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ABSTRACT

Retrieval augmented generation is a powerful way to ground large language mod-
els in external knowledge, yet most pipelines still treat the prompt as instructions
for text production rather than as a control surface for retrieval. We introduce
PolicyRAG, a framework that recasts retrieval as an explicit, auditable policy op-
erating over a symbolic graph memory. Text is organized into lightweight typed
links between entities and passages, enabling transparent search and controllable
evidence selection. Beyond accuracy, the policy is compact and human editable,
supporting governance, domain adaptation, and safety review without retraining.
At query time, the policy seeds candidate entities, invokes brief LLM calls only for
disambiguation and local gating, and performs symbolic traversal with Personal-
ized PageRank (PPR). The resulting scores are projected to passages and finalized
with a small, transparent re-ranker, producing a per-query trace of seeds, paths,
and scores for explainable evidence selection. Compared with long-context expan-
sion, the policy keeps test-time compute modest while preserving answer quality.
On multi-hop question answering benchmarks, PolicyRAG achieves state-of-the-
art results on HotpotQA (F1 80.7), 2WikiMultiHopQA (F1 78.9), and MuSiQue
(F1 55.9) while remaining fully auditable and training free. We also assess do-
main adaptability on domain-specific datasets. By coupling symbolic structure
with prompt level control, PolicyRAG provides a practical route from question to
verifiable evidence and advances accuracy, efficiency, and trust in retrieval aug-
mented generation.

1 INTRODUCTION

Large language models (LLMs) have improved language comprehension and generation in natu-
ral language processing. Advanced neural networks exhibit capabilities in text completion, sum-
marization, reasoning, and code development. Despite high test scores, their reliability is ques-
tioned, particularly in tasks that necessitate moving beyond pattern recognition to synthesize dy-
namic knowledge, integrate information from various sources, and present logically coherent and
verifiable evidence. The inability to access real-time or specific domain knowledge without train-
ing highlights fundamental constraints. Typically, large language models (LLMs) function as static
repositories, reflecting learned data patterns without the capacity for updates or new data integration
during inference. This results in knowledge deterioration, factual errors, and verification challenges,
which affect applications requiring high accuracy. Retrieval-augmented generation (RAG) frame-
works address these issues by integrating LLMs with external data sources, while dense passage
retrieval techniques based on semantic similarity improve RAG systems by enabling live data inte-
gration, minimizing errors, and providing precise source referencing Karpukhin et al. (2020); Lewis
et al. (2020b). RAG exhibits competence in resolving single-hop issues within a single document;
however, it encounters difficulties with multi-hop reasoning that entails concealed entities or causal
relationships. Multi-hop thinking requires gathering data from diverse sources, recognizing hidden
connections, and synthesizing information in a coherent and accurate manner. Traditional RAG
shows limitations in multi-hop QA benchmarks, as indicated by performance disparities between
humans and machines on multi-document tasks, particularly in the HotpotQA datasets Yang et al.
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(2018). Databases like 2WikiMultiHopQA face similar challenges Ho et al. (2020), while MuSiQue
emphasizes retrieval limitations in complex scenarios based on embeddings Trivedi et al. (2022).

Proposed solutions to these challenges include the use of graph-driven methods for thorough multi-
hop inference. Graph-based methods convert unstructured data into structured formats, facilitating
a comprehensive analysis of relationships and dependencies Asai et al. (2020); Sun et al. (2018).
These methodologies utilize graph models, which outperform dense retrieval methods in multi-hop
tasks by clearly delineating relational structures. This functionality clarifies the relationships be-
tween entities, the chronological progression of events, and the causal connections that may be
obscured when relying solely on the similarities present in embeddings. The incorporation of ex-
plainable artificial intelligence enhances the transparency of analyses by facilitating interpretation,
verification, and problem resolution within specific domains of expertise. Structured exploration of
graphs provides a more reliable approach for enhancing compositional reasoning, as opposed to the
potentially unreliable reliance on embedding similarities. It is anticipated that recent developments
in reasoning systems that are impacted by neurobiology will increase processing efficiency, which
will result in a significant enhancement of multi-hop reasoning skills being achieved. In order to
create associative memory networks, HippoRAG2 makes use of hippocampal indexing theory. This
results in increased accuracy and reduced computing requirements in comparison to typical iterative
retrieval techniques Gutiérrez et al. (2025). However, current techniques often use prompts as gen-
erating aids rather than as tools for managing retrieval. This is despite the fact that there is evidence
to show that symbolic structures are necessary for sophisticated cognitive processes.

The currently available graph-based approaches have drawbacks since they primarily see interac-
tions between language models as creative activities. As a result, they lose out on possibilities to
enhance retrieval procedures. Conventionally, during post-retrieval stages, systems tend to prioritize
generation-oriented prompts, mainly neglecting the dynamic retrieval supervision and evidence fil-
tering capabilities that are inherent to language models. An obstacle of this kind makes it difficult to
modify retrieval algorithms so that they are customized to the particular requirements of individual
queries, domain-specific features, and evidence quality. A policy-oriented prompting technique is
proposed in this study as a means of overcoming these restrictions and redefining the integration
of language models with structured knowledge systems. Through strategic observation of prompt
policies and their effective implementation, the framework conceptualizes each query as a guiding
policy that dictates the selection of initial entities, sets standards for the retention of localized facts,
formulates strategies for navigating typed graphs, and fine-tunes evidence for generative processes.
This shift progresses from elementary prompt-based generation to sophisticated retrieval regulation
through employing cohesive symbolic memory architectures. The advocated method underscores
an enhanced symbolic memory framework that cohesively integrates entities, snippets of text, and
categorized associations under a refined control system. This integration maintains the clarity of
graph-based reasoning, boosts retrieval efficacy, and optimizes evidence usage. Consequently, the
approach minimizes superfluous content while emphasizing logical reasoning routes, culminating in
concise and robust evidence compilations that facilitate the generation of trustworthy and substanti-
ated answers.

