
Supplementary Material:
Semantic Prior for Weakly Supervised Class-Incremental Segmentation

The Supplementary material is organized as follows: Sec. A provides implementation details of
RaSP. Sec. B includes additional experimental results on ablation study, different class orderings,
classwise performance, class-incremental few-shot segmentation. Sec. C lists the details about the
WILSON framework. Sec. D provides additional qualitative results.

A IMPLEMENTATION DETAILS OF RASP

A.1 SEMANTIC SIMILARITY METRIC

The similarity metric SΩ used in the Eq. (2) of the main paper is derived from the cosine distance,
which is computed between a pair of class label names as:

SΩ = −(1− ω(ci) · ω(cj)
||ω(ci)||2||ω(cj)||2

). (A1)

where ω(ci) and ω(cj) represent the vectorial embeddings for the ith and jth classes. The value of
SΩ is then substituted to the Eq. (2) of the main paper. Note that higher the semantic similarity
between a pair of labels ci and cj , higher is the sci value.

We obtain the vectorial embedding ω(c) corresponding to a class label name lc using the BERT trans-
former (Devlin et al., 2019). In details, we prompt the transformer with the class label name to ob-
tain a 768-dimensional vector representation ω(c) = Transformer(“An image of a {lc}”).
While one could omit the prompt and simply provide the class label name, we do it to give context
to the transformer that the class label name is a noun. Please note that our method can work with
other semantic mapping functions, e.g., Word2Vec (see Tab. A1).

A.2 RASP LOSS

To recap, we compute the semantic similarity maps (described in Eq. (2) of the main paper) only for
the new foreground classes Ct present in an incremental step t. In other words, the semantic map
sbkg for the bkg class is not computed, and not enforced by the optimization in Eq. (3). Moreover,
we selectively backpropagate the RaSP loss LRaSP only for those new class channels of the localizer
Gt for which ground truth image labels are available. As an example, in an incremental step t if
there are five new classes, |Ct| = 5, and if for a given image only the new class “dog” is present, then
we simply backpropagate the gradients of the RaSP loss for the “dog” channel only. All the other
channels, including the bkg channel, are ignored during the backpropagation. Given the fact that the
old model does not perfectly predict the new classes as bkg and is spuriously activated as foreground
for the new classes (see the (F ◦E)t−1(xt) column in Fig. A5 where new class objects are not bkg),
the RaSP loss in practice does not largely suppress the CAM loss. We hope that our new findings
will encourage future WSCI works to tackle overconfident model predictions on unseen classes.

B ADDITIONAL EXPERIMENTS

B.1 ABLATIONS

In Fig. A1 we show how results are affected when we vary the hyperparameters τ and λ in the case
of 10-2 VOC multi-step overlap (solid) and disjoint (dashed) incremental settings, reporting both
performance on old and new classes (in blue and green, respctively). To recap, τ plays a role in
computing the similarity maps via Eq. (2); in particular, it is a scaling factor that controls how steep
the decay is, as two semantic entities are more or less similar. Instead, γ controls the strength of our
RaSP loss: the larger the γ, the higher the impact of our prior over the other terms.

For our experiments, we have selected τ = 5 and γ = 1, the former by observing that it provides a
sufficiently steep decay, the latter following WILSON’s approach of not assigning different weights
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to the different terms, since they operate at similar scales. We can observe in Fig. A1 that i) RaSP is
satisfactorily robust against the choice of these hyperparameters and ii) better results than the ones
proposed in the main paper can be obtained. Notice that using λ = 0 nullifies the effect of RaSP,
making the method equivalent to WILSON; for comparison, WILSON’s mIoU performance for the
disjoint setting is 36.4 and 20.8 (see Tab. A2, bottom-right) and for the overlap setting is 38.7 and
22.4 (see Tab. 1, bottom-right) for old and new classes, respectively. In both cases, significantly
below performance of RaSP, regardless of the hyperparameters selected.

Please note that VOC and COCO do not provide train/test/validation sets, hence, it is hard to tune
the hyperparameters without overfitting the test set. For this reason, we did not spend computational
resources into hyperparameter validation and based our decisions on the aforementioned heuristics.
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Figure A1: Ablating τ (left) and γ (right). RaSP results on VOC, using the 10-2 setting (6 tasks).
Solid and dashed lines indicate overlap and disjoint results, respectively. Blue and green lines indi-
cate performance on old and new classes, respectively.

