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A RELATED WORK

Critic-based RL4LLM algorithms Shao et al. (2024) first demonstrated that large-scale rein-
forcement learning (RL) with outcome-based rewards can unlock long-tail reasoning, beginning
from an unaligned base model. This finding has led to numerous variations of the Proximal Policy
Optimization (PPO) algorithm. As far as we know, most algorithm research is mainly based on the
baseline normalized advantage calculation method (Hu, 2025; Liu et al., 2025b; Chen et al., 2025).

On the other hand, value-based algorithm innovations are relatively few, Yuan et al. (2025b) argued
that the decay factor is not well-suited for complex reasoning tasks that require long chains of thought
(CoT). Yue et al. (2025); Zhu et al. (2025); Zhao et al. (2025) proposed novel mechanisms to enhance
the robustness of the critic model when faced with noisy reward signals. Open-Reasoner-Zero (Hu
et al., 2025) argues that, within this regime, vanilla PPO without KL regularization suffices to scale
training stably. T-PPO (Fan et al., 2025) uses critic to enhance the stability of policy training in the
long-tail asynchronous setting (Fu et al., 2025). Another similar research line to introduce critic-like
models is done with the introduction of Implicit PRM (Yuan et al., 2025a). This approach is also
able to provide token-level supervision for scalable RL training. PRIME (Cui et al., 2025) adapted
a specific reward model formulation to directly generate token-level rewards. However, current
mainstream RL4LLM algorithms primarily emphasize critic-free optimization (Zhang et al., 2025).
In this context, our research aim to underscore the importance of the critic in RL4LLM scenarios and
try to address the deployment limitations associated with critics.

Asymmetric architecture. In the realm of continuous deep RL, recent studies have investigated
the potential of asymmetric network structures by reducing the capacity of the actor network. For
example, Mastikhina et al. (2025); Mysore et al. (2021) suggest that the actor can function effectively
with a significantly smaller capacity compared to the critic. Empirical evidence from Tan et al. (2022)
supports this idea, demonstrating that sparsifying the policy network can enhance effective policy
learning while significantly improving both inference and training speeds. Additionally, Liu et al.
(2025a) found that pruning the actor network’s topology based on trial gradients can yield better
performance. Similarly, Ma et al. (2025) revealed that even random pruning of the actor network can
maintain performance within the SimBa network architecture (Lee et al., 2024). These contributions
highlight the adaptability of RL in accommodating asymmetric designs, providing valuable insights
for our research. However, existing works primarily concentrate on reducing the actor’s size within
simple network frameworks. In contrast, our paper pioneers the exploration of effectively guiding a
small critic to inform a larger actor by optimizing the PPO algorithm within the RL4LLM scenario.

B THE PERFORMANCE GAIN OF AsyPPO ON THE SMALL MODEL STRATEGY

Policy model Base model Symmetric PPO AsyPPO

Qwen3-4b-Base 30.5% 47.3% 53.1% +6.1%

Qwen3-4b-Base 31.7% 50.6% 53.8% +3.2%

Table 1: Peak accuracy comparison of Symmetric PPO and AsyPPO under high data reuse setting (UTD=4) over
six benchmarks. Score calculation same as ?? (b). Purple score denotes the improvement compare to Symmetric
PPO.

We set both the classic symmetrical PPO and our AsyPPO to the optimal Settings. AsyPPO uniformly
initializes mini-critics using the Qwen3-1.7b-Base model. AsyPPO employs two mini-critics with
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advantage masking at 20%. And use the open source hard training dataset in (Liu et al., 2025c),
which is selected from DeepMath-103k (He et al., 2025) with sampling probability proportional to
each entry’s assigned difficulty level. We report the average@4 across six challenging benchmarks,
i.e., MATH-500, OlympiadBench, MinervaMath, and AMC 2023, AIME 2025, AIME 2024.

Overall, Table 1 shows that AsyPPO effectively enhances the reasoning capabilities of two small
models of different sizes, achieving respective improvements of 22.6% and 22.1% over their original
performance. Compared to symmetric PPO, our algorithm delivers gains of 6.1% and 3.2%, while
maintaining lightweight deployment. Upon analyzing specific benchmarks, our approach demon-
strates notable advancements. For instance, on AIME 2025, we observed respective increases of
approximately 4% (4B) and 6% (8B) compared to symmetric PPO. Similarly, on MATH-500, the
improvements were around 3% (4B) and 2% (8B), and on MinervaMath, the gains were approxi-
mately 2% (4B) and 4% (8B). In the remaining three tasks, our method maintained performance
levels comparable to those of symmetric PPO.

C DETAILED EXPERIMENTAL SETUP

C.1 PLOT SETUP

To ensure clarity and intuitiveness in the qualitative analysis, all curves are consistently smoothed
using identical parameters. Specifically, the mean values are computed using an 11-step moving
window with an exponential smoothing factor of 0.6. The smooth window set as 4 and 2.