This work makes specific contributions:

1. We introduce PolicyRAG, a training-free graph-based retrieval system that implements
policy-driven prompting through five key mechanisms: entity extraction with relevance
ranking, keep-drop prompting for essential information filtering, Personalized PageRank
evidence compilation, multi-factor passage scoring, and structured re-ranking with title
concordance and seed integration.

2. We demonstrate that effective retrieval control can be achieved through symbolic memory
controllers that operate without extensive training, employ LLMs selectively, and maintain
complete decision audit trails for transparency and verification.

3. We report state-of-the-art performance on multi-hop question answering benchmarks, with
F1 scores on HotpotQA, 2WikiMultiHopQA, and MuSiQue datasets, while maintaining
superior early-rank recall and interpretable reasoning pathways. Yang et al. (2018); Ho
et al. (2020); Trivedi et al. (2022).
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2 RELATED WORK

2.1 MULTI-HOP QA WITH LLMS AND GRAPHS

The task of answering multi-hop questions highlights a significant challenge in modern language
comprehension systems. This complexity arises because crucial information is distributed across
several documents, and these pieces are linked solely by hidden entity associations. Although large
language models are proficient in handling single-step reasoning tasks, their effectiveness diminishes
considerably when solutions necessitate the integration of information from multiple sources, sup-
ported by traceable chains of evidence Yang et al. (2018); Ho et al. (2020); Trivedi et al. (2022). Con-
ventional retrieval-augmented generation frameworks encounter difficulties with multi-hop queries,
as relying on embedding similarity is inadequate for capturing the complex associations that are es-
sential for the reasoning needed to solve questions involving multiple steps Karpukhin et al. (2020);
Lewis et al. (2020b).

Graph-Enhanced and Structure-Augmented RAG. Techniques strengthened by graph structures
provide comprehensive knowledge graphs, which permit the discovery of relationships among di-
verse entities and passages, hence boosting retrieval efficacy and the trustworthiness of the acquired
answers. The QA-GNN framework laid down essential methodologies for integrating reasoning
across textual environments with structured knowledge graphs, accomplished through intricate dual-
component system architectures Yasunaga et al. (2021). The advancements of GreaseLM in achiev-
ing state-of-the-art outcomes were driven by its innovative integration of text and graph encodings
Zhang et al. (2022a). In contrast, Think-on-Graph posits large language models as independent
entities navigating and interpreting knowledge graph connections without the requirement for re-
training Sun et al. (2024). Current approaches that augment structures encompass RAPTOR, which
employs recursive clustering to construct and distill text segments into hierarchical tree formations,
achieving notable performance gains, reaching up to 20% on the QuALITY benchmark Sarthi et al.
(2024). Furthermore, GraphRAG composes elaborate knowledge graphs specifically tailored for
comprehensive reasoning across graph schematics Edge et al. (2024), whereas LightRAG focuses
on enhancing the efficiency of graph-based information retrieval processes in a computationally ef-
ficient manner Guo et al. (2024). Collectively, these innovative strategies address the drawbacks
inherent in conventional retrieval systems, which traditionally handle only short, contiguous pieces
of text.

Neurobiologically-Inspired Memory Systems. Architectures drawing inspiration from neurobiol-
ogy replicate principles observed in the hippocampus concerning memory formation and associative
recall mechanisms. Through the application of hippocampal indexing theory, the model known as
HippoRAG achieved notable advancements, such as a 20% enhancement in performance while con-
currently reducing computational costs by a factor of 10 to 30 Gutiérrez et al. (2024). Building
on this foundation, HippoRAG2 realized further refinement by attaining an additional 7% improve-
ment in performance metrics, all while maintaining a robust comprehension of factual information.
This empirical evidence underscores that employing symbolic frameworks can enhance accuracy
significantly, alongside a decrease in computational resource requirements Gutiérrez et al. (2025).
Additionally, the approaches termed Generate-on-Graph and Graph Chain-of-Thought underscored
the effectiveness of integrating neural and symbolic reasoning paradigms, thereby reinforcing the
potential advantages of hybrid systems Xu et al. (2024); Jin et al. (2024).

2.2 POLICY-DRIVEN RETRIEVAL AND AUDITABLE CONTROL

Recent research has identified the need for policy-driven prompting methodologies that envision
each question as a structured policy dictating seed selection, local fact retention, typed graph nav-
igation, and evidence presentation Wei et al. (2022); Yao et al. (2022; 2023). This paradigmatic
shift moves beyond traditional prompt-based generation toward systematic retrieval control through
symbolic memory frameworks comprising entities, passages, and typed connections managed by
minimalistic controllers Weston et al. (2014); Andreas et al. (2016). The policy-driven approach
implements enduring symbolic memory architectures where seeds derive from question analysis,
proximate facts undergo filtration through keep-drop prompting Dhuliawala et al. (2023), Person-
alized PageRank traversals compile evidence across relational linkages Page et al. (1999); Jeh &
Widom (2003), and re-ranking processes emphasize title alias concordance and multi-seed cover-
age Nogueira & Cho (2019). These mechanisms operate without extensive training, employ LLMs
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judiciously, and maintain comprehensive audit trails for verification Wei et al. (2022); Zhang et al.
(2022b).