Semantic
Similarity

10-2 VOC
1-10 11-20 All

WordNet 47.6 27.9 39.7
GloVe 43.1 26.8 37.2
BERT 44.5 28.4 38.6

WILSON† 38.7 22.4 32.5

Table A1: Ablating semantic similarity on VOC 10-2 multi-step overlap incremental setting.

Next, we compare different semantic embedding methods for building the similarity between the
semantic classes defined in Eq. (3). While by default we used BERT (Devlin et al., 2019) in our
experiments, we can also consider other alternatives such as GloVe (Pennington et al., 2014) or a
WordNet sub-tree. In the latter case, to compute the similarities between two class, we used 1 over
the number of hops (edges) between the two classes (nodes) in the sub-tree. As we can see, using
a different semantic embedding yields to relatively similar performance, with a slight drop when
we use GLoVE, and significant gain on old classes when we use the WordNet sub-tree. Still, all
three methods outperform WILSON: this result further validates the idea that leveraging semantic
similarity between old and new classes can improve the localizer and, hence, the final model.

B.2 RESULTS ON VOC USING THE DISJOINT PROTOCOL

We report in Tab. A2 VOC results in the disjoint settings. This table complements the analysis
of the Tab. 1, which focused on the overlap setting. We can draw similar conclusions: RaSP’s
improvements over WILSON† increase as we increase the number of tasks.
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Method Supervision 15-5 (2 tasks) 10-10 (2 tasks)
1-15 16-20 All 1-10 11-20 All

Joint Pixel 75.5 73.5 75.4 76.6 74.0 75.4
FT Pixel 8.4 33.5 14.4 7.7 60.8 33.0
LWF Li & Hoiem (2016) Pixel 39.7 33.3 38.2 63.1 61.1 62.2
ILT Michieli & Zanuttigh (2019) Pixel 31.5 25.1 30.0 67.7 61.3 64.7
PLOP Douillard et al. (2021) Pixel 71.0 42.8 64.3 63.7 60.2 63.4
SDR Michieli & Zanuttigh (2021) Pixel 73.5 47.3 67.2 67.5 57.9 62.9
RECALL Maracani et al. (2021) Pixel 69.2 52.9 66.3 64.1 56.9 61.9
CAM Zhou et al. (2016) Image 67.5 25.5 57.8 64.8 41.2 54.2
SEAM Wang et al. (2020) Image 68.9 32.5 61.1 61.5 52.3 58.3
SS Araslanov & Roth (2020) Image 68.9 25.9 60.2 60.3 27.2 45.5
EPS Lee et al. (2021) Image 70.7 36.8 63.6 64.3 53.8 60.5
WILSON Cermelli et al. (2022) Image 72.0 44.1 66.3 64.2 54.5 60.8
WILSON† Cermelli et al. (2022) Image 75.8 45.2 69.3 63.7 51.1 59.0

RaSP (Ours) Image 75.9
(↑0.1%)

47.5
(↑5.1%)

69.9
(↑0.9%)

64.5
(↑1.3%)

51.2
(↑0.2%)

59.4
(↑0.7%)

10-5 (3 tasks) 10-2 (6 tasks)
1-10 11-20 All 1-10 11-20 All

WILSON† Cermelli et al. (2022) Image 58.6 45.3 53.6 36.4 20.8 30.6

RaSP (Ours) Image 60.5
(↑3.2%)

46.8
(↑3.3%)

55.3
(↑3.2%)

42.5
(↑16.8%)

26.2
(↑26.0%)

36.6
(↑19.6%)

Table A2: The m-IoU (in %) scores for both single-step (top) and multi-step (bottom) disjoint
incremental settings on the VOC. The best numbers for the pixel supervised and image supervised
methods are highlighted in underline and bold, respectively.

Furthermore, we report in Tab. A3 VOC results for the memory-based approaches detailed in Sec.
4.2, for the disjoint setting, to complement the analysis we provided in Tab. 3, which focused on
the overlap setting.

Method Supervision 15-1 (6 tasks) 10-1 (11 tasks)
1-15 16-20 All 1-10 11-20 All

w
/o

m
em

or
y ILT (Michieli & Zanuttigh, 2019) Pixel 6.7 1.2 5.4 14.1 0.6 7.5

MiB (Cermelli et al., 2020) Pixel 46.2 12.9 37.9 14.9 9.5 12.3
WILSON† (Cermelli et al., 2022) Image 0.0 1.4 0.4 0.0 0.2 0.1
RaSP (Ours) Image 16.2 1.8 12.4 1.3 1.0 1.1

w
/m

em
or

y WILSON† + M Image 64.9 24.8 56.0 43.4 21.7 34.1
RaSP (Ours) + M Image 66.7 30.9 59.0 42.7 28.8 37.9
WILSON† + Mext Image 74.2 30.3 64.3 62.0 33.9 49.5
RaSP (Ours) + Mext Image 74.7 35.8 66.1 61.7 37.4 51.2
RECALL (Web) (Maracani et al., 2021) Pixel 67.6 49.2 64.3 62.3 50.0 57.8

Table A3: Effect of memory. Results on single-class multi-step disjoint incremental setting on
VOC. M and Mext indicate memories of previously seen or external samples, respectively. The
best numbers for the pixel supervised and image supervised methods are highlighted in underline
and bold, respectively.