C.2 HYPERPARAMETERS

We employ ROLL, a user-friendly and efficient open-source reinforcement learning framework, to
implement our pipeline. Subsequently, the key parameters observed during the training process are
presented as follows. See our code config file for more details on the parameters. For the 14b policy
training. We uniformly arrange the actors on (0,16) and the critics on (16,32) GPUs. For other small
models, we uniformly place the actor at (0,8) and the critic at (8,16) GPU. Detailed settings can be
found in next page.
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# We use below setup for 4b and 8b policy
seed: 42
max_steps: 500
save_steps: 500
logging_steps: 1
eval_steps: 1
gamma: 1.0 # discount factor
lambd: 1.0 # GAE lambda
rollout_batch_size: 64
prompt_length: 1024
response_length: 8000
value_aggregation_strategy: "mean"
gradient_mask_percentage: 0.2 # mask 20%
entropy_loss_coef: 0.01
entropy_filter_mask_percentage: 0.2 # filter out 20%
ppo_epochs: 1 # 4 is also used in main experiments
adv_estimator: "gae"
init_kl_coef: 0.0
async_generate_level: 1

actor_train:
training_args:
learning_rate: 1.0e-6
weight_decay: 0
per_device_train_batch_size: 1
gradient_accumulation_steps: 256
warmup_steps: 50
num_train_epochs: 50

critic_1:
training_args:

learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 1
gradient_accumulation_steps: 128
warmup_steps: 5
num_train_epochs: 50

critic_2:
training_args:

learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 1
gradient_accumulation_steps: 128
warmup_steps: 5
num_train_epochs: 50

...

actor_infer:
generating_args:
max_new_tokens: ${response_length}
top_p: 0.99
top_k: 100
num_beams: 1
temperature: 0.99
num_return_sequences: 32

...
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# We use below setup for 14b policy
seed: 42
max_steps: 500
save_steps: 500
logging_steps: 1
eval_steps: 1
gamma: 1.0 # discount factor
lambd: 1.0 # GAE lambda
value_aggregation_strategy: "mean"
gradient_mask_percentage: 0.2 # mask 20%
entropy_loss_coef: 0.01
entropy_filter_mask_percentage: 0.2 # filter out 20% or 0%
rollout_batch_size: 64
prompt_length: 1024
response_length: 8000
infer batch size: 4
ppo_epochs: 4
adv_estimator: "gae"
init_kl_coef: 0.0
async_generate_level: 1
actor_train:
training_args:
learning_rate: 1.0e-6
weight_decay: 0
per_device_train_batch_size: 2
gradient_accumulation_steps: 6
warmup_steps: 50
num_train_epochs: 50

critic_1:
training_args:

learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 2
gradient_accumulation_steps: 16
warmup_steps: 5
infer batch size: 4
num_train_epochs: 50

critic_2:
training_args:

learning_rate: 1.0e-5
weight_decay: 1.0e-2
warmup_steps: 5
per_device_train_batch_size: 2
gradient_accumulation_steps: 16
warmup_steps: 5
infer batch size: 4
num_train_epochs: 50

...
actor_infer:
generating_args:
max_new_tokens: ${response_length}
top_p: 0.99
top_k: 100
num_beams: 1
temperature: 0.99
num_return_sequences: 32

...
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C.3 PROMPT

In this work, we incorporate the following instruction into the system prompt to encourage the model
to better demonstrate its reasoning process: “Please reason step by step, and put your final answer
within \boxed{}.” This setting is designed to guide the model to perform step-by-step reasoning
and explicitly present the final answer in the form of \boxed{}, thereby enhancing the clarity and
readability of the output.
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Figure 1: Left: Statistics within a mini-batch in the mid-training stage. Right: The 40 tokens that are masked
most frequently in the same mini-batch.

D THE RELATIONSHIP BETWEEN VALUE STD AND STATE INFORMATION
QUANTITY

Specifically, for the training scenarios of 8b actors and two 0.6b critics, we use the value-std
corresponding to the global state and the median of the gradient magnitude to categorize the states
into four types. Namely, large gradient & large value std, large gradient & small value std, small
gradient & large value std, small gradient & small value std. The results in Figure 1 (Left) show that
the vast majority of states are classified into the categories of large gradient & large value std and
small gradient & small value std, thereby empirically proving the positive relationship between value
std and the learning value (information quantity) of the state.

E VISUALIZATION OF WORD CLOUDS

We statistically analyzed the word clouds of the tokens with the highest mask frequency in the initial
stage of AsyPPO training. The results in Figure 1 (Right) show that our mask mechanism tends to
mask adjectives, adverbs, and some isolated symbols, with less involvement in logical transitions,
except for the slightly prominent progressive word "therefore".

LLM USAGE

LLMs were used to assist paper editing and to write the code for plotting experiments.
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