A Appendix

A.1 Neural QCFG Parameterization

Each nonterminal is combined with a source node to produce a symbol A[c;], whose embedding
representation is given by e4(,,] = ua + h,,. Here uy is a randomly initialized embedding and
h,, is the node representation for c; from a TreeLSTM. The rule probabilities are then given by,
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where M = N U P. In the above f;’s are feedforward networks with three residual blocks,
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We often place restrictions on the derivations to operationalize domain-specific constraints. For
example, in our machine translation experiments we constrain c, v, to be the immediate children of
a; for rules of the form Afa;] — Bla,]Cla] such that a; # oy, unless «; is a leaf node in which
case «; is always inherited. To calculate py(A[c;] — B[a;]C[ar]) with this restriction, we consider
different cases. In the case where «;, vy, are the immediate children of «v;, pg(Afcy] = Bloy]Clak))
is given by
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In the case where «; € yield(s) (i.e. it has no children), we have
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All other py(A[e;;) = Bla;]Clag])’s are assigned to 0. In practice these constraints are implemented
by masking out the full third-order tensor of the rules’ (log) probabilities, which is of size (25 —
DIN]| x (28 —1)IN UP| x (25 — 1)|]N U P|. Here (2S5 — 1) is the number of nodes in the binary
source tree. This masking strategy makes it possible to still utilize vectorized implementations of the
inside algorithm.

A.2 Lower Bound Derivation
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A.3 Experimental Setup and Hyperparameters

For all experiments the source parser is a neural PCFG [64] with 20 nonterminals and 20 preterminals.
Other model settings that are shared across the experiments include: (1) Adam optimizer with learning
rate = 0.0005, 81 = 0.75, 52 = 0.999, (2) gradient norm clipping at 3, (3) Lo penalty (i.e. weight
decay) of 10~?, (4) Xavier Glorot uniform initialization, and (5) training for 15 epochs with early
stopping on the validation set (most models converged well before 15 epochs). The batch size is 4 for
the SCAN and style transfer datasets, and 32 for the machine translation dataset. Due to memory
constraints, in practice we use a batch size of 1 and simulate larger batch sizes through gradient
accumulation. We observed training to be somewhat unstable and some datasets (e.g. SCAN and
machine translation) needed training across 4 to 6 random seeds to perform well. In general we found
it okay to overparameterize the grammar and use more nonterminals than seems necessary [13].

A3.1 SCAN

For SCAN, all models and embeddings are 256-dimensional. The QCFG has 10 nonterminals and 1
preterminal (JA| = 10, |P| = 1).Since SCAN does not provide official validations sets, we use the
test set of the simple split as the validation set for the add primitive (jump), add template (around
right), length splits. For the simple split, we use the training set itself as the validation set for early
stopping. For decoding we take 10 sample derivations from the grammar and take the yield that has
the lowest perplexity after rescoring.

A.3.2 Style Transfer

On StylePTB, all models and embeddings with 512-dimensional. The QCFG has 8 nonterminals
and 8 preterminals (|NV'| = 8, |P| = 8). We also contextualize the source embedding by passing it
through a bidirectional LSTM, where the concatenation of the forward and backward hidden states
for each word are projected down to 512 dimensions via an affine layer before they are fed to the
TreeLSTM. For decoding we use 1000 samples and take the yield that has the lowest perplexity after
rescoring. The adjective/verb emphasis tasks also provide a particular word in the source sentence to
emphasize. We encode this information through a binary variable, whose embedding is added to the
word embedding (before contexualization) in the encoder. Tokens which occur less than three times
are replaced with the (unk) token.

The baseline uses a bidirectional LSTM encoder and an LSTM decoder with soft attention [8] and a
pointer copy mechanism [95]. We tune over the number of layers, hidden units, and dropout rate. For
decoding we use beam search with beam size of 5 (larger beam sizes did not improve performance).

A.3.3 Machine Translation

In these experiments we use 512-dimensional models/embeddings. The QCFG has 14 nonterminals
and 14 preterminals (JA/] = 14,|P| = 14). As in the Style Transfer experiments, we also experiment
with a variant where we contextualize the source word embeddings with a bidirectional LSTM before
the TreeLSTM layer. For decoding we use 1000 samples and take the yield that has the lowest
perplexity after rescoring. Tokens which occur less than two times are replaced with the (unk) token.

The LSTM baseline uses a bidirectional LSTM encoder and a LSTM decoder with soft attention [8].
We tune over the number of layers, dimensions, and dropout rate. The Transformer baseline is from
OpenNMT [65], where we tune over the number of layers, hidden units, dropout rate, warm-up steps,
and batch size. Given the small size of our dataset, the Transformer was particularly sensitive to the
number of warm-up steps and the batch size. For decoding we use beam search with beam size of 5
(larger beam sizes did not improve performance).

We calculate BLEU with the multi-bleu.perl script from mosesdecoder. For the daxy test set, the
original paper [68] only considers the “tu” translation of “you” to be correct. We follow Li et al. [70]
and Chen et al. [19] and also count “vous” to be correct as well (e.g. both “tu n es pas daxiste .” and
“vous n etes pas daxiste .” are considered to be valid translations of “you are not daxy .”).
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