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Abstract
In the realm of cross-modal retrieval, seamlessly integrating di-
verse modalities within multimedia remains a formidable challenge,
especially given the complexities introduced by noisy correspon-
dence learning (NCL). Such noise often stems from mismatched
data pairs, which is a significant obstacle distinct from traditional
noisy labels. This paper introduces Pseudo-Classification based
Pseudo-Captioning (PC2) framework to address this challenge. PC2

offers a threefold strategy: firstly, it establishes an auxiliary “pseudo-
classification” task that interprets captions as categorical labels,
steering the model to learn image-text semantic similarity through
a non-contrastive mechanism. Secondly, unlike prevailing margin-
based techniques, capitalizing on PC2’s pseudo-classification capa-
bility, we generate pseudo-captions to provide more informative
and tangible supervision for each mismatched pair. Thirdly, the
oscillation of pseudo-classification is borrowed to assistant the cor-
rection of correspondence. In addition to technical contributions,
we develop a realistic NCL dataset called Noise of Web (NoW),
which could be a new powerful NCL benchmark where noise exists
naturally. Empirical evaluations of PC2 showcase marked improve-
ments over existing state-of-the-art robust cross-modal retrieval
techniques on both simulated and realistic datasets with various
NCL settings. The contributed dataset and source code are released
at https://github.com/alipay/PC2-NoiseofWeb.

CCS Concepts
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies →Machine learning.
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1 Introduction
Cross-modal retrieval, a cornerstone of multimodal learning, is a
vibrant domain tasked with bridging diverse modalities in the vast
realm of multimedia [36, 52]. Yet, the tangible success of these meth-
ods hinges on a critical presumption: the training data must be in
harmonious alignment across modalities. The hitch, however, lies in
obtaining such perfectly matched data pairs. Manual annotation is
not only a huge task but also prone to subjective errors. A potential
alternative, often adopted, is mining co-occurring image-text pairs
from the vast expanse of the internet [26, 38, 45]. But this conve-
nience comes at a cost: the introduction of noise in the form of
mismatched data pairs. This brings us to the crux of our discourse –
noisy correspondence [25]. Unlike traditional noisy labels, which are
about incorrect category labels [32, 35, 48], noisy correspondence
is the mismatch between different modalities in paired data (an
example is shown in the upper part of Fig. 1). The collected data,
riddled with a mix of clean and noisy data pairs, can diminish the
effectiveness of cross-modal retrieval techniques [25, 37, 57].

Noisy correspondence learning (NCL) mentioned above still holds
vast potential for development. Since it is first introduced by NCR
[25], only a handful of works have ventured further exploration and
they are mainly evaluated on artificially simulated NCL datasets
[25, 57]. Thus, we collect 100K website image-meta description
pairs from the web to construct a large-scale NCL-specific dataset:
Noise of Web (NoW), which has more complex, natural, and chal-
lenging noisy correspondences. Back to the main topic, the previous
NCL solutions can be summarized as adjusting the correspondence
labels, which can be recasted as the soft margin of triplet loss,

https://orcid.org/0000-0003-4131-7146
https://orcid.org/0000-0002-2102-2693
https://orcid.org/0009-0000-9624-3776
https://orcid.org/0000-0001-7091-0702
https://orcid.org/0000-0001-8992-9833
https://orcid.org/0009-0008-0722-9744
https://github.com/alipay/PC2-NoiseofWeb
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3664647.3680860
https://doi.org/10.1145/3664647.3680860


MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Yue Duan, et al.

Image
Anchor

False Positive
Caption

Negative
Caption

Pseudo-
Caption

Selected

Soccer player is
beaten to the ball
by soccer player.

A sad man is
crying silently in
a narrow room.

True Positive Caption 
(Ground-Truth)

False Positive Caption
(Noisy Correspondence)

Margin-Based
Method

Pseudo-Caption-
Based Method

( )

Figure 1: Illustrations for noisy correspondence and differ-
ence between currently popular margin-based methods and
proposed pseudo-caption based PC2. PC2 aims to provide di-
rect supervision for false positive pairs with pseudo-caption
and larger margin (i.e., 𝛼large) in triplet loss, rather than ad-
justing a smaller margin (i.e., 𝛼small) to alleviate the negative
influence of false positive pairs in margin-based methods.

thereby mitigating the negative impact on the training caused by
the mismatched image-text pairs [25, 57]. We refer to these meth-
ods as margin-based methods, which is showcased on the left side
of Fig. 1. Although these methods demonstrates viability and effi-
cacy, it possesses certain limitations. Adjusting the margin doesn’t
directly provide beneficial supervisory information for those false
positive pairs but rather alleviates their incorrect supervision.

Meanwhile, although these methods strive to resist noisy data,
they are still affected by noticeable adverse impacts, as exemplified
in Fig. 2 provided. The learning process of NCR [25] mentioned
above presents an oscillatory pattern, especially pronounce dur-
ing initial encounters with noisy data, thereby inducing notable
volatility in the loss associated with clean data. In response to this
observed phenomenon, we proffer a novel NCL framework, named
Pseudo-Classification based Pseudo-Captioning (PC2), engineered
for robust cross-modal retrieval with noisy correspondence. This
framework can be divided into three integrated solutions:

(1) Inspired by non-contrastive learning [6, 7, 61], we initially
design an auxiliary task named “pseudo-classification” to reinforce
the model’s learning from clean data. Simplistically, the caption is
interpreted as a categorical label, thereby driving the model to inter-
nalize image semantic categories through a refined cross-entropy
paradigm. Utilizing cross-entropy loss brings the benefit of a ex-
plicit optimization objective for the model, without the need for
negative samples. Pseudo-classification enables automatic grouping
of visual concepts from image-text pairs, ultimately inducing addi-
tional semantic information. (2) Sparked by pseudo-labeling used
in various semi-supervised learning tasks [9, 14, 15, 17, 56, 62, 63]
and image captioning used in multimodal learning [39, 58], in con-
trast to the margin-based NCL methods, we propose that offering
more informative supervision for each mismatched pair by gen-
erating pseudo-captions, which is illustrated in the right side of
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Figure 2: Experimental results of NCR (left) vs. PC2 (right).
Our method shows a more robust learning performance on
clean data, maintaining a gradually converging trend with
minimal influence fromnoisy data. In contrast, NCR exhibits
a more oscillating pattern in learning clean data, especially
when starting to learn from noisy data, causing noticeable
fluctuations in the loss of clean data.