B.3 RASP PERFORMANCE OVER TASKS

The Fig. A2 extends the plots shown in Fig. 4 (right). We report RaSP’s gains w.r.t. WILSON for
different VOC settings. As expected, since RaSP outperforms WILSON more when the number of
tasks is larger, the per-class gains are more evident for the 10-2 setting (top) than for the 10-5 one
(bottom).

The Fig. A3 extends the plots shown in Fig. 4 (left). We report the evolution of the performance
across sequence of tasks in the 10-2 VOC setting (6 tasks), for overlap and disjoint protocols (left
and right, respectively). For these plots, the conclusions made in the main paper still hold.
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Figure A2: Per class gain/drop of RaSP w.r.t. WILSON, evaluated for each class in the step it was
learned. Results computed on VOC. Top plots show 10-2 settings; bottom plots show 10-5 settings;
leftmost plots show overlap settings; rightmost plots show disjoint settings. Note the different
scales.
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Figure A3: Per-task and per-step mIoU for the 10-2 VOC multi-step incremental setting. Leftmost
plot shows overlap results; rightmost plot shows disjoint results. Note the different scales.

B.4 IMPACT OF CLASS ORDERING

To demonstrate that our proposed semantic prior loss LRaSP is versatile under different class ordering,
we chose the 15-5 VOC disjoint setting, having 15 base classes and 5 novel classes, and randomized
the old-novel classes splits. We ran experiments on four of such random splits and report the results
in the Tab. A4. From the Tab. A4 it is evident that RaSP outperforms WILSON on the four randomly
chosen base-novel classes split, denoted by 15-5a, 15-5b, 15-5c and 15-5d of VOC, indicating that
our improvements are consistently better on all of the class orderings. While the improvement by
RaSP varies among the base-novel splits, yet most importantly they do not drop below WILSON.
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Thus we believe that our proposed method is well suited for real world applications where the classes
will appear in random (and unknown) order and yet our incremental learner can perform better than
its competitors.

Method 15-5 (2 tasks)
15-5a 15-5b 15-5c 15-5d Mean

1-15 16-20 All 1-15 16-20 All 1-15 16-20 All 1-15 16-20 All 1-15 16-20 All

WILSON† 75.8 45.2 69.3 71.2 48.5 66.7 68.7 42.7 63.6 66.5 56.2 65.3 70.6 48.2 66.2
RaSP 75.9 47.5 69.9 71.8 53.3 68.4 70.8 44.5 65.5 66.7 57.8 65.9 71.3 50.8 67.4

Table A4: Comparison with the state-of-the-art on the 15-5 VOC disjoint incremental setting under
different class orderings. The m-IoU (in %) scores have been reported for the methods.

B.5 CLASSWISE PERFORMANCE

To get a complete understanding about the performance of each class, we report the classwise mIoU
scores in a couple of settings of VOC for RaSP and compare it with WILSON. In details, we report
the step-wise performance of both WILSON and our proposed RaSP for the single-step 15-5 VOC
and the multi-step 10-2 VOC overlap settings in the Tab. A5 and Tab. A6, respectively. The sum-
marized versions of the Tab. A5 and Tab. A6 have been reported in the Tab. 1 of the main paper.
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WILSON† 1 90.3 89.3 42.6 87.0 68.2 79.3 89.0 89.0 92.6 42.0 70.7 58.9 87.9 81.9 80.4 86.3 25.6 52.0 38.4 59.7 44.7 76.3 44.1 69.3
RaSP 1 91.4 89.8 42.6 87.5 65.8 79.3 89.5 89.1 92.0 41.3 70.7 58.7 87.7 81.8 81.7 86.3 26.5 54.6 36.8 70.5 46.5 76.2 47.0 70.0

Table A5: Classwise results. The mIoU (in %) scores for the single-step 15-5 (2 tasks) overlap
incremental setting on VOC. The 15 old classes are denoted by green and the 5 new classes are
denoted in red. The best numbers are highlighted in bold.