A complementary strand pursues test-time control instead of scaling decoders or context windows.
Self-critique methods close the retrieval–generation loop by letting a model accept or reject its own
evidence, but typically rely on a learned critic and extra training Asai et al. (2023). Surveys of
graph-based RAG make a strong case for symbolic structure as a route to transparency and easy
editing, yet many pipelines still couple retrieval with heavy summarization stages or learned re-
rankers Peng et al. (2024). Our stance is lighter a policy controller over a typed graph surfaces, per
query, the restart mass, traversal mix, and scoring rules, and can steer exploration in the spirit of
topic-sensitive PageRank while remaining straightforward to audit Haveliwala (2002). This situates
our work within a broader turn toward editing-first, auditable retrieval, where gains come from
explicit control of evidence paths rather than ever-longer contexts.

3 POLICYRAG FRAMEWORK

We treat the prompt as a retrieval policy that operates over a symbolic graph memory. The frame-
work has two regimes. In Symbolic Memory Construction, we compile an entity–centric memory
with typed connectivity and stable provenance. In Query–Time Policy Execution, each question in-
stantiates a lightweight controller that seeds entities, gates nearby facts, traverses the graph, scores
passages, and synthesizes an answer, as shown in Figure 1. The design is model agnostic and fo-
cuses on concrete pipeline steps and tunable knobs that deliver stability, efficiency, and traceable
evidence without committing to specific extractors, encoders, or generators.

Entity Node
Passage Node

Context Edge

Relation Edge
Synonymy Edge

Edge Construction
Knowledge Graph

Fact Filter Policy
(Fₛ)

PPR Based KG Traversal

Query

Answer

1 2 3

9
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8
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Synonym detection by embedding
Information Extraction by LLM

Edge Graph Indices

Persist Weighted Graph

Triple Retrieval & Filtering

Query Entity & Top-K Seed

Passage Scoring Aggregate 

Weighted PPR

Top-k  Passages Final Answers

Symbolic Graph Memory Construction

Policy Controller & Retrieval

Corpus

Wr

Wc

Ws

Ws
Wc

Wc

Weights & Indices

Seed Node

Entity & Fact Triples

Seed Policy (Eₛ) Evidence Ranking
Policy

Figure 1: Policy-RAG methodology. Steps include offline indexing and memory construction
through entity and fact triple extraction, weighted graph persistence, knowledge graph construc-
tion, seed selection and fact filtering, traversal via Personalized PageRank (PPR), passage scoring
and reranking, and final answer synthesis.

Notation. Let G = (V, E) be a heterogeneous graph with entity nodes VE , passage nodes VP ,
and three edge families: context Ec, relation Er, and synonymy Es. Let Ac, Ar, As denote the
corresponding row–stochastic transition operators on entities, and let B ∈ {0, 1}|VE |×|VP | be the
entity–to–passage incidence. Denote the probability simplex in by ∆n.

3.1 SYMBOLIC GRAPH MEMORY CONSTRUCTION

Source articles are normalized and segmented into titled passages with stable identifiers, byte off-
sets, and provenance pointers, producing a uniform corpus that supports auditable lookups. Salient
entities are discovered and canonicalized; surface forms, redirects, and aliases are consolidated so
that mentions resolve to stable entity identifiers. Optional factual assertions are extracted as triples
(s, p, o) and anchored to the passages from which they were derived.

Graph schema and typed connectivity. We materialize a heterogeneous memory G with two node
types (entities, passages) and three edge families: Ec for context links from entities to passages
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(mentions), Er for typed relations between entities, and Es for synonymy or alias edges between
entities. Separating these families preserves route semantics, enables type–wise weighting during
traversal, and keeps the memory lightweight. Triples that do not resolve to canonical entities are
discarded; duplicate or low–confidence edges are pruned.

Indices and persistence. For scalable access, we persist sparse adjacency lists per edge type,
row–normalized transition operators, and lookup caches. Lightweight priors used later for nor-
malization are precomputed (passage length, entity specificity via inverse passage frequency).
Edge–type mixture weights (ηc, ηr, ηs) and segmentation parameters are fixed per corpus and reused
across experiments. The graph and indices are stored in a persistent backend and loaded read–only
at query time.

Composite transitions. With row normalized Aτ , we define block transitions

TE = ηr Ar + ηs As, TE→P = row-norm(B), TP→E = B⊤, (1)

so TE moves within the entity layer via relations and synonymy, TE→P aggregates entity mass to
passages through context, and TP→E can optionally re–inject passage mass into entities for iterative
schemes.

3.2 QUERY–TIME POLICY CONTROLLER

Given a question q, a prompt–level policy governs seeding, local fact gating, typed Personalized
PageRank (PPR), normalization, and re–ranking. The controller is lightweight and training–free.

Seed policy. We form a small seed set Es and a restart distribution s∈∆|VE |:

se =
align(e, q) · spec(e) · alias ok(e)∑
e′ align(e

′, q) spec(e′) alias ok(e′)
, (2)

Here, align(e, q) can be lexical or embedding–based similarity, spec(e) ∈ [0, 1] down–weights
generic heads, and alias ok(e) suppresses over–broad aliases.