Fig. 1. Many studies have highlighted the importance of accurate
captions [5, 43, 46]. When mismatched pairs persist in training,
their adverse impact on model performance is profound. Conse-
quently, we strive to produce captions for these mismatched pairs
as correctly as possible. For specific, capitalizing on the pseudo-
classification prowess of PC2, our strategy concurrently compute
pseudo-predictions for both clean data and noisy data. These pre-
dictions, informed by their intrinsic similarities, serve as the basis
for assigning pseudo-captions to the noisy data. Our primary goal
remains to ensure correct correspondences across all pairs, thereby
steering the model towards a better learning trajectory. (3)Wemake
use of the pseudo-classifier, capitalizing on its oscillatory prediction
behavior across different epochs, to perform a simple yet effective
correspondence correction for clean data.

In summary, our contributions are as follows: (1) We introduce
a NCL-robust framework: PC2, offering a threefold strategy: an
auxiliary “pseudo-classification” task using cross-entropy loss; a
novel use of pseudo-captions for richer supervision of mismatched
pairs, and a correspondence correction mechanism, all rooted in
pseudo-classification. (2) PC2 shows promising NCL performance
on both the simulated and the realistic datasets, outperforming both
popular cross-modal retrieval approaches and NCL-robust methods
across a variety of NCL settings. (3) We introduce a realistic dataset
Noise of Web (NoW), which can serve as a powerful benchmark for
future evaluations of NCL.

2 Related Work
Bridging the semantic divide between diverse modalities is the
cornerstone in multimedia research [24, 28, 53]. Such cross-modal
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endeavors predominantly revolve around mapping these disparate
modalities into a unified, learnable space, ensuring measurable
semantic correlations. However, the methodologies and challenges
associate with this goal vary based on the data modalities and the
alignment strategies in play, e.g., image captioning [39, 58], video
captioning [51]. For the focus of this article, image-text matching,
the crux lies in deriving representations from images and aligning
these with their textual counterparts [10, 16, 41].

Although previous image-text matching work has achieved con-
siderable success [8, 12, 33], a recurrent concern in these studies
is the assumption of perfectly aligned training data pairs, which
is hard to guarantee due to extensive collection and annotation
expenses. Noisy correspondence learning (NCL), a relatively novel
problem, delves into this issue [21, 25, 37, 57]. It addresses the mis-
matched pairs inaccurately considered positive. Initial research in
this domain is NCR [25], which trains image-text matching models
robustly with adaptively rectified soft correspondence label. Sub-
sequent to NCR, its successors have ushered in enhancements on
NCL. For instance, BiCro [57] introduces an innovative approach to
rectify noisy correspondence labels by leveraging the bidirectional
cross-modal similarity consistency. This methodology capitalizes
on the inherent consistency present within paired data. On the
other hand, DECL [37] exploits cross-modal evidential learning to
estimate the uncertainty brought by noise to isolate the noisy pairs,
A salient feature uniting these methodologies is their conciliatory
strategy towards handling misaligned image-text pairs; their de-
signs primarily revolve around mitigating the detrimental impacts
of mismatched pairs by isolating them or adjusting a smaller margin
in triplet ranking loss. Contrasting these approaches, PC2 furnishes
direct supervisory signals for images in mismatched pairs, which
enriches the learning process.

3 Dataset Contribution: Noise of Web
3.1 Motivation
The aim of noisy correspondence learning (NCL) is building robust
models based on large-scale noisy data, which can be easily ob-
tained on website and apps. However, although there exist some
noisy correspondence learning datasets such as MS-COCO [34]
and Flickr30K [59] as the benchmarks, the noise in them is human
generated and picked, which limits noisy correspondence models’
generalization ability towards real-world applications. Randomly
replacing some images’ caption with others in one dataset is not a
perfect choice for noise generating since there may be multiple pos-
itive and reasonable captions to one image. Another disadvantage
of existing datasets is the huge human labor for writing meaningful
captions for images with various different representations. For ex-
ample, MS-COCO has 616,435 captions for 123,287 images, and all
these captions are given by human. Although Conceptual Captions
[45] (a realistic datasets) is used for NCL [25], but its low noise ratio
(3% ∼ 20%) makes it insufficient for a comprehensive evaluation.

Motivated by the above mentioned, we develop a new dataset
namedNoise of Web (NoW) for NCL. It contains 100K cross-modal
pairs consisting of website images and multilingual website meta-
descriptions (98,000 pairs for training, 1,000 for validation, and 1,000
for testing). NoW has two main characteristics: without human
annotations and the noisy pairs are naturally captured.
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Figure 3: Sample data pairs in NoW composed of website
pages and their corresponding site meta-descriptions. Boxes
with different colors are used to display the region proposals
obtained by the detection model APT [19] trained by us.

3.2 Data Collection
The source image data of NoW is obtained by taking screenshots
when accessing web pages on mobile user interface (MUI) with
720×1280 resolution, and we parse the meta-description field in
the HTML source code as the captions. In NCR [25] (predecessor
of NCL), each image in all datasets are preprocessed using Faster-
RCNN [40] detector provided by [1] to generate 36 region proposals,
and each proposal is encoded as a 2048-dimensional feature. Thus,
following NCR, we release our the features instead of raw images for
fair comparison. However, we can not just use detection methods
like Faster-RCNN [40] to extract image features since it is trained
on real-world animals and objects on MS-COCO. To tackle this,
we adapt APT [19] as the detection model since it is trained on
MUI data. Then, we capture the 768-dimensional features of top 36
objects for one image. Using local objects’ feature could contribute
more to the contrastive learning and pseudo-caption generating,
as explained in [12, 25, 31]. Due to the automated and non-human
curated data collection process, the noise in NoW is highly authen-
tic and intrinsic. For example, semantic inconsistencies between
page content and descriptions (e.g., the third column in Fig. 3),
nonsensical garbled description resulting from improper website
maintenance (e.g., the fourth column in Fig. 3). The estimated noise
ratio of this dataset is nearly 70%. More details of NoW can be
found in Sec. A of Supplementary Material.