From the Tab. A5 we observe that our RaSP improves forward transfer by outperforming WILSON
in four out of the five new classes. In-line with our intuition, RaSP’s gain over WILSON is noticeable
in the new class “train” (by +10.8 absolute points) since “train” can be considered to have high visual
similarity with the old class “bus”. The gain in the other new classes (such as “pottedplant” or “tv-
monitor”) is slightly subdued due to the lack of closely resembling old classes. Nevertheless, in
terms of new classes (16-20) and All aggregate performance RaSP outperforms WILSON.
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WILSON†

1 90.6 86.5 41.3 81.4 67.4 82.8 87.8 81.7 85.3 35.1 56.4 30.7 30.6 70.6
2 89.1 84.0 31.8 76.0 66.2 75.5 85.7 56.5 71.5 32.7 25.6 28.4 34.9 32.3 20.7 60.5
3 79.4 61.0 30.2 68.7 48.1 72.9 52.6 54.5 71.2 30.6 26.2 16.2 35.0 30.6 31.3 26.6 30.8 51.6
4 74.6 49.6 27.6 56.9 57.5 62.8 65.2 57.4 59.2 6.2 26.0 0.0 36.2 36.7 39.3 29.6 32.0 20.1 9.7 46.8
5 72.6 37.9 25.8 59.5 48.9 58.7 48.0 30.1 57.8 5.1 15.1 0.0 26.4 35.5 34.8 32.2 32.7 21.7 13.6 21.4 5.3 38.7 22.4 32.5

RaSP

1 92.2 86.3 40.7 83.1 69.5 83.3 88.6 82.1 87.0 35.0 65.2 28.7 39.6 72.1
2 91.3 83.9 34.2 77.2 68.3 77.8 86.0 58.0 68.0 30.5 44.8 24.9 40.6 35.3 23.7 62.9
3 86.5 64.5 32.5 73.6 59.6 74.4 79.0 62.9 69.1 27.9 45.3 15.1 38.2 38.4 35.3 36.4 34.1 58.9
4 84.5 52.4 29.3 66.2 62.5 62.2 80.7 60.8 53.7 7.2 43.3 0.0 39.0 41.0 39.2 36.7 37.7 38.0 10.7 51.8
5 82.7 44.2 27.4 67.1 53.2 58.8 65.3 34.5 57.9 6.5 30.1 0.1 36.8 39.6 34.5 40.4 39.2 39.2 14.4 32.3 7.3 44.5 28.4 38.6

Table A6: Classwise results. The mIoU (in %) scores for the multi-step 15-5 (6 tasks) overlap
incremental setting on VOC. The 10 old classes are denoted by green and the remainder new classes
at consecutive steps are color coded as {dinningtable, dog}; {horse, motorbike}; {person, potted-
plant}; {sheep, sofa}; and {train, tv-monitor}. The best numbers at the end of the final incremental
step is highlighted in bold.

For the multi-step 10-2 VOC setting, reported in the Tab. A6, the improvement of RaSP over WIL-
SON is even more stark compared to the single-step 15-5 VOC setting. In details, RaSP outperforms
in 20 out of the 21 classes in the Pascal-VOC benchmark, achieving greatly improved results in both
the old (1-10) and the new classes (11-20). Careful scrutiny of the Tab. A6 reveals that the forward
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transfer offered by our RaSP has a significant positive impact on the new classes such as “dog”,
“horse”, “sheep” and “train”, improving by +10.4, +4.1, +17.5 and +10.9 absolute points, respec-
tively. Interestingly, the old classes suffer from lesser forgetting w.r.t WILSON, with an aggregate
improvement of +5.8 absolute points at the end of the final incremental step. We found that in incre-
mental tasks where there are very few new classes (e.g., 2 new classes in the 10-2 VOC) WILSON
tends to overestimate the foreground (see Fig. 3 of the main and Fig. A5), thereby forgetting more
on the older classes. Contrarily, our RaSP due to the semantic guidance for the foreground objects
suffers less from the recency-bias. This makes RaSP better suited for the real-world incremental
settings where the incremental learner will encounter tasks with very few new classes.

