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1 More Details

Small patch with global attention leads to the broken translation invariance and loss of locality.
Due to the quadratic complexity with respect to the input resolution which is usually high for image
restoration tasks, global attention applies only to the small patch in practice (e.g., 48× 48 for IPT
[2]). Under this setting, the broken translation invariance derives from two aspects. First, the absolute
position encoding makes each token unique, which destroys the translation invariance [5, 4]. Second,
the process of dividing small patches also incurs the broken translation invariance, which is similar to
the aforementioned case of the fixed window partition. In a similar way, the dividing process also
leads to the tremendous loss of locality.

Complexity of the sliding window strategy. For the sliding window strategy, every query corre-
sponds to the distinct set of values and keys (Fig. 1(b)). This distinguishes from the fixed window
strategy, in which all queries of the local window have the same set of values and keys (Fig. 1(a)). A
direct consequence of the distinct context for every query is the huge memory overhead. Specifically,
suppose the resolution of feature is (H,W ) and the size of local window is s × s, the memory
footprint of K and V tensor for the sliding window strategy will be s2 multiple of that for the fixed
window strategy (compare Algorithm 1 with Algorithm 2). Since the resolution is often high for
image restoration tasks, the huge memory usage often leads to the Out of Memory (OOM) problem
in practice. Furthermore, as pointed out in [13, 9], although computational complexity is Θ(HW ),
the sliding window strategy is still slower in wall-clock time due to the lack of optimized kernels on
various accelerators.
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Figure 1: The illustration of context of the shifted window strategy and sliding window strategy.
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Algorithm 1 Pytorch Implementation of the fixed window based attention
import torch.nn.functional as F
def FixedWindowAttention(x, win_size):

C = x.shape [-1]
x = F.unfold(x, kernel_size=win_size ,stride=win_size)
q, k, v = to_qkv(x)
q = q * (C ** -0.5)
attn = (q @ k.transpose(-2, -1))
attn = softmax(attn + relative_position_bias)
out = attn @ v
return out

Algorithm 2 Pytorch Implementation of the sliding window based attention
import torch.nn.functional as F
def SlidingWindowAttention(x, win_size):

C = x.shape [-1]
q, k, v = to_qkv(x)
k, v = pad(k), pad(v) # pad for keeping shape
k = F.unfold(k, kernel_size=win_size , stride =1)
#extra memory cost(win_size ^2 X)
v = F.unfold(v, kernel_size=win_size , stride =1)
q = q * (C ** -0.5)
attn = (q @ k.transpose(-2, -1))
attn = softmax(attn + relative_position_bias)
out = attn @ v
return out

Taking expectation boosts performance. For simplicity, we denote {(ξlh, ξlw)}
N−1
l=0 collectively by

ξ. We utilize the square of L2 norm as the criterion to evaluate the fitted network. Therefore, given
the degraded image x, the expected loss of the fitted F (x, ξ) is given by

E
ξ
[||F (x, ξ)− I(x)||22] (1)

=E
ξ
[||F (x, ξ)− Eξ[F (x, ξ)] + Eξ[F (x, ξ)]− I(x)||22] (2)

=Eξ[||F (x, ξ)− Eξ[F (x, ξ)||22] + ||Eξ[F (x, ξ)]− I(x)||22 (3)

≥||Eξ[F (x, ξ)]− I(x)||22. (4)

I(x) is the ground-truth image of x. Derivation from (2) to (3) follows that

Eξ[< F (x, ξ)− Eξ[F (x, ξ)],Eξ[F (x, ξ)]− I(x) >] = 0. (5)

< ·, · > is the inner product. Hence, we can readily draw the conclusion that taking expectation of
the introduced stochastic shift, which corresponds to Eξ[F (x, ξ)], helps to boost performance.

2 Experimental Setting

Image deraining. We train Stoformers using two Nvidia 3090 GPUs with batch size 8 on 256× 256
image pairs. The training process lasts for 10 epochs. Following previous works [15, 18], We evaluate
PSNR [7] and SSIM [17] based on the luminance channel, i.e., Y channel of YCbCr space.

Image denosing. Following [20], we construct a large dataset comprising 400 BSD images [3], 4, 744
Waterloo Exploration Database images [10], 900 DIV2K images [1] and 2, 750 Flick2K images [8]
for training. To tackle with a range of noise levels, the training images are corrupted by Gaussian
noise with σ randomly chose from [0, 50]. The training patches are cropped from the total training
set with size 128 × 128. We train Stoformers using two Nvidia 3090 GPUs for total 120 epoches
with batch size 16 and PSNR is evaluated on the full-size test images.

Image deblurring. Stoformers are trained on GoPro dataset [12]2 and directly applied to GoPro
[12] and HIDE [14]. We crop 512× 512 image patches with stride 256 from GoPro dataset and train

2https://seungjunnah.github.io/Datasets/gopro, CC BY 4.0 license.
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Stoformers with 256 × 256 training pairs randomly cropped from 512 × 512 image patches. The
total training epoch is 600 with batch size 8 on two Nvidia 3090 GPUs and we evaluate PSNR and
SSIM on the full-size test images.

3 Visualization

3.1 Feature Map

Fig. 2 presents more visualization of feature maps from various depth of the stochastic window
transformer and fixed window transformer. Feature maps from the fixed window transformer contain
obvious blocking artifacts due to the lack of translation invariance. In contrast, the stochastic window
transformer utilizes the stochastic window strategy to accomplish the translation invariance so that
these artificial blocking artifacts can be removed significantly.

(a) Encoder level 2 (b) Encoder level 3 (c) Decoder level 2 (d) Decoder level 1

Figure 2: Feature maps from various depth of the denoising network. The feature maps in the blue box
are from the stochastic window transformer while others are taken from the fixed window transformer.
Please zoom in for better visualization.
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3.2 Image Restoration Result

We also provide more visual results on image deraining (Fig. 3), image denoising (Figs. 4 and 5
for color images and Figs. 6 and 7 for grayscale images), and image deblurring (Figs. 8 and 9).
In comparison with other state-of-the-art methods and Stoformer variants, Stoformer††, which is
equipped with the stochastic window for training and layer expectation propagation for testing, can
recover more image textures and further generate visually faithful results.
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Figure 3: Visual comparison of image deraining on the SPA-Data [16].
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Figure 4: Visual comparison of Gaussian color denoising on the BSD68 [11].
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Figure 5: Visual comparison of Gaussian color image denoising on the McMaster68 [21].
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Figure 6: Visual comparison of Gaussian grayscale image denosing on Set12 [19].
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Figure 7: Visual comparison of Gaussian grayscale image denosing on Urban100 [6].
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Figure 8: Visual comparison of image deblurring on the GoPro [12].
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Figure 9: Visual comparison of image deblurring on the HIDE [14].
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