4 Method
4.1 Overview
In the domain of cross-modal retrieval, ensuring accurate corre-
spondence between different modalities, such as images and text,
is crucial. To comprehensively study this challenge, we take image-
text retrieval as a representative task to delve into the issue of noisy
correspondence. At the heart of this task is a training set denoted
as D = {(𝐼𝑖 ,𝑇𝑖 , 𝑐𝑖 )}𝑁𝑖=1, where each tuple represents an image-text
pair. Here, 𝐼𝑖 and 𝑇𝑖 are the image and text components of the 𝑖-th
pair, respectively. The label 𝑐𝑖 ∈ {0, 1} signifies whether the pair
is matched (𝑐𝑖 = 1) or mismatched (𝑐𝑖 = 0). 𝑁 represents the total
count of data pairs in the training set. In the conventional setting
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Figure 4: Visualization of the procedures of pseudo-classification and pseudo-captioning in PC2. Pseudo-classification: Given a
batch of clean data (𝐼c

𝑖
,𝑇 c
𝑖
), we first calculate the embeddings of 𝐼c

𝑖
and 𝑇 c

𝑖
. Then we use C to obtain their pseudo-predictions 𝑝c

𝑖
and 𝑞c

𝑖
, respectively. 𝑞c

𝑖
is used as the classification label to supervise the training of C on 𝑝c

𝑖
using the standard cross-entropy

loss function, in hopes of reinforcing the training of image-text matching. Pseudo-captioning: Given noisy data (𝐼n
𝑖
,𝑇 n
𝑖
), we

first discard its caption 𝑇 n
𝑖
. We input the embedding of 𝐼n

𝑖
into C to obtain its pseudo-prediction 𝑝n

𝑖
, then find the most similar

one (denoted as 𝑝c
𝑗
) to 𝑝n

𝑖
among 𝑝c

𝑖
from the aforementioned batch of clean data being trained synchronously. We assign

the corresponding caption of 𝑝c
𝑗
(i.e., 𝑇 c

𝑗
) to 𝐼n

𝑖
as the pseudo-caption 𝑇 p

𝑖
, and also utilize a margin based on pseudo-prediction

similarity to train the matching model with a triplet ranking loss.

of image-text retrieval, it is often assumed that all image-text pairs
in the dataset are matching (i.e., ∀𝑖 ∈ {1, · · · , 𝑁 }, 𝑐𝑖 = 1). However,
multimodal datasets might be imprecisely annotated in real-world,
especially if they are sourced from the internet or created using
cost-effective methods (i.e., ∃𝑖 ∈ {1, · · · , 𝑁 }, 𝑐𝑖 = 0), which we refer
to as noisy correspondence learning (NCL). In general, we do not
have sufficient resources to accurately identify the matching status
of all image-text pairs, as 𝑐𝑖 can be considered inaccessible.

Given D, we use two modal-specific encoder 𝑓 (·) and 𝑔(·) to
respectively compute the feature embedding 𝑓 (𝐼 ) and 𝑔(𝑇 ). The
fundamental aim of cross-modal retrieval is to map different modal-
ities into a unified feature space, where positive pairs should exhibit
higher feature similarities, while negative pairs should manifest
lower similarities. The similarity between given image-text pairs
is determined using the function 𝑆 (𝐼 ,𝑇 ), which is a shorthand for
𝑆 (𝑓 (𝐼 ), 𝑔(𝑇 )). Generally, the primary objective is to optimize 𝑓 and
𝑔 by minimizing a triplet ranking loss function, which is influenced
by the similarity measure and a distance margin 𝛼 :

Lt (𝐼𝑖 ,𝑇𝑖 ) = [𝛼 − 𝑆 (𝐼𝑖 ,𝑇𝑖 ) + 𝑆 (𝐼𝑖 ,𝑇ℎ)]+ + [𝛼 − 𝑆 (𝐼𝑖 ,𝑇𝑖 ) + 𝑆 ( ˜𝐼ℎ,𝑇𝑖 )]+,
(1)

where [𝑥]+ = max(𝑥, 0), (𝐼𝑖 ,𝑇𝑖 ), (𝐼𝑖 ,𝑇ℎ) and ( ˜𝐼ℎ,𝑇𝑖 ) are the posi-
tive pair, negative pair treating image as query and negative pair
treating text as query, respectively. 𝐼ℎ = argmax𝐼 𝑗≠𝐼𝑖 𝑆 (𝐼 𝑗 ,𝑇𝑖 ) and
𝑇ℎ = argmax𝑇𝑗≠𝑇𝑖 𝑆 (𝐼𝑖 ,𝑇𝑗 ) are the hardest negatives in the mini-
batch [16]. Dynamic margin plays a crucial role in NCL. Previ-
ous margin-based approaches [25, 37, 57] mitigate the impact of
mismatched pairs on model training by cleverly adjusting it. The
general adjustment strategy is to set a larger 𝛼 for matched pairs
and a smaller 𝛼 for mismatched pairs. However, our focus is on 𝑇𝑖 ,
i.e., we aim to ensure that all images in the pairs have the correct
corresponding captions., as optimizing this loss will help the model
converge towards a better direction.