B.6 CLASS-INCREMENTAL FEW-SHOT SEGMENTATION

To push the limits of the WSCI task we also experiment on the weakly supervised few-shot class-
incremental scenarios. Given the results on the few-shot settings greatly depend on the chosen few-
shot image instances, we run the methods on four different folds of the PASCAL-5i and COCO-20i

benchmarks. The Tab. A7 is an extended version of Tab. 4 with more pixel-supervised methods.
The Tabs. A8 to A11 show per-fold results for VOC (5-shot), VOC (2-shot), COCO (5-shot) and
COCO (2-shot), respectively. In the per fold tables we only show the results for the pixel-level
supervised methods that performed best in average either on the base, new or the harmonic mean
(HM score) of the base and the new classes (underlined in Tab. A7). We can observe from these
tables that RaSP is perfectly capable of operating in harder incremental scenarios when only few
image labelled data are available for the new classes. Despite the overall lower performance of
the image-label supervised methods, which is understandable, RaSP can provide better and denser
supervision on top of WILSON.

Method Supervision VOC (5-shot) VOC (2-shot) COCO (5-shot) COCO (2-shot)
1-15 16-20 HM 1-15 16-20 HM 0-60 61-80 HM 0-60 61-80 HM

Fine-Tuning Pixel 55.8 29.6 38.7 59.1 19.7 29.5 41.6 12.3 19.0 41.5 7.3 12.4
WI (Qi et al., 2018) Pixel 63.3 21.7 32.3 63.3 19.2 29.5 43.6 8.7 14.6 44.2 7.9 13.5
DWI (Gidaris & Komodakis, 2018) Pixel 64.9 23.5 34.5 64.8 19.8 30.4 44.9 12.1 19.1 45.0 9.4 15.6
RT (Tian et al., 2020) Pixel 60.4 27.5 37.8 60.9 21.6 31.9 46.9 13.7 21.2 46.7 8.8 14.8
AMP Siam et al. (2019) Pixel 51.9 18.9 27.7 54.4 18.8 27.9 34.6 11.0 16.7 35.7 8.8 14.2
SPN (Xian et al., 2019) Pixel 58.4 33.4 42.5 60.8 26.3 36.7 43.7 15.6 22.9 43.7 10.2 16.5
LWF (Li & Hoiem, 2016) Pixel 59.7 30.9 40.8 63.6 18.9 29.2 44.6 12.9 20.1 44.3 7.1 12.3
ILT (Michieli & Zanuttigh, 2019) Pixel 61.4 32.0 42.1 64.2 23.1 34.0 47.0 11.0 17.8 46.3 6.5 11.5
MiB (Cermelli et al., 2020) Pixel 65.0 28.1 39.3 63.5 12.7 21.1 44.7 11.9 18.8 44.4 6.0 10.6
PIFS (Cermelli et al., 2021) Pixel 60.0 33.3 42.8 60.5 26.4 36.8 42.8 15.7 23.0 40.9 11.1 17.5
WILSON† (Cermelli et al., 2022) Image 64.1 20.5 31.1 63.3 10.2 17.6 45.0 5.8 10.3 43.6 1.9 3.6

RaSP Image 64.4
(↑0.5%)

21.3
(↑3.9%)

32.0
(↑2.9%)

63.5
(↑0.3%)

10.7
(↑4.9%)

18.3
(↑4.0%)

45.1
(↑0.2%)

5.6
(↓3.4%)

10.0
(↓2.9%)

43.5
(↓0.2%)

2.0
(↑5.3%)

3.8
(↑5.6%)

Table A7: Few-shot results. The mIoU (in %) scores for the single-step (2 tasks) incremental
few-shot SiS settings on the PASCAL-5i and COCO-20i benchmarks, for 5-shot and 2-shot cases.
We show the average results over the 4 folds as in (Cermelli et al., 2021). For each experiment,
columns report performance on the base classes, new classes, and the Harmonic-Mean (HM) of
the two scores. The best numbers for the pixel supervised and image-label supervised methods are
highlighted in underline and bold, respectively.

Method Supervision Fold 5-0 Fold 5-1 Fold 5-2 Fold 5-3
1-15 16-20 HM 1-15 16-20 HM 1-15 16-20 HM 1-15 16-20 HM

FT Pixel 58.4 22.8 32.8 52.3 42.7 47.0 50.6 29.7 37.5 62.0 23.0 33.6
SPN Pixel 63.3 28.2 39.0 53.4 43.7 48.1 54.5 33.5 41.5 62.3 28.2 38.8
MiB Pixel 68.0 24.8 36.4 62.1 35.2 44.9 60.6 27.1 37.4 69.1 25.4 37.2
PIFS Pixel 64.3 26.7 37.7 53.3 41.0 46.3 57.4 33.8 42.5 65.2 31.6 42.6
WILSON† Image 66.6 18.8 29.3 60.2 22.5 32.8 61.1 21.3 31.6 68.5 19.2 30.0