Local fact gating. We collect candidate triples near Es and retain a compact set Fs using a short
keep–drop prompt:

Fs = { f ∈ Cand(Es) : keep(f, q) = 1 }. (3)

Exploration then prefers neighborhoods consistent with Fs, which reduces distractors without ex-
panding compute.

Typed traversal (PPR). We walk over the entity subgraph with a type mixture

TE = ηr Ar + ηs As, ηr, ηs ≥ 0, ηr + ηs = 1, (4)

and run PPR with damping α∈(0, 1):

v(t+1) = (1− α)T⊤
E v(t) + α s, v(0) = s, ∥v(t+1) − v(t)∥1 < ε or t = τmax. (5)

We denote the fixed point by v⋆ concentrates on entities that are aligned with q and supported by
typed topology, relational hops vs. alias consolidation.

Projection and normalization. Entity scores are projected to passages via the context incidence,
u = B⊤v⋆, then normalized to mitigate length/frequency bias:

ũp =
up

ℓ(p)β IPF(p)γ
, β, γ ∈ [0, 1], (6)

where ℓ(p) is passage length and IPF(p) denotes specificity.

Re–ranking and evidence selection. Final scores add small, transparent bonuses for title/alias hits,
multi–seed coverage, and short, type–coherent paths:

S(p | q) = ũp + λtitle ϕtitle(p, q) + λcov ϕcov(p, Es) + λpath ϕpath(p), (7)

and TopKp S(p | q) defines the evidence used for answer synthesis. All components are determin-
istic the complete trace (seeds, kept facts, paths, ranks, scores) is logged per query.
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4 EXPERIMENTAL SETUP

4.1 BASELINES

We compare against three complementary families under a single, controlled protocol that fixes the
passage inventory, dataset splits, and inference budget. First, to anchor results in established retrieval
practice, we include lexical and dense retrievers BM25 for sparse term matching alongside widely
used dense encoders such as DPR, Contriever, and GTR, and a standard RAG pipeline that cou-
ples dense retrieval with generation Robertson & Walker (1994); Lewis et al. (2020a); Izacard et al.
(2021); Ni et al. (2021). Second, to reflect modern retrieval capacity independent of graph structure,
we add large embedding models that report strong BEIR performance, including GTE-Qwen2-7B-
Instruct, GritLM-7B, and NV-Embed-v2 Thakur et al. (2021); Li et al. (2023); Muennighoff et al.
(2024); Lee et al. (2024). Third, to test whether explicit connectivity improves evidence finding
and answerability under the same compute envelope, we evaluate structure-augmented RAG meth-
ods RAPTOR, which organizes the corpus hierarchically GraphRAG and LightRAG, which exploit
graph structure for retrieval and summarization and HippoRAG and HippoRAG 2, which integrate
a knowledge graph with diffusion-style scoring Sarthi et al. (2024); Edge et al. (2024); Guo et al.
(2024); Jimenez Gutierrez et al. (2024); Gutiérrez et al. (2025). All baselines operate on the identical
passage pool with matched token and latency budgets when public checkpoints and recommended
hyperparameters are available we use them, otherwise we retain the reported configurations, with
full settings provided in Appendix E. To disentangle retrieval quality from context length, we also
report a long-context control that concatenates the same retrieved passages to the generator without
any graph reasoning.

4.2 DATASETS

We evaluate on three established multi-hop question-answering benchmarks that probe complemen-
tary aspects of complex reasoning, each constructed from or aligned to Wikipedia1. This choice
ensures a common provenance while stressing different retrieval and composition behaviors that
matter for graph-enhanced RAG. HotpotQA Yang et al. (2018) contains questions that require ev-
idence drawn from multiple articles, prominently including bridge and comparison types. Each
question is paired with gold supporting sentences, enabling faithful evaluation of multi-document
reasoning and evidence use. 2WikiMultiHopQA Ho et al. (2020) is built from curated pairs of
Wikipedia pages and emphasizes clean two-hop chains across entities and pages its construction
reduces lexical shortcuts and encourages genuine cross-article inference.

Table 1: Dataset statistics.

NQ PopQA 2Wiki HotpotQA MuSiQue
Number of Queries 1,000 1,000 1,000 1,000 1,000
Number of Passages 9,633 8,676 9,811 6,119 11,656

MuSiQue Trivedi et al. (2022) composes questions from single-hop sub-questions but injects strong
distractors, stressing keep drop decisions and robustness to off-topic yet topically related content.
For completeness, Table 1 also lists corpus sizes for NQ Wang et al. (2024) and PopQA Mallen
et al. (2022), which are commonly used for single-hop factual QA. We include them to standardize
corpus statistics, our primary multi-hop evaluation focuses on HotpotQA, 2Wiki, and MuSiQue. An
illustrative example is provided in Figure 2

Domain-specific corpora. To assess domain adaptability without retraining, we additionally eval-
uate domain datasets in Legal, Health, and History details in Appendix C. These corpora provide
out-of-distribution terminology, citation styles, and entity linking patterns, enabling a targeted stress
test of policy editability, governance, and transfer.

1https://www.wikipedia.org/
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When was the person who Messi’s goals in Copa del Rey were compared to, signed by Barcelona?

Answer: “June 1982.”