In NCL, both noisy and clean data are intermixed. Therefore, the
first thing we need to consider is how to distinguish the two as
correctly as possible. For simplicity, we directly utilize the mem-
orization effect1 based co-dividing module in [25] to predict the
clean probability 𝑤𝑖 of (𝐼𝑖 ,𝑇𝑖 , 𝑐𝑖 ) ∈ D. Setting a threshold 𝜏 , we
divide D into clean subset Dc = {(𝐼c

𝑖
,𝑇 c
𝑖
, 𝑐𝑖 )}𝑁

c

𝑖=1 and noisy subset
Dn = {(𝐼n

𝑖
,𝑇 n
𝑖
, 𝑐𝑖 )}𝑁

n

𝑖=1, i.e., D = Dc ∪ Dn and Dc ∩ Dn = ∅. For

1Deep neural networks (DNNs) tend to have relatively high loss for the noisy data and
relatively low loss for the noisy clean in the training [2].
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specific, (𝐼𝑖 ,𝑇𝑖 , 𝑐𝑖 ) with𝑤𝑖 > 𝜏 is selected into Dc, otherwise it is
selected into Dn. In this paper, we refer to (𝐼c

𝑖
,𝑇 c
𝑖
) ∈ Dc as clean

data, while (𝐼n
𝑖
,𝑇 n
𝑖
) ∈ Dn is referred to as noisy data (because 𝑐𝑖

is solely used for defining the task of NCL, it will be omitted in
the subsequent discussions). Furthermore, following [25, 57], we
adopt the co-training manner [20] to alleviate the error accumula-
tion problem. Due to space limitation, the details of co-dividing and
co-training are placed in Sec. B of Supplementary Material.

4.2 Pseudo-Classification
In NCL, addressing mismatched data is paramount. However, many
approaches often overlook the protection of learning from clean
data. As previously discussed in Sec. 1, once mismatched pairs are
introduced into training, the efforts invested in learning from clean
data can be significantly compromised. To enhance the robustness
of training on clean data, we propose an auxiliary training task
that reinforces the learning of such data. A key insight we offer is
that in image-text pairs, the caption of an image can be considered
as a classification label 𝑦 ∈ {1, · · · , 𝐾}, where 𝐾 is a pre-defined
hyper-parameter. Hence, training on image-text pairs can be con-
ceptualized as an 𝐾-way classification task. For instance, we can
categorize the captions in the dataset into two main classes (i.e.,
𝐾 = 2): descriptions of natural landscapes and descriptions of bi-
ological actions. We aim to train the model to group images of
natural landscapes and images containing living organisms into
their respective classes. To achieve this goal, we set up a pseudo-
classifier C(·) and utilize the captions in clean data to generate
pseudo-labels for the training of C.

Specifically, given a mini-batch of clean data {(𝐼c
𝑖
,𝑇 c
𝑖
)}𝐵
𝑖=1 with

batch size 𝐵, we firstly compute pseudo-predictions 𝑝c
𝑖
= C(𝑓 (𝐼c

𝑖
))

and 𝑞c
𝑖
= C(𝑔(𝑇 c

𝑖
)), where 𝑝c

𝑖
, 𝑞c
𝑖
∈ R𝐾+ are probability vectors

(i.e., soft label). Next, we conduct cross-entropy loss between the
hard pseudo-labels 𝑞c

𝑖
= argmax(𝑞c

𝑖
) and the pseudo-predictions

of images (i.e., 𝑝c
𝑖
):

Lpse =
1
𝐵

𝐵∑︁
𝑖=1

𝐻 (𝑞c𝑖 , 𝑝
c
𝑖 ), (2)

where 𝐻 (𝑃,𝑄) denotes the standard cross-entropy loss between
distribution 𝑄 and 𝑃 . The hard pseudo-label is widely leveraged
in semi-supervised learning [13, 47] to achieve entropy minimiza-
tion [18], which encourages the model to make highly confident
predictions. Moreover, to avoid C from assigning all samples to a
single class, we minimize an entropy loss to spreads the pseudo-
predictions uniformly across the all classes [3, 4, 50]:

Lent = − 1
𝐵

𝐵∑︁
𝑖=1

𝑝c𝑖 log(
1
𝐵

𝐵∑︁
𝑖=1

𝑝c𝑖 ). (3)

Our pseudo-classification loss additionally helps the model cap-
ture similarity relationships between samples. It strengthens the
model’s learning from clean data in Dc, enhancing its ability to
resist the interference of noisy data in Dn.

4.3 Pseudo-Prediction Based Pseudo-Captioning
The framework of PC2 is shown in Fig. 4. With pseudo-classifier
C, we design a simple and effective approach to assign pseudo-
captions to 𝐼n

𝑖
. Given a mini-batch of data {(𝐼c

𝑖
,𝑇 c
𝑖
), (𝐼n

𝑖
,𝑇 n
𝑖
)}𝐵
𝑖=1, we

first compute their pseudo-predictions 𝑝c
𝑖
= C(𝑓 (𝐼c

𝑖
)) and 𝑝n

𝑖
=

C(𝑓 (𝐼n
𝑖
)) for 𝐼c

𝑖
and 𝐼n

𝑖
. Then, for each 𝐼n

𝑖
, we assign the pseudo-

caption 𝑇 p
𝑖
by

𝑇
p
𝑖
= 𝑇 c

𝑗 with 𝑗 = argmax
𝑏∈{1,· · · ,𝐵}

(𝑆p (𝑝n𝑖 , 𝑝
c
𝑏
)), (4)

where 𝑆p (·, ·) is a function that can be used to compute the similarity
between two distributions. Then, we assemble 𝐼n

𝑖
and 𝑇 p

𝑖
into a

pseudo-pair (𝐼n
𝑖
,𝑇

p
𝑖
) and substitute them into Eq. (1), aiming to

provide more accurate supervision signals for model training. As
we cannot guarantee that the found pseudo-caption accurately
reflects the semantic information of 𝐼n

𝑖
, we dynamically adjust the

margin to ensure that the model benefits from a more accurate
level of correspondence during training. For specific, we adaptively
adjust 𝛼 in Eq. (1) with selected 𝑗 in Eq. (4) :

𝛼n =
𝑚
𝑆p (𝑝n𝑖 ,𝑝c𝑗 ) − 1
𝑚 − 1 𝛼, (5)

where𝑚 is a pre-defined curve parameter. The underlying principle
here is that if the similarity of the pseudo-predictions 𝑆p (𝑝n

𝑖
, 𝑝c
𝑗
) is

higher, then the similarity between 𝐼n
𝑖
and 𝐼𝑐

𝑗
(i.e., the image in the

original pair where 𝑇 p
𝑖
is present) should also be higher, indicating

a stronger correspondence between 𝐼n
𝑖
and 𝑇 p

𝑖
.