RaSP Image 66.9
(↑0.5%)

19.8
(↑5.3%)

30.6
(↑4.4%)

60.2
(0.0%)

23.0
(↑2.2%)

33.3
(↑1.5%)

61.4
(↑0.5%)

21.7
(↑1.9%)

32.1
(↑1.6%)

69.0
(↑0.7%)

20.5
(↑6.8%)

31.6
(↑5.3%)

Table A8: 5-shot results per fold. The m-IoU (in %) scores for the single-step (2 tasks) incremental
few-shot (5-shot) SIS setting on the PASCAL-5i benchmark. HM signifies the harmonic-mean of
the base (0-15) and new classes (16-20) mIoU scores. The best numbers for image-label supervised
methods are highlighted in bold.
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Method Supervision Fold 5-0 Fold 5-1 Fold 5-2 Fold 5-3
0-15 16-20 HM 0-15 16-20 HM 0-15 16-20 HM 0-15 16-20 HM

FT Pixel 61.7 12.6 20.9 57.5 31.0 40.3 54.8 20.2 29.5 62.5 15.0 24.2
DWI Pixel 68.2 15.1 24.7 60.4 30.9 40.9 60.4 17.2 26.8 70.1 16.2 26.3
ILT Pixel 68.4 16.1 26.1 58.3 33.7 42.7 61.1 25.6 36.1 68.9 17.1 27.4
PIFS Pixel 64.0 18.9 29.1 53.9 36.6 43.6 58.2 26.5 36.4 65.9 23.6 34.7
WILSON† Image 65.7 7.7 13.8 60.6 14.7 23.7 60.0 9.4 16.3 66.8 9.0 15.9

RaSP Image 65.7
(0.0%)

8.5
(↑10.4%)

15.1
(↑9.4%)

60.6
(0.0%)

14.0
(↓4.8%)

22.7
(↓4.2%)

60.5
(↑0.8%)

9.8
(↑4.3%)

16.9
(↑3.7%)

67.1
(↑0.4%)

10.6
(↑17.8%)

18.3
(↑15.1%)

Table A9: 2-shot results per fold. The m-IoU (in %) scores for the single-step (2 tasks) incremental
few-shot (2-shot) SIS setting on the PASCAL-5i benchmark. HM signifies the harmonic-mean of
the base (0-15) and new classes (16-20) mIoU scores. The best numbers for image-label supervised
methods are highlighted in bold.

Method Supervision Fold 20-0 Fold 20-1 Fold 20-2 Fold 20-3
0-61 61-80 HM 0-61 61-80 HM 0-61 61-80 HM 0-61 61-80 HM

FT Pixel 37.3 7.6 12.6 40.9 15.0 22.0 45.3 13.7 21.0 43.0 12.9 19.8
ILT Pixel 41.9 7.1 12.2 47.0 13.9 21.5 50.4 11.2 18.3 48.6 11.8 19.0
PIFS Pixel 40.6 10.7 16.9 41.5 17.7 24.8 45.3 16.9 24.7 43.9 17.5 25.0
WILSON† Image 41.1 5.6 9.9 44.4 4.6 8.3 48.5 5.9 10.5 46.1 7.1 12.3

RaSP Image 41.2
(↑0.2%)

5.5
(↓0.2%)

9.7
(↓2.0%)

44.4
(0.0%)

4.3
(↓6.5%)

7.8
(↓6.0%)

48.3
(↓0.4%)

5.8
(↓1.7%)

10.4
(↓1.0%)

46.3
(↑0.4%)

6.9
(↓2.8%)

12.0
(↓2.4%)

Table A10: 5-shot results per fold. The m-IoU (in %) scores for the single-step (2 tasks) incremen-
tal few-shot (5-shot) SIS setting on the COCO-20i benchmark. HM signifies the harmonic-mean of
the base (0-60) and new classes (61-80) mIoU scores. The best numbers for image-label supervised
methods are highlighted in bold.