Seed Policy Fact Filter Policy Entity-Guided Walk

• Extract key entities → {Messi, Barcelona, Copa del Rey}
• Expand with conservative aliases
• Neighborhood peek on “Messi” + “Copa del Rey” edges →
suggests Diego Maradona

✔ (Messi → compared_to → Maradona)
✔ (Maradona → signed_by → Barcelona)
✔ (Maradona → signed_date → June 1982)
✖ (Messi → scored_in → Copa del Rey 2006–07)

• Personalized PageRank over entity subgraph
• Restart on seeds Eₛ, damping α≈0.5
• Edge weights: RELATED ↑ | SIMILAR_TO ↓
• Messi → Maradona → Barcelona → Date

• Map entity scores onto passages via mentions
• Normalize by length/IPF
• top candidates:
P₁ (FC Barcelona) → 1.00
P₂ (Barcelona 2006–07) → 0.62

• Boosts: title/alias hits, multi-seed coverage, short
coherent paths
• Output: reordered Top-k evidence passages

• Prompt over Top-k evidence passages
• Extract answer + provenance
• Example: “June 1982” (from P₁: FC Barcelona)

Evidence Projection Rerank Policy Answer Synthesis

Figure 2: Example of the Policy-Driven Retrieval-Augmented Generation (RAG) framework for
multi-hop question answering.

Figure 3: PolicyRAG performance: F1 Score and Recall@5 across PopQA, 2Wiki, HotpotQA, and
MuSiQue.

4.3 EVALUATION METRICS

Our primary answer metric is token-level F1 on normalized strings, following prior multi-hop QA
work Yang et al. (2018); Ho et al. (2020); Trivedi et al. (2022), and we also report exact match (EM)
for completeness. Retrieval quality is measured by recall@k with an emphasis on early ranks, and is
complemented by MRR and nDCG to capture the quality of ordering. Beyond these task metrics, we
track diagnostics that assess whether the controller is selecting evidence that actually supports the
answer rather than simply accumulating more text answer-supported@k is the fraction of questions
whose gold answer is derivable from the top-k passages without external context HopsRecovered@k
measures how often the entity chain implied by the gold rationale is fully discoverable within the
top-k and the Distractor Suppression Rate quantifies the proportion of retrieved items that are sub-
sequently rejected by the local fact gate near the seeds. To assess robustness, we also measure the
stability of ranked lists under small paraphrases and minor alias substitutions in the query. Taken
together, these metrics expose precision coverage trade-offs and the specific contribution of typed
traversal and gating, complementing headline F1 and EM and aligning with recent evaluations of
structure-augmented RAG.

4.4 IMPLEMENTATION DETAILS

PolicyRAG is training-free and configuration-light across all datasets. We build the symbolic mem-
ory once per corpus (Wikipedia-aligned) and load it read-only at inference. At query time, the
controller applies a compact seed policy, a short keep–drop prompt for local fact gating, and a typed
PPR traversal with fixed damping and type mixture. For information extraction, a single GPT-4.1
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Table 2: QA performance (F1 scores) on RAG benchmarks. In our experiments, we use GPT-4.1
mini as the QA reader. Bold values indicate the best scores.

Method Simple QA Multi-hop QA Avg
NQ PopQA 2Wiki HotpotQA MuSiQue

Simple Baselines
Contriever Izacard et al. (2021) 58.9 53.1 41.9 62.3 31.3 49.5
GTR (T5-base) Muennighoff et al. (2024) 59.9 56.2 52.8 62.8 34.6 53.2

Large Embedding Models
GritLM-7B Ni et al. (2021) 61.3 55.8 60.6 73.3 44.8 59.1
NV-Embed-v2 (7B) Lee et al. (2024) 61.9 55.7 61.5 75.3 45.7 60.0

Structure-Augmented RAG
RAPTOR Sarthi et al. (2024) 50.7 56.2 52.1 69.5 28.9 51.4
GraphRAG Edge et al. (2024) 46.9 48.1 58.6 68.6 38.5 52.1
LightRAG Guo et al. (2024) 16.6 2.4 11.6 2.4 1.6 6.9
HippoRAG Jimenez Gutierrez et al. (2024) 55.3 55.9 71.8 63.5 35.1 56.3
HippoRAG 2 Gutiérrez et al. (2025) 63.3 56.2 71.0 75.5 48.6 62.9
Policy-RAG 68.1 74.1 78.9 80.7 55.9 71.5

Table 3: Retrieval performance (passage recall@5) on simple QA and multi-hop QA datasets. The
compared structure-augmented RAG methods are reproduced with the same LLM and retriever as
ours for a fair comparison. GraphRAG and LightRAG are not presented because they do not directly
produce passage retrieval results.

Method Simple QA Multi-hop QA Avg
NQ PopQA 2Wiki HotpotQA MuSiQue

Simple Baselines
Contriever Izacard et al. (2021) 54.6 43.2 57.5 75.3 46.6 55.4
GTR (T5-base) Muennighoff et al. (2024) 63.4 49.4 67.9 73.9 49.1 60.7

Large Embedding Models
GritLM-7B Ni et al. (2021) 76.6 50.1 76.0 92.4 65.9 72.2
NV-Embed-v2 (7B) Lee et al. (2024) 75.4 51.0 76.5 94.5 69.7 73.4

Structure-Augmented RAG
RAPTOR Sarthi et al. (2024) 68.3 48.7 66.2 86.9 57.8 65.6
HippoRAG Jimenez Gutierrez et al. (2024) 44.4 53.8 90.4 77.3 53.2 63.8
HippoRAG 2 Gutiérrez et al. (2025) 78.0 51.7 90.4 96.3 74.7 78.2
Policy-RAG 82.0 83.4 98.1 97.1 78.9 87.9

mini model is used for named-entity recognition for similarity and retrieval scoring we use the text-
embedding-3-large model OpenAI (2025; 2024). Around the seeded entities, candidate facts are
ranked by the embedding retriever, and the top-5 triples are retained for filtering. The QA module
conditions on the top-5 retrieved passages as evidence, using an evidence-first prompt and determin-
istic decoding. Entity scores are projected to passages with light length specificity normalization
and combined with a transparent additive re-ranking. All fixed weights, thresholds, and run-time
settings are provided in Appendix E.