Then, for the noisy data {(𝐼n
𝑖
,𝑇 n
𝑖
)}𝐵
𝑖=1 in the given mini-batch,

we train the model by minimizing the following loss:

Ln =

𝐵∑︁
𝑖=1

(
[𝛼n − 𝑆 (𝐼n𝑖 ,𝑇

p
𝑖
) + 𝑆 (𝐼n𝑖 ,𝑇

p
ℎ
)]+

+[𝛼n − 𝑆 (𝐼n𝑖 ,𝑇
p
𝑖
) + 𝑆 (𝐼n

ℎ
,𝑇

p
𝑖
)]+

)
. (6)

4.4 Prediction Oscillation Based
Correspondence Rectification

In addition to paying special attention to noisy data, learning from
clean data cannot be taken lightly, because we cannot guarantee
that mismatched pairs have not been erroneously included in Dc.
Thus, we introduce a correspondence correction module with the
following core idea: the pseudo-classification results of images,
learned from pseudo-labels based on captions with correct cor-
respondences, should be stable, i.e., oscillating pseudo-predictions
indicate low correspondence in the image-caption pair.

We define prediction oscillation as the difference between pre-
dictions for the same sample between adjacent epochs. A larger
difference indicates a higher oscillation, indicating that the model
is less confident about the sample and is resisting the supervision
provided by the caption-based classification labels, i.e., implying a
weaker correspondence between the image and caption. This pat-
tern is very similar to the DNN’s memorization effect mentioned
in Sec. 4.1. Let 𝑝c,(𝑒 )

𝑖
represent the pseudo-prediction at epoch 𝑒 ,

and its prediction oscillation 𝑜 (𝑒 )
𝑖

is evaluated by:

𝑜
(𝑒 )
𝑖

= 𝐷𝐾𝐿 (𝑝c,(𝑒−1)𝑖
∥ 𝑝c,(𝑒 )

𝑖
), (7)
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where 𝐷𝐾𝐿 (𝑃 ∥ 𝑄) is the KL-divergence between distribution 𝑄
and 𝑃 . We input {𝑜 (𝑒 )

𝑖
}𝐵
𝑖=1 into the co-dividing module described

in Sec. 4.1 and obtain the prediction oscillation based clean proba-
bilities {𝑤o

𝑖
}𝐵
𝑖=1. Following Eq. (5), we recast the strength of corre-

spondence to the margin of Eq. (1), to assist the learning of clean
data, i.e.,

𝛼c =
𝑚𝑤

c
𝑖
+(1−𝑤c

𝑖
)1(𝑤o

𝑖
≥𝜏 )𝑤o

𝑖 − 1
𝑚 − 1 𝛼, (8)

where 1(·) is the indicator function. More explanations of Eqs. (7)
and (8) can be found in Sec. B of Supplementary Material. Next,
for the clean data {(𝐼c

𝑖
,𝑇 c
𝑖
)}𝐵
𝑖=1 in the given mini-batch, we mini-

mize the following loss:

Lc =

𝐵∑︁
𝑖=1

(
[𝛼c − 𝑆 (𝐼c𝑖 ,𝑇

c
𝑖 ) + 𝑆 (𝐼

c
𝑖 ,𝑇

c
ℎ
)]+

+[𝛼c − 𝑆 (𝐼c𝑖 ,𝑇
c
𝑖 ) + 𝑆 (𝐼

c
ℎ
,𝑇 c
𝑖 )]+

)
. (9)

In sum, the total loss of PC2 can be presented as

L = Lc + 𝜆nLn + 𝜆pseLpse + 𝜆entLent, (10)

where 𝜆n , 𝜆pse and 𝜆ent are pre-defined loss weights.

5 Experiment
5.1 Experimental Setup
Datasets.Wemainly conduct experiments on two prominent image-
text retrieval datasets and our proposed realistic NCL benchmark:
(1) Flickr30K [59]: This dataset encompasses 31,000 images, each
coupledwith five captions. The data is partitioned into 29,000 image-
text pairs for training, 1,000 for validation, and 1,000 for testing. (2)
MS-COCO [34]: Consisting of 123,287 images, each image in this
dataset is accompanied by five captions. The division is as follows:
113,287 image-text pairs for training, 5,000 for validation, and 5,000
for testing. (3) Noise of Web: Please refer to Sec. 3 for details. More-
over, the additional result on realistic dataset Conceptual Captions
[45] can be found in Sec. C.1 of Supplementary Material.
Performance Metrics. The primary metric for assessing retrieval
performance is the recall rate at 𝑘 (R@𝑘). We use both images
and text as query entities and report on R@1, R@5, and R@10
for the evaluation. For the well-annotated datasets Flickr30K and
MS-COCO, we introduce artificial noise by randomly mixing the
training images and captions at five noise levels: 0%, 20%, 40%, 50%,
and 60%. For all evaluations, the best checkpoint is selected based
on the validation set, and its test set performance is reported.
Baselines. For a comprehensive comparison, we extensively em-
ploy the following baselines: (1) generic image-text matching ap-
proaches: SCAN [31], VSRN [33], IMRAM [8], SASGR, SGRAF [12]
(specially, SGR∗ and SGR-C [25] are SGR pre-training without hard
negatives and SGR training on clean data without noisy data, re-
spectively) and (2) noisy-correspondence-resistant techniques: NCR
[25], DECL [37], BiCro [57] and L2RM [22].

