)) can be calculated directly and used in the
Q-function objective ([2):

Vi(st) = 7r(St)T [Q(St) — alog W(St)] (6)
The temperature objective (3)) changes to:
J(a) = w(st)T[ —a(logm(s;) + H)] @)
The expectation over actions in (3) can be calculated directly, which leads to the policy objective:
Jr(#) = Es,np[m(se)" [alog(ms(se)) — Qo(se,-)]] ®)

C SLATE

The SLATE (Singh et al., [2022)) model is used as an object-centric representations extractor from
image-based observations s;. It consists of a slot-attention module (Locatello et al [2020), dVAE,
and GPT-like transformer (Ramesh et al., [2021)).

The purpose of dVAE is to reduce an input image of size H x W into lower dimension representation
by a factor of K. First, the observation s; is fed into the encoder network fs, resulting in log
probabilities o) for a categorical distribution with C classes. Then, these log probabilities are used



to sample relaxed one-hot vectors j5°t from the relaxed categorical distribution with temperature
7. Each token from j{°™ represents information about K x K size patch of overall P = HW/K?
patches on the image. After that, j;° the vector is being used to reconstruct observation 5; by these

patches with the decoder network gg.

or = fo(s1)
js°ft ~ RelaxedCategorical(os; 7);
5e=go(5") -
The training objective of dVAE is to minimize MSE between observation s; and reconstruction s;:
Lgv ar = MSE(s¢, §¢), )

Discrete tokens j;, obtained from categorical distribution, are mapped to embedding from learnable
dictionaries. Those embeddings are summed with learned position embedding p, to fuse informa-

tion about patches on the image. Then, the resulting embeddings u; ¥ are fed into the slot attention
module. The slot attention returns N object slots ztl:N , which are vectors of the fixed dimension

Slot Dim, along with N attention maps A},

or = fo(st);
Jji ~ Categorical(o);
u}P = Dictionary,,(ji) + py;
2N AN = SlotAttention, (uff) .
The transformer predicts log-probabilities autoregressively 6! for path i from vectors @ generated
for previous patches, combined with object centric representations z}*. The vector 4L, | < i €
[1: P]is formed dictionary embedding from previously generated token ﬂ for path [ with added
position embedding pés. The token j} is mapped to the class ¢ € C with the highest log-probability
5%,0 The resulting token can be used to reconstruct observation §; by combining reconstructed
patches 3.
i;" = Dictionary,, (j;) + pi;
6% = Transformerg (i;"; z1V);
Ji = argmaxeeqi ) 8} ;
51=900t) -
The training objective of the transformer is to minimize cross entropy between the distribution of
tokens J, generated by the transformer and tokens j; extracted by dVAE.
P

Ly = Z CrossEntropy (2!, £1) (10)
i=1
Combining [O]and [I0] we receive loss for the SLATE model:

Lsrare = Lagvag + Lt

Figure [I] illustrates the examples of original observations and slot-attention masks learned by the
SLATE model in the Object Reaching and Shapes2D tasks.

D OCRL FINE-TUNING DETAILS

We conducted additional experiments to tune the OCRL baseline in the tasks where it was outper-
formed by ROCA. In Navigation10x10 and PushingNoAgent5x5 tasks we went through combina-
tions of hyperparameters, but did not observe significant improvements:

 Entropy coefficient: [0, 0.001, 0.01, 0.025, 0.05, 0.075, 0.1]
* Clip range: [0.1, 0.2, 0.4]

* Epochs: [10, 20, 30]

e Batch size: [64, 128]
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Figure 1: Examples of observations and slots extracted by the SLATE model in the Object Reaching
task (top), Navigation 10x10 task (middle), and Navigation 5x5 task (bottom).

E ADDITIONAL EXPERIMENTS WITH DREAMERV 3

In order to ensure a fair comparison with DreamerV3, we conducted experiments with a pretrained
encoder obtained from the DreamerV3 model that solves the task. For all the tasks, we conducted
experiments using two different modes: one with the encoder frozen and another with the encoder
unfrozen. However, we did not observe any improvement in the convergence rate. The results are
shown in the Figure

Navigation5x5 Navigation10x10 PushingNoAgent5x5 Object Reaching
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Figure 2: The plots illustrate the impact of encoder pretraining for DreamerV3 algorithm. Dream-
erV3 is a default version that trains its encoder from scratch. DreamerV3:enc-fronzen is a version
with a pretrained frozen encoder. DreamerV3:enc-unfrozen is a version with a pretrained unfrozen
encoder. Return and success rate averaged over 30 episodes and three seeds for different.

F EVALUATION OF OUT-OF-DISTRIBUTION GENERALIZATION TO UNSEEN
COLORS

We evaluated the generalization of the ROCA to unseen colors of distractor objects in the Object
Reaching task. When we tested the model with the same colors it was trained on, it achieved a suc-
cess rate of 0.975 £ 0.005. However, when we used new colors for the distractor objects, the success
rate dropped to 0.850 £ 0.005. The results were averaged over three instances of the ROCA models,
and each model was evaluated on 100 episodes.
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