Method Supervision Fold 20-0 Fold 20-1 Fold 20-2 Fold 20-3
0-60 61-80 HM 0-60 61-80 HM 0-60 61-80 HM 0-60 61-80 HM

FT Pixel 37.4 4.2 7.6 40.3 9.0 14.7 45.4 7.7 13.2 43.1 8.4 14.0
RT Pixel 40.6 5.5 9.7 46.8 10.5 17.2 50.8 8.1 14.0 48.5 11.1 18.1
PIFS Pixel 38.6 6.8 11.6 39.4 13.1 19.7 43.5 11.4 18.1 42.2 13.1 20.0
WILSON† Image 39.8 2.6 4.9 42.9 1.4 2.7 46.8 1.6 3.1 44.7 1.9 3.6

RaSP Image 39.7
(↓0.3%)

2.8
(↑7.7%)

5.2
(↑6.1%)

42.5
(↓0.9%)

1.4
(0.0%)

2.7
(0.0%)

46.8
(0.0%)

1.7
(↑6.3%)

3.3
(↑6.5%)

44.9
(↑0.5%)

2.1
(↑10.5%)

4.0
(↑11.1%)

Table A11: 2-shot results per fold. The m-IoU (in %) scores for the single-step (2 tasks) incremen-
tal few-shot (2-shot) SIS setting on the COCO-20i benchmark. HM signifies the harmonic-mean of
the base (0-60) and new classes (61-80) mIoU scores. The best numbers for image-label supervised
methods are highlighted in bold.

C ADDITIONAL DETAILS ABOUT WILSON

C.1 KNOWLEDGE DISTILLATION LOSSES

Here we detail the two knowledge distillation losses used by WILSON and RaSP. The first one,
LKDE, – denoted by lENC in (Cermelli et al., 2022) – computes the mean-squared error between the
features extracted by the current encoder Et and those extracted by the old one Et−1:

LKDE(x) =
1

|I|
∑
i∈I

∥eti − et−1
i ∥ (A2)

where et−1
i and eti are the feature vectors of the pixel i in the feature maps Et(x) and Et−1(x)

respectively.
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The second distillation loss LKDL – denoted by lLOC in (Cermelli et al., 2022) – encourages consis-
tency between the pixel-wise scores for old classes predicted by the localizer (E ◦ G)t and those
predicted by the old model (E ◦ F )t−1. It is carried out via the following binary cross-entropy loss:

LKDL(z, ỹ) = − 1

|Yt−1||I|
∑
i∈I

∑
c∈Yt−1

ỹci log(σ(z
c
i )) + (1− ỹci ) log(1− σ(zci )) (A3)

C.2 AGGREGATING PIXEL-LEVEL SCORES

In order to train the localizer with image-level labels, normalized Global Weighted Pooling
(nGWP) Araslanov & Roth (2020) is used where the channel-wise scores z are aggregated into
a one-dimensional output vector ŷnGWP ∈ R|Yt| as follows:

ycnGWP =

∑
i∈I mc

iz
c
i

ϵ+
∑

i∈I mc
i

(A4)

with m = softmax(z) and ϵ is a small constant preventing division by zero. Moreover, to penalize
the localizer from predicting very small object masks, as in (Araslanov & Roth, 2020) the following
focal penalty term is added:

ycFOC =

(
1−

∑
i∈I mc

i

|I|

)γ

log

(
λ+

∑
i∈I mc

i

|I|

)
(A5)

where γ and λ are the hyperparameters. The final score from the localizer is then obtained by
summing the scores from Eq. (A4) and Eq. (A5) namely ŷ = ŷnGWP + ŷFOC.

C.3 THE PSEUDO-SUPERVISION SCORES q̃c

The pixel level predictions of the localizer are combined with the old model predictions to generate
the pseudo-supervision scores q̃c as follows. First, the predicted binary segmentation maps q̂c (hard
assignments) are smoothed with the softmax scores:

qc = αq̂c∗ + (1− α)mc (A6)

where q̂ci = 1 if c = argmaxk∈Yt mk
i and 0 otherwise.

Then to get the final values to supervise the update of the segmentation module, for the new classes
(c ∈ Ct) the smoothed scores qc from the localizer are considered, for the old classes the old model
is trusted, while concerning the background the two outputs are combined. Concretely:

q̃c =


min(ỹc,qc) if c = ‘bkg’,
qc if c ∈ Ct,

ỹc otherwise,
(A7)

where ỹ = σ((F ◦ E)t−1(x)).

D FURTHER QUALITATIVE RESULTS

We conclude by providing additional qualitative results. In Fig. A4, we show further comparison
of RaSP with WILSON on various incremental settings that differ by the number of tasks: 15-5
VOC (2 tasks), 10-5 VOC (3 tasks) and 10-2 VOC (6 tasks). In Fig. A5 we show further examples
with the old model prediction and similarity maps between the image label and old classes. Finally
in Fig. A6 we show failure cases for the new class due to lack of semantically similar class, lack of
good region detection or low similarity with the predicted class. In Fig. A7 for the old classes where
the new class model takes over the old class model (severe forgetting).