5.2 Implementation Details
Just like the previous state-of-the-art (SOTA) NCL methods [25,
57], PC2 can also be universally extended to various cross-modal

retrieval models. For a fair comparison, we adopt the same cross-
modal retrieval backbone, SGR [12], as used in [25, 57], i.e., a full-
connected layer is adopted for 𝑓 (·), Bi-GRU [42] is adopted for
𝑔(·) and a graph reasoning technique proposed in [30] is adopted
for 𝑆 (·, ·). Similarly, the training details (e.g., batch size 𝐵 = 128,
threshold 𝜏 = 0.5, margin 𝛼 = 0.2, 𝑚 = 10) are kept consistent
with [25, 57]. For the additional hyper-parameters in PC2, we set
𝐾 = 128 for pseudo-classification and adopt cosine similarity for 𝑆p
used in pseudo-captioning. For loss weight, we set 𝜆n = 𝜆pse = 1
and 𝜆ent = 10. Following [25], we firstly warm up the model for 5,
10 and 10 epochs for Flickr30K, MS-COCO and NoW, respectively.
Then, we train the model for 50 epochs in all experiments. We
use the same Adam optimizer [27] with the default parameters for
training as in [25, 57]. The complete list of hyper-parameters can
be found in Sec. B of Supplementary Material.

5.3 Results and Analysis
Main Results. We summarize the main comparisons in Tab. 1,
where SoC shows promising results on both Flickr30K and MS-
COCO. In the most NCL settings, PC2 outperforms all baseline
methods on the indicator Rsum by a tangible margin, e.g., PC2

outperforms the best baseline method on Flickr30K at noise ratios
of 40%, 50%, and 60% by 3.3, 10.2 and 5.9, respectively.

Further, it is noteworthy that even in settings without noisy cor-
respondences, PC2 still achieves competitive performance, which to
some extent outperform the best generic method: SGRAF (504.8 vs.
499.6 on Flickr30K). Conversely, NCR may be defeated by SGRAF
(522.5 vs. 524.3 on MS-COCO). From the perspective of general
image-text matching methods, they all suffer a significant setback
at high noise ratios (e.g., NCR with 60%), highlighting the impor-
tance of NCLmethods. From the viewpoint of noise-robust methods,
margin-based approaches are generally weaker than the pseudo-
caption-based PC2. The core enhancement of our method lies in its
ability to provide the correct supervisory signal for mismatched
pairs as much as possible, enabling the model to make better use
of noisy data. This offers a richer imagination space for NCL. Al-
though the pseudo-captions assigned by PC2 may not be completely
consistent with the semantics of the noisy images, a certain degree
of semantic overlap is sufficient to provide effective supervision.
Additionally, we show the comparison with BiCro∗ [57], a variant
of BiCro that uses mismatch thresholds to filter out mismatched
pairs (the performance of PC2 can also benefit from this technique),
in Sec. C.2 of Supplementary Material.
Results on NoW. Results on our challenging NCL benchmark,
NoW, in Tab. 2, show our method’s consistent performance advan-
tage. Since a significant portion of captions in NoW are in Chinese,
we first consider using JiebaTokenizer [23] to conduct tokeniza-
tion. Moreover, we provide the additional results on BPETokenizer
[44] and BertTokenizer [11, 55] that can be applied to multilingual
texts in Sec. C.3 of Supplementary Material. Compared to metic-
ulously organized datasets like MS-COCO, NoW better mirrors
real-world industry scenarios. The lower success of existing meth-
ods on NoW reveals NCL research gaps, opening new exploration
avenues for the community. Challenges of NoW are twofold: (1)
high noise levels and sparse visual elements in images (web pages),
with overly verbose or less informative captions; (2) overly abstract
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Table 1: Performance comparison of image-text retrieval on Flickr30K and MS-COCO with recall at 1, 5, and 10 (R@1, R@5,
R@10), along with Rsum (sum of recall values). We mark out the best results in bold and the second best results in underline.
For a fair comparison, we adopt the noise ratio protocol of NCR (0%, 20% and 50%) [25] and BiCro (20%, 40% and 60%) [57].

Flickr30K MS-COCO
Image→ Text Text→ Image Image→ Text Text→ Image

Noise Methods R@1 R@5 R@10 R@1 R@5 R@10 Rsum R@1 R@5 R@10 R@1 R@5 R@10 Rsum

0%

SCAN [31] 67.4 90.3 95.8 48.6 77.7 85.2 465.0 69.2 93.6 97.6 56.0 86.5 93.5 496.4
VSRN [33] 71.3 90.6 96.0 54.7 81.8 88.2 482.6 76.2 94.8 98.2 62.8 89.7 95.1 516.8
IMRAM [8] 74.1 93.0 96.6 53.9 79.4 87.2 484.2 76.7 95.6 98.5 61.7 89.1 95.0 516.6
SAF [12] 73.7 93.3 96.3 56.1 81.5 88.0 488.9 76.1 95.4 98.3 61.8 89.4 95.3 516.3
SGR [12] 75.2 93.3 96.6 56.2 81.0 86.5 488.8 78.0 95.8 98.2 61.4 89.3 95.4 518.1

SGRAF [12] 77.8 94.1 97.4 58.5 83.0 88.8 499.6 79.6 96.2 98.5 63.2 90.7 96.1 524.3
NCR [25] 77.3 94.0 97.5 59.6 84.4 89.9 502.7 78.7 95.8 98.5 63.3 90.4 95.8 522.5
PC2 (Ours) 78.7 94.8 97.0 60.0 84.4 89.8 504.8 79.1 96.5 98.8 64.0 90.3 95.6 524.3

