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1 MORE DETAILS OF NOW
Following NCR [6], for all images, we use the detection model to
extract the top 36 region proposals whose features are used for
training. Considering that the image data in NoW consists of web
pages, we utilize the detection model APT [3], which is specialized
in Mobile User Interface (MUI), to obtain region proposals. Follow-
ing the original APT paper [3], we fine-tune APT with a ResNet-50
backbone [5] pre-trained by CLIP [9] onMUI-zh dataset [3]. MUI-zh
is a dataset for high-quality detection of MUI elements. It consists
of screenshots collected from mobile tinyapps. The training set
contains 4,769 images and 41k elements, while the validation set
consists of 1,000 images and 9,000 elements across 18 categories..
For specific training details, please refer to Sec. 5.1 in [3]. Finally,
we select the top 36 region proposals for each image to construct
the final NoW dataset. In order to better showcase the content of
NoW, we provide additional examples in Fig. 1.

2 IMPLEMENTATION DETAILS
We show the complete hyper-parameters of PC2 in Tab. 1.

2.1 Component Details
Co-Dividing. Given D, we compute the per-sample loss by

𝑙𝑖 =
∑︁
𝑇𝑖

[𝛼 − 𝑆 (𝐼𝑖 ,𝑇𝑖 ) + 𝑆 (𝐼𝑖 ,𝑇𝑖 )]+ +
∑︁
𝐼𝑖

[𝛼 − 𝑆 (𝐼𝑖 ,𝑇𝑖 ) + 𝑆 (𝐼𝑖 ,𝑇𝑖 )]+,

(1)

where 𝑇𝑖 and 𝐼𝑖 are negative text and negative image, respectively.
Then, we use the two-component Gaussian Mixture Model (GMM)
to fit the losses {𝑙𝑖 }𝐵𝑖=1. Taking advantage of the memorization effect
of DNNs, we classify the component with a lower mean value (i.e.,
lower loss) as the clean set, while considering the other component
as the noisy set. Thus, with the GMM optimized by Expectation-
Maximization algorithm, we compute the posterior probability of
each pair as clean probability𝑤𝑖 . Please refer to Sec. 3.1 in [6] for a
complete description of the co-dividing module.
Co-Teaching. For co-teaching, we train two networks, denoted
as 𝐴 = {𝑓𝐴, 𝑔𝐴, 𝑆𝐴} and 𝐵 = {𝑓𝐵, 𝑔𝐵, 𝑆𝐵}, simultaneously. These
networks have the same architecture but are trained on different
data sequences and initialized differently. In each epoch, either
network 𝐴 or network 𝐵 models its per-sample loss distribution
using co-dividing. This allows the dataset to be divided into clean
and noisy subsets, which are then utilized for training the other
network. During the test phase, we calculate the average of the
similarities predicted by 𝐴 and 𝐵 for the retrieval evaluation.
Prediction Oscillation Based Correspondence Rectification.
We attempt to gain insights into the model’s awareness of corre-
spondence strength by measuring the level of prediction oscillation,

Table 1: Complete list of hyper-parameters in PC2.

Hyper-parameter Description Flickr30K MS-COCO NoW

𝐵 Batch size 128
𝜏 Clean data threshold 0.5
𝐾 𝐾-way pseudo-classifier 128
𝛼 Original margin 0.2
𝑚 Curve parameter 10
𝜆n Loss weight of Ln 1
𝜆pse Loss weight of Lpse 1
𝜆ent Loss weight of Lent 10
- word embedding size 300
- joint embedding size 2048

Table 2: Comparison of image-text retrieval on CC152K.

Image→ Text Text→ Image

Methods R@1 R@5 R@10 R@1 R@5 R@10 Rsum

SCAN [7] 30.5 55.3 65.3 26.9 53.0 64.7 295.7
VSRN [8] 32.6 61.3 70.5 32.5 59.4 70.4 326.7
IMRAM [1] 33.1 57.6 68.1 29.0 56.8 67.4 312.0
SAF [2] 31.7 59.3 68.2 31.9 59.0 67.9 318.0
SGR [2] 11.3 29.7 39.6 13.1 30.1 41.6 165.4
NCR [6] 39.5 64.5 73.5 40.3 64.6 73.2 355.6

PC2 (Ours) 39.3 66.4 75.4 39.8 66.4 76.8 364.1

Table 3: Comparison of image-text retrieval on Flickr30K. 𝑋 ∗

means the results of 𝑋 with mismatch threshold.