From the Fig. A4 we can see that in the 15-5 VOC setting, the WILSON overestimates the “train”
pixels due to the fact that it uses CAM-like objective under the hood, which suffers from spuriously
correlated “tracks” in the background – a general problem among the WSSS methods (Lee et al.,
2021). On the other hand, as RaSP derives dense pseudo-supervision from previously encountered

8



15-5 VOC (2 tasks) 10-5 VOC (3 tasks) 10-2 VOC (6 tasks)
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Figure A4: Qualitative results from different single-step and multi-step overlap incremental settings
on VOC. The are from the final step of the corresponding settings.

base class, e.g., “bus”, which never occurs alongside “train tracks”, it hinders the CAM-like objec-
tive to put mass on the “train tracks”. This is indeed an interesting property offered by the semantic
similarity loss of RaSP, which leads to improved segmentation. Similarly, for the other settings
we can observe that RaSP leads to improved foreground segmentation. Finally, for the harder 10-2
VOC setting, we notice that WILSON predicts much of the “dog” pixels to be belonging to the
class “tv-monitor”, since the “tv-monitor” class is learned in the final task. This happens due to the
recency-bias issue described in Sec. B.5. While RaSP also partially suffers from the same problem,
but with lesser severity than WILSON.

In the Fig. A5 we provide additional visualizations from the 10-2 VOC setting and highlight the
overconfident predictions of the old model on unseen classes. As shown by the (F ◦ E)t−1(xt)
column in the Fig. A5, the old model at step t − 1 predicts the unseen foreground objects to be
belonging to the previously learnt classes. This observation is quite contradictory to the conventional
knowledge, established in the class-incremental segmentation literature (Cermelli et al., 2020), that
the old model will assign all the unseen classes pixels as the bkg due to the background-shift issue.
As an example, in the first and third rows of the Fig. A5 the old model predicts the “dog” and
“horse” (both unseen) as “cat” and “dog” (both previously seen), respectively. Our proposed RaSP
capitalizes on these predictions to obtain denser supervision for free.

Indeed there are also some instances, (see the 5th row in the Fig. A5) where the old model rightfully
predicts previously unseen objects (“person”) as the class bkg, in-line with background-shift issue.
Even in such scenarios, RaSP is able to correctly segment the “person” object without suppressing
the signal from the CAM objective.. In summary, RaSP can inherit all the advantages from the
WILSON framework, and even goes further to help refine its predictions when WILSON fails.

Despite the successes shown by RaSP, it is far from perfect. We showcase the failure cases on both
the new and the old classes in the Fig. A6 and Fig. A7, respectively. In the Fig. A6 we can observe
that both WILSON and RaSP fail to satisfactorily segment the weakly-labelled new classes. Given
the old model predictions are either not present or insufficient, the proposed RaSP loss can not guide
the model to the right regions of the foreground. Simultaneously, we also observe failure on the old
classes, which are demonstrated in the Fig. A7. We can see that the base classes “cow”, “bicycle” and
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Input GT (F ◦ E)t−1(xt) slt RaSP WILSON

Figure A5: Visualizations. Qualitative figures from the multi-step overlap incremental protocol
on 10-2 VOC. From left to right: input image, GT segmentation overlayed, predicted segmentation
from old model, semantic similarity map computed between the image label and old classes, pre-
dicted segmentation obtained with RaSP and with WILSON. Semantic similarity maps displayed in
OpenCV colormap HOT (low high similarity).

“chair”, etc are mostly segmented as the newly learnt classes, both by WILSON and RaSP, despite
the old model correctly segmenting them. Given that we use the pseudo-labels supervision from the
localizer to re-train the main segmentation head, it wipes away previously learned information about
the old classes. Note that this phenomenon is not introduced by the RaSP loss, and is rather caused
due to the pseudo-labelling loss of WILSON, as described in Eq. (5) of the main paper.
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Input GT (F ◦ E)t−1(xt) RaSP WILSON

Figure A6: Failure cases on new classes. Figures from the multi-step overlap incremental protocol
on 10-2 VOC. From left to right: input image, GT segmentation overlayed, predicted segmentation
from old model, predicted segmentation obtained with RaSP and with WILSON.

Input GT (F ◦ E)t−1(xt) RaSP WILSON

Figure A7: Failure cases on old classes. Figures from the multi-step overlap incremental protocol
on 10-2 VOC. From left to right: input image, GT segmentation overlayed, predicted segmentation
from old model, predicted segmentation obtained with RaSP and with WILSON.
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