20%

SCAN [31] 59.1 83.4 90.4 36.6 67.0 77.5 414.0 66.2 91.0 96.4 45.0 80.2 89.3 468.1
VSRN [33] 58.1 82.6 89.3 40.7 68.7 78.2 417.6 25.1 59.0 74.8 17.6 49.0 64.1 289.6
IMRAM [8] 63.0 86.0 91.3 41.4 71.2 80.5 433.4 68.6 92.8 97.6 55.7 85.0 91.0 490.7
SAF [12] 51.0 79.3 88.0 38.3 66.5 76.2 399.3 67.3 92.5 96.6 53.4 84.5 92.4 486.7
SGR∗ [12] 62.8 86.2 92.2 44.4 72.3 80.4 438.3 67.8 91.7 96.2 52.9 83.5 90.1 482.2
SGR-C [12] 72.8 90.8 95.4 56.4 82.1 88.6 486.1 75.4 95.2 97.9 60.1 88.5 94.8 511.9
NCR [25] 75.0 93.9 97.5 58.3 83.0 89.0 496.7 77.7 95.5 98.2 62.5 89.3 95.3 518.5
DECL [37] 75.4 93.2 96.2 56.8 81.7 88.4 491.7 76.9 95.3 98.2 61.3 89.0 95.1 515.8
BiCro [57] 78.3 94.1 97.3 60.0 83.7 89.5 502.9 78.2 95.9 98.4 62.5 89.8 95.5 520.3
L2RM [22] 77.9 95.2 97.8 59.8 83.6 89.5 503.8 80.2 96.3 98.5 64.2 90.1 95.4 524.7
PC2 (Ours) 78.7 94.9 96.9 59.8 83.9 89.6 503.8 77.8 95.7 98.4 62.8 89.7 95.3 519.7

40%

SCAN [31] 26.0 57.4 71.8 17.8 40.5 51.4 264.9 42.9 74.6 85.1 24.2 52.6 63.8 343.2
VSRN [33] 2.6 10.3 14.8 3.0 9.3 15.0 55.0 29.8 62.1 76.6 17.1 46.1 60.3 292.0
IMRAM [8] 5.3 25.4 37.6 5.0 13.5 19.6 106.4 51.8 82.4 90.9 38.4 70.3 78.9 412.7
SAF [12] 7.4 19.6 26.7 4.4 12.2 17.0 87.3 13.5 43.8 48.2 16.0 39.0 50.8 211.3
SGR [12] 4.1 16.6 24.1 4.1 13.2 19.7 81.8 10.3 38.4 50.2 11.4 34.5 41.5 186.3

SGRAF [12] 8.3 18.1 31.4 5.3 16.7 21.3 101.1 15.8 23.4 54.6 17.8 43.6 54.1 209.3
NCR [25] 68.1 89.6 94.8 51.4 78.4 84.8 467.1 74.7 94.6 98.0 59.6 88.1 94.7 509.7
DECL [37] 69.0 90.2 94.8 50.7 76.3 84.1 465.1 73.6 94.6 97.9 57.8 86.9 93.9 504.7
BiCro [57] 73.6 93.0 96.4 56.0 80.8 87.4 487.2 76.4 95.2 98.6 61.5 89.4 95.5 516.6
L2RM [22] 75.8 93.2 96.9 56.3 81.0 87.3 490.5 77.5 95.8 98.4 62.0 89.1 94.9 517.7
PC2 (Ours) 75.8 93.5 96.9 57.5 81.9 88.2 493.8 77.4 95.8 98.4 62.1 89.4 95.1 518.2

50%

SCAN [31] 27.7 57.6 68.8 16.2 39.3 49.8 259.4 40.8 73.5 84.9 5.4 15.1 21.0 240.7
VSRN [33] 14.3 37.6 50.0 12.1 30.0 39.4 183.4 23.5 54.7 69.3 16.0 47.8 65.9 277.2
IMRAM [8] 9.1 26.6 38.2 2.7 8.4 12.7 97.7 21.3 60.2 75.9 22.3 52.8 64.3 296.8
SAF [12] 30.3 79.3 88.0 38.3 66.5 76.2 378.6 67.3 92.5 96.6 53.4 84.5 92.4 486.7
SGR∗ [12] 36.9 68.1 80.2 29.3 56.2 67.0 337.7 67.0 87.4 93.6 46.0 74.2 79.0 447.2
SGR-C [12] 69.8 90.3 94.8 50.1 77.5 85.2 467.7 71.7 94.1 97.7 57.0 86.6 93.7 500.8
NCR [25] 72.9 93.0 96.3 54.3 79.8 86.5 482.8 74.6 94.6 97.8 59.1 86.6 94.5 507.2
DECL [37] 71.3 90.7 94.6 52.2 78.7 86.0 473.5 74.4 94.2 98.0 58.8 87.6 94.3 507.3
PC2 (Ours) 74.9 91.5 95.7 54.3 80.2 87.1 483.7 76.1 95.5 98.4 60.9 88.7 94.6 514.2

60%

SCAN [31] 13.6 36.5 50.3 4.8 13.6 19.8 138.6 29.9 60.9 74.8 0.9 2.4 4.1 173.0
VSRN [33] 0.8 2.5 5.3 1.2 4.2 6.9 20.9 11.6 34.0 47.5 4.6 16.4 25.9 140.0
IMRAM [8] 1.5 8.9 17.4 1.9 5.0 7.8 42.5 18.2 51.6 68.0 17.9 43.6 54.6 253.9
SAF [12] 0.1 1.5 2.8 0.4 1.2 2.3 8.3 0.1 0.5 0.7 0.8 3.5 6.3 11.9
SGR [12] 1.5 6.6 9.6 0.3 2.3 4.2 24.5 0.1 0.6 1.0 0.1 0.5 1.1 3.4

SGRAF [12] 2.3 5.8 10.9 1.9 6.1 8.2 35.2 0.2 3.6 7.9 1.5 5.9 12.6 31.7
NCR [25] 13.9 37.7 50.5 11.0 30.1 41.4 184.6 0.1 0.3 0.4 0.1 0.5 1.0 2.4
DECL [37] 64.5 85.8 92.6 44.0 71.6 80.6 439.1 69.7 93.4 97.5 54.5 85.2 92.6 492.9
BiCro [57] 68.3 90.4 93.8 51.9 76.9 84.4 465.7 73.9 94.7 97.7 58.7 87.0 93.8 505.8
L2RM [22] 70.0 90.8 95.4 51.3 76.4 83.7 467.6 75.4 94.7 97.9 59.2 87.4 93.8 508.4
PC2 (Ours) 70.8 90.3 94.4 53.1 79.0 85.9 473.5 74.2 94.4 97.8 58.9 87.5 93.8 506.6
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Table 2: Performance comparison of image-text retrieval on
NoW with captions tokenized by JiebaTokenizer [55].