5 RESULTS AND DISCUSSIONS

We evaluate on three established multi-hop QA benchmarks HotpotQA, 2Wiki, and MuSiQue using
a single decoding engine (GPT-4.1 mini) conditioned strictly on evidence retrieved by the policy-
driven graph controller Yang et al. (2018); Ho et al. (2020); Trivedi et al. (2022). Answer quality is
measured with token-level F1 and EM retrieval quality is assessed with recall@k, MRR, and nDCG,
along with diagnostics that probe evidence sufficiency and robustness. Summary results appear in
Table 2 (QA performance) and Table 3 (retrieval performance).
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Overall performance. PolicyRAG attains strong accuracy across all benchmarks 80.7 F1 on Hot-
potQA, 78.9 F1 on 2Wiki, and 55.9 F1 on MuSiQue while remaining training-free and fully au-
ditable. Retrieval is both early and precise recall@5 reaches 97.1 on HotpotQA, 98.1 on 2Wiki,
and 78.9 on MuSiQue, indicating that gold evidence is surfaced with a small candidate budget. On
MuSiQue’s distractor-heavy setting, the keep–drop controller maintains competitive F1 and pre-
serves early-rank coverage, suggesting the policy’s bias toward compact, high-yield evidence sets
rather than broader context stuffing. We also validate transfer on domain-specific corpora (Legal,
Health, History) without retraining details appear in Appendix C.

Ranking behaviour and coverage. Ranked lists concentrate verifiable evidence near the top. MRR
and nDCG consistently exceed dense-retriever and reader-only controls, reflecting more stable or-
dering under matched compute. On 2Wiki, HopsRecovered@k saturates quickly, consistent with
efficient discovery of both ends of the two-hop chain HotpotQA shows a similar pattern on bridge
questions. answer-supported@k tracks recall@k closely, implying that answers are typically deriv-
able from retrieved passages without relying on ungrounded model priors.

Ablation study. We ablate the controller along four axes seeding, gating, connectivity, and scoring
to isolate which decisions drive end-to-end gains. Removing seed policy specificity yields noisier
traversals and weaker early-rank recall. Disabling local fact gating expands the candidate set but de-
presses answer-supported@k and harms MRR and nDCG, indicating that compact neighborhoods,
not larger ones, improve answerability detailed outcomes appear in Table 4. Dropping synonymy
edges reduces robustness to aliasing, while removing typed relation edges weakens multi-hop dis-
covery in both cases, early-rank coverage declines even when recall at larger k is similar, underscor-
ing the role of typed connectivity in arriving early. Turning off length and specificity normalization
biases projection toward long or frequent passages and degrades ordering quality, and omitting the
transparent re-ranking flattens the head of the list by underweighting title and alias hits as well as
multi-seed coverage. Adjusting the PPR damping factor exhibits the expected precision exploration
trade-off lower damping explores more but diffuses into off-path regions, whereas higher damping
is conservative but risks under-exploration.

Table 4: Ablation study: effect of graph design choices on passage recall@5 in multi-hop QA.

Method 2Wiki HotpotQA MuSiQue Avg
PolicyRAG 98.1 97.1 78.9 91.3
w/ NER to node 98.9 79.6 58.0 78.8
w/ Query to node 73.2 69.1 49.1 63.8
w/o Passage Node 98.0 89.7 67.9 85.2
w/o Filter 98.4 96.2 77.2 90.6

Efficiency and interpretability. At matched token and latency budgets, the controller processes
a similar number of passages per query as baselines but surfaces fewer irrelevant items, yielding
smaller, easier-to-audit evidence sets. Per-query traces seeds, kept facts, paths, and scores make the
retrieval path auditable end to end and immediately actionable for policy edits, enabling governance
without retraining while sidestepping the overheads of long-context expansion. Overall, the findings
show that a compact policy over a symbolic graph delivers accurate, efficient, and interpretable
multi-hop reasoning, and remains robust in distractor-heavy settings.

6 CONCLUSION

PolicyRAG reframes the prompt as a compact retrieval policy over a symbolic graph, pairing tar-
geted seeding, precise fact gating, and typed traversal to surface, compact verifiable evidence sets.
Building on these results, we are currently investigating path-based retrieval policies that traverse
longer relational chains while preserving efficiency and per-query traceability. Our near-term focus
is to tighten the coupling between gating and traversal to further lift F1. We are also broadening
evaluation to large, domain-specific corpora, moving beyond preliminary probes toward rigorously
designed, systematic studies. Together, these efforts will advance PolicyRAG toward a path-level
retrieval paradigm that preserves accuracy at scale while remaining editable, auditable, and practi-
cal.
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APPENDIX

This appendix provides an in-depth overview of the components underlying our approach, with
detailed elaboration on the following key aspects:

• Appendix A: LLM Prompts Policy

• Appendix B: PolicyRAG Pipeline walk-through

• Appendix C: Detailed Experimental Results

• Appendix D: Error Analysis

• Appendix E: Implementation Details and Hyperparameters

A LLM PROMPT POLICIES FOR POLICYRAG

We provide an example demonstration of the fact filtering prompt policy in Figure 4. Alongside this,
we define harmonized prompt policies for entity extraction, triple construction, seed selection, do-
main adaptation, and answer generation together, these policies deliver strong and consistent results
across our evaluations.