Image→ Text Text→ Image

Noise Methods R@1 R@5 R@10 R@1 R@5 R@10 Rsum

20% BiCro∗ [11] 78.1 94.4 97.5 60.4 84.4 89.9 504.7
PC∗ (Ours) 78.4 95.2 97.0 60.5 84.6 90.3 506.0

40% BiCro∗ [11] 74.6 92.7 96.2 55.5 81.1 87.4 487.5
PC∗ (Ours) 76.3 93.8 97.4 57.6 82.3 88.6 496.0

60% BiCro∗ [11] 67.6 90.8 94.4 51.2 77.6 84.7 466.3
PC∗ (Ours) 70.9 90.7 95.0 53.0 79.1 86.2 474.9

which provides additional information for correspondence correc-
tion. The definition of prediction oscillation in Eq. (7) relies on
measuring the variation in the predicted probability distribution
of the same sample across different epochs. Therefore, it is natural
to choose the KL-divergence, which is commonly used to measure
the distance between distributions, to quantify the strength of pre-
diction oscillation. After calculating the evaluation values for all
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Figure 1: More examples of image-text pairs in NoW. We randomly select 36 pairs for display. The colored boxes is the region
proposals provided by our APT model.

prediction oscillations {𝑜 (𝑒 )
𝑖

}𝐵
𝑖=1, we utilize them as a supplemen-

tary for the dataset splitting. Following the co-dividing described
in Sec. 2.1, we fit another two-component GMM using {𝑜 (𝑒 )

𝑖
}. This

allows us to obtain the clean probabilities based on the predic-
tion oscillation, which is denoted as {𝑤o

𝑖
}𝐵
𝑖=1. In Eq. (8), we aim

to adjust the margin based on correspondence strength of clean
data by combining the predictions from the fitted loss-GMM and
prediction-oscillation-GMM. We primarily rely on the predictions
from the loss-based GMM (i.e., the term 𝑤c

𝑖
in Eq. (8)). However,

if the confidence level of the correspondence based on the loss is
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low, we utilize the term (1−𝑤c
𝑖
)1(𝑤o

𝑖
≥ 𝜏)𝑤o

𝑖
in Eq. (8) to assist in

determining the correspondence strength. Note that this term only
works into effect when prediction-oscillation-based GMM indicates
that the image-text pair is clean data (i.e., 1(𝑤o

𝑖
≥ 𝜏)).

3 MORE EXPERIMENTS
3.1 Results on Conceptual Captions
In addition to NoW, a dataset with real noise, we also conducted
experiments on another real dataset Conceptual Captions [10]. Fol-
lowing NCR [6], our experiments utilize a subset of Conceptual
Captions, specifically CC152K [6]. Within this dataset, 150,000 im-
ages are allocated for training the model, while 1,000 images are set
aside for model validation, and another 1,000 images are designated
for model testing. As shown in Tab. 2, although the noise ratio in
CC152K is not high (3%∼20%), competitive results are still achieved
by our method, i.e., PC2 outperforms the most popular NCL method
NCR by 8.4% in the term of Rsum.

3.2 Using Mismatch Threshold
Following the idea of filteringmismatched pairs with low correspon-
dence levels in BiCro [11] using a mismatch threshold, we directly
set this threshold to exclude these pairs from training, i.e., set 𝜆n = 0.
Using a threshold of 0.5, we achieve results as shown in Tab. 3 and
consistently outperform BiCro with the same mismatch threshold.
Since this filtering design introduces a new hyper-parameter, and
our method can achieve sufficiently good results without it, we
present the results of original PC2 in the main text.

3.3 Results Combined with MSCN
Given that the design of MSCN [4] requires ground-truth, which
is not available in the real-world NCL setting, directly comparing
it with MSCN is unfair to PC2. Nevertheless, to demonstrate the
superiority of our method’s design, we construct PC2 based on
MSCN for evaluating NCL performance. Specifically, we insert the
meta similarity correction network (MSCN) described in [4] (see
Sec 3.2 of [4] for details) behind 𝑆 (·, ·) in PC2. We maintain all
original training settings of MSCN and use MSCN to output the
final image-text similarity in place of 𝑆 (𝐼 ,𝑇 ) in Eqs. (6) and (9). Note
that the training of MSCN requires ground-truth. Thus, we use the
original ground-truth data protocol from [4] (details can be found
in Sec 4.2 of [4]) and list the results in Tab. 3 of the main text. There,
we can observe that PC2, constructed based on MSCN, can still
achieve stable performance improvements in the NCL setting.

3.4 More Analysis of Results on NoW
To further showcase the capabilities of PC2 on NoW, we visualize
the performance of pseudo-classifier C. The predictions of C do not
represent fixed semantic concepts but affects how C groups images
into pseudo-classes of varying granularities. C transforms feature
space for efficient learning and assisting in feature matching. We
use category labels predicted by C to show the distribution of image
features within each pseudo-class in Fig. 2 (does not represent clas-
sification performance). We observe that C captures increasingly
discriminative patterns and gradually attempts to partition similar
images into the same semantic cluster.

(a) 1 epochs (b) 10 epochs (c) 20 epochs

Figure 2: t-SNE visualization of image features during the
training on NoW (10 pseudo-classes are randomly selected).
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Figure 3: Ablation studies on curve parameter 𝑚 on both
Flickr30K and MS-COCO with 40% noise.

3.5 More Ablation Studies
Curve parameter 𝑚 is an important hyper-parameter for robust
image-text matching method based on triplet ranking loss [4, 6, 11].
Following previous methods [4, 6, 11], we set𝑚 = 10 for PC2. As
shown in 3, we indeed verify the suitability of this setting for PC2.
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