Image→ Text Text→ Image

Methods R@1 R@5 R@10 R@1 R@5 R@10 Rsum

SGR [12] 11.0 25.3 34.5 11.3 24.7 34.1 140.9
NCR [25] 13.8 27.6 35.6 13.6 27.7 34.4 152.7
DECL [37] 14.2 27.9 35.8 13.5 28.2 35.4 155.0
BiCro [57] 14.6 28.3 36.4 13.1 28.7 36.5 157.6
PC2 (Ours) 16.0 29.5 36.9 15.5 29.0 37.0 163.9

Table 3: Ablation studies on the three components in PC2.
The experiments are conducted Flickr30K with 40% noise.

Components Image → Text Text → Image

P-Cls P-Cap CR R@1 R@5 R@10 R@1 R@5 R@10 Rsum

✓ ✓ ✓ 75.8 93.5 96.9 57.5 81.9 88.2 493.8
✓ ✓ 75.0 93.1 96.0 56.9 81.2 87.6 489.8
✓ ✓ 71.8 91.7 95.9 53.6 80.0 86.8 479.8
✓ 71.2 91.3 95.5 53.4 79.1 86.4 476.9

✓ 70.1 90.3 95.1 51.9 78.5 85.2 471.1

Table 4: Ablation studies on 𝐾 (i.e., the class number of C).
The experiments are conducted Flickr30K with 40% noise.

Image→ Text Text→ Image

𝐾 R@1 R@5 R@10 R@1 R@5 R@10 Rsum

32 72.7 90.9 93.9 55.4 80.1 86.4 479.5
128 75.8 93.5 96.9 57.5 81.9 88.2 493.8
512 75.1 91.8 94.7 58.4 80.5 87.5 488.0
2048 75.4 90.7 93.5 57.8 80.7 86.2 484.3
8192 71.1 89.9 94.0 53.2 79.1 85.8 473.0

captions even in correctly matched samples, e.g., the fifth pairs in
the first and second row of Fig. 6 in Supplementary Material. The
excessive noise in NoW might be merely superfluous for margin-
based methods. In contrast, pseudo-caption-based PC2 could better
enable the effective utilization of numerous mismatched pairs.

5.4 Ablation Study
The construction of PC2 relies on components pseudo-classification
(P-Cls), pseudo-captioning (P-Cap), and correspondence rectification
(CR). We conduct ablation experiments on these three components
to demonstrate their effectiveness. As shown in Tab. 3, the default
PC2 (the first row) achieves the most superior performance com-
pared with other settings. The second and third rows illustrate the
effectiveness of P-Cap and CR, respectively, while the fourth row
indicates that even without transforming margin-based methods
into pseudo-caption-based methods, relying solely on P-Cls can
still greatly benefit the model from enhanced learning on clean data.
Furthermore, to explore the effectiveness of P-Cls based pseudo-
captioning, we strip away P-Cls and employ an alternative, more
straightforward implementation to assign pseudo-captions (the fifth
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Figure 5: Ablation studies on curve parameter 𝑚 on both
Flickr30K and MS-COCO with 40% noise.

row): directly calculating the similarity between the embeddings of
noisy and clean data images within the same batch and, like PC2, us-
ing themost similar pair to transfer the pseudo-caption. Default PC2

exceeds this design, demonstrating that learning through pseudo-
classification can more effectively refine the semantic information
of images, thereby aiding in more rational pseudo-captioning.

As P-Cls is the foundation of all PC2’s components, we should
carefully select the value of 𝐾 . As shown in Tab. 4, a moderately
sized 𝐾 allows C to learn the images with appropriate granularity,
thereby better enhancing the learning from clean data and the se-
lection of pseudo-captions. Following previous methods [21, 25, 57],
we set curve parameter𝑚 = 10 for the margin adjustment functions
Eqs. (5) and (8) in PC2. As shown in Fig. 5, we verify the suitability of
this default setting for𝑚. More ablations on other hyper-parameters
can be found in Sec. C.4 of Supplementary Material.

6 Discussion and Future Work
Methodology. The design of batch-level pseudo-caption search is
a trade-off between ease of implementation, efficiency, and perfor-
mance. A larger batch size could make it easier for PC2 to find the
appropriate pseudo-captions, thereby improving the performance.
Likewise, global search for pseudo-captions could further enhance
PC2. In our future work, improving the caption search space of
PC2 or using image captioning solution for noisy data is our focus.
In addition, it is an indisputable fact that vision-language model
[38, 60] and multimodal large language model [29, 49, 54] have
great potential as backbones in cross-modal retrieval tasks, but
their application in NCL has not been fully explored [25]. This will
also be our future direction of progress.
Dataset. In the future, we will increase the overall size of our
dataset, and improve the validation and test sets by manually re-
annotating the captions of the images, rather than just picking pairs
that are manually considered to match from the original dataset.

7 Conclusion
In this paper, we introduce Pseudo-Classification based Pseudo-
Captioning (PC2) framework to enhance cross-modal retrieval in
the presence of noisy correspondence learning. PC2 innovatively
employs pseudo-classification and pseudo-captions for richer su-
pervision of mismatched pairs and experiments showcases PC2’s
superiority over existing techniques. This study further contributes
by open-sourcing Noise of Web (NoW) dataset, a new powerful
benchmark for NCL. In the future, we will explore PC2’s potential
in other areas of multimodal learning.
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