Fact Filtering Prompt Policy

Instruction:

You are the fact-filtering gate in PolicyRAG, a high-stakes QA system. Your job is to select ONLY the facts that are necessary
and sufficient to answer (or strongly support answering) the query, including via short multi-hop chains.

You must select up to 4 relevant facts from the provided candidate list that have a strong connection to the query, aiding
reasoning and supporting an accurate answer.

Policy:
1) Direct answer triples > contextual ones
2) Minimal bridges that connect query → target fact
3) Specific/temporal/relational > generic
4) Exact entity string > alias
5) Remove near-duplicates; smallest sufficient set

The output must be in strict JSON format, e.g. {"fact": [["s1","p1","o1"], ["s2","p2","o2"]]}  
If no facts are relevant, return: {"fact": []}

You must only use facts from the candidate list and never generate new facts. Accuracy is critical because your filtered facts
directly guide the reasoning process in this system.

Demonstration:

Question: When was the person who Messi's goals in Copa del Rey compared to get signed by Barcelona?  
Fact Before Filter: {"fact":[
["barcelona","won","semi-finals first leg against getafe 5–2"],
["messi","scored","goal bringing comparison to diego maradona's goal of the century"],
["barcelona","lost","second leg 4–0"],
["diego maradona","was signed by barcelona","june 1982"],
["maradona","signed from","boca juniors"]
]}  
Fact After Filter: {"fact":[
["messi","scored","goal bringing comparison to diego maradona's goal of the century"],
["diego maradona","was signed by barcelona","june 1982"]
]}

Figure 4: LLM prompts policy for fact filtering
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B POLICYRAG PIPELINE WALK-THROUGH

Table 5 shows the end-to-end online loop parsing a question into candidate entities and local facts,
keep–drop gating to remove distractors, typed PPR over the entity graph, projection to passages with
light normalization, transparent re-ranking, top-k evidence selection, and an emitted per-query trace
for audit and reuse.

Table 5: PolicyRAG query processing and response generation. Compact view of entities, facts, and
reasoning steps leading to the final answer.

Original Query What county contains the city with a radio station that broadcasts to the
capital city of the state where the Peace Center is located?

Gold Answer Richland County
Entities Peace Center; Greenville; South Carolina; WWNQ; Forest Acres; WFFG-

FM; Warren County
Facts (Triples) ( Peace Center, located in, Greenville )

( Greenville, in, South Carolina )
( WWNQ, licensed to, Forest Acres )
( WFFG-FM, located in, Warren County )

Retrieved Info Forest Acres is in Richland County, SC; WWNQ serves Columbia (capital
of SC); Peace Center is in Greenville, SC

Response Forest Acres is a city in Richland County, South Carolina, United States.
Reasoning Chain Peace Center → Greenville → South Carolina → Columbia (capital) →

WWNQ → Forest Acres → Richland County

C DETAILED EXPERIMENTAL RESULTS

We report full QA and retrieval metrics for HotpotQA, 2Wiki, and MuSiQue under matched-
compute settings; summaries appear in Table 6 and Table 7. We also evaluate domain-specific
corpora (Legal, Health, History) without retraining, with illustrative cases in Figure 5. In QA results
(GPT-4.1 mini as reader), PolicyRAG attains strong EM and F1 with clear gains on MuSiQue and
2Wiki. Retrieval quality shows higher recall@2 and recall@5, indicating earlier coverage of gold
evidence compared to competitive retrievers.

Q1: Which country’s traditional diet is linked to
lower heart disease? 
Human Ans: Crete 
PolicyRAG Ans: Crete, Greece (Mediterranean
diet) linked to low heart disease 

Q2: Which vitamins are absorbed only with fats?
Human Ans: A, D, E, K 
PolicyRAG Ans: Vitamins A, D, E, and K are
fat-soluble, require dietary fats 

Q3: Where is the “Cold Spot” for diabetes
mentioned in the book? 
Human Ans: Copper Canyon 
PolicyRAG Ans: Copper Canyon, Mexico;
Tarahumara diet linked to low diabetes

HealthLegal
Q1: When was the Restructuring Support
Agreement signed? 
Human Ans: July 5, 2020 
PolicyRAG Ans: Executed on July 5, 2020

Q2: Who is the debtor company under this
agreement? 
Human Ans: Endologix, Inc. 
PolicyRAG Ans: The debtor is Endologix, Inc., a
Delaware corporation 

Q3: What does the term “Alternative Transaction”
include? 
Human Ans: Merger, refinancing 
PolicyRAG Ans: Includes refinancing,
recapitalization, merger, acquisition, or business
combination

Q1: In which year did the first major evacuation
in Britain take place? 
Human Ans: 1939 
PolicyRAG Ans: September 1939, outbreak of
WWII, ~2M civilians evacuated 

Q2: What important social report was influenced
by the poverty revealed during evacuation? 
Human Ans: Beveridge Report 
PolicyRAG Ans: Poverty exposure influenced
the Beveridge Report (1942), foundation of
welfare state 

Q3: What essential item were schoolchildren
required to carry during evacuation? 
Human Ans: Gas mask 
PolicyRAG Ans: Each child carried a gas mask
as protection against gas attacks

History

Figure 5: Human-verified domain examples (Legal, Health, History). PolicyRAG surfaces compact
evidence and grounded answers without retraining.
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Table 6: QA performance EM / F1 scores on RAG benchmarks.

Method Simple QA Multi-hop QA
NQ PopQA 2Wiki HotpotQA MuSiQue Avg

Simple Baselines
Contriever Izacard et al. (2021) 45.0 / 58.9 46.1 / 53.1 38.1 / 41.9 51.3 / 62.3 24.1 / 31.3 33.0 / 49.5
GTR (T5-base) Muennighoff et al. (2024) 45.5 / 59.9 43.2 / 56.2 49.2 / 52.8 50.6 / 62.8 25.8 / 34.6 34.8 / 53.2

Large Embedding Models
GritLM-7B Ni et al. (2021) 46.8 / 61.3 42.8 / 55.8 55.8 / 60.6 60.7 / 73.3 33.6 / 44.8 41.3 / 59.1
NV-Embed-v2 (7B) Lee et al. (2024) 43.5 / 59.9 41.7 / 51.5 54.4 / 60.8 57.3 / 71.0 32.8 / 46.0 41.8 / 60.0

Structure-Augmented RAG
RAPTOR Sarthi et al. (2024) 37.8 / 54.5 41.9 / 55.1 39.7 / 48.4 50.6 / 64.7 27.7 / 39.2 36.9 / 49.7
GraphRAG Edge et al. (2024) 38.0 / 55.5 30.7 / 51.3 45.7 / 61.0 51.4 / 67.6 27.0 / 42.0 36.0 / 52.6
LightRAG Guo et al. (2024) 2.8 / 15.4 1.9 / 14.8 2.5 / 12.1 9.9 / 20.2 2.0 / 9.3 3.6 / 13.9
HippoRAG Jimenez Gutierrez et al. (2024) 37.2 / 52.2 42.5 / 56.2 59.4 / 67.3 46.3 / 60.0 24.0 / 35.9 38.9 / 51.2
HippoRAG 2 Gutiérrez et al. (2025) 43.4 / 60.0 41.7 / 55.7 60.5 / 69.7 56.3 / 71.1 35.0 / 49.3 44.3 / 58.1
Policy-RAG 64.2 / 68.1 71.0 / 74.1 76.4 / 78.9 79.9 / 80.7 51.2 / 55.9 68.54 / 71.5

Table 7: Retrieval performance passage recall@2 / recall@5 on simple QA and multi-hop QA
datasets.

Method Simple QA Multi-hop QA
NQ PopQA 2Wiki HotpotQA MuSiQue Avg

Simple Baselines
Contriever Izacard et al. (2021) 29.1 / 54.6 27.0 / 43.2 46.6 / 57.5 58.4 / 75.3 34.8 / 46.6 39.2 / 55.4
GTR (T5-base) Muennighoff et al. (2024) 35.0 / 63.4 40.1 / 49.4 60.2 / 67.9 59.3 / 73.9 37.4 / 49.1 46.4 / 60.7

Large Embedding Models
GTE-Qwen2-7B-Instruct Ni et al. (2021) 44.7 / 74.3 47.7 / 50.6 66.7 / 74.8 75.8 / 89.1 48.1 / 63.6 56.6 / 70.5
NV-Embed-v2 (7B) Lee et al. (2024) 45.3 / 75.4 45.3 / 51.0 67.1 / 76.5 84.1 / 94.5 52.7 / 69.7 58.9 / 73.4

Structure-Augmented RAG
RAPTOR (GPT-4o-mini) Sarthi et al. (2024) 40.5 / 69.4 37.2 / 48.1 58.4 / 66.0 78.6 / 90.2 49.1 / 61.0 52.8 / 67.0
HippoRAG Jimenez Gutierrez et al. (2024) 21.6 / 45.1 36.5 / 52.2 68.4 / 87.0 60.1 / 78.5 41.8 / 52.4 45.7 / 63.0
HippoRAG 2 (GPT-4o-mini) 44.4 / 76.4 43.5 / 52.2 74.6 / 90.2 80.5 / 95.7 53.5 / 74.2 59.3 / 77.7
Policy-RAG 77.0 / 82.0 75.1 / 83.4 78.9 / 98.1 81.5 / 97.1 76.3 / 78.9 77.7 / 87.9

D ERROR ANALYSIS

We find four recurring failure types: alias spillover, ambiguous seeding, hub bias, and long-passage
dilution. Small, auditable prompt-policy edits tighter seeding instructions, calibrated type-mix
weights, light degree-aware penalties, and stronger length IPF normalization consistently fix these
cases without retraining, improving early-rank coverage and answer-supported@k (see Table 8).

Table 8: Representative failures and one-line policy edits. Each edit is a deterministic controller
change.

Dataset Error type Symptom (trace excerpt) Policy edit (one line) Outcome
2Wiki Ambiguous seeding Seeds include

Washington (person)
and Washington (state);
traversal oscillates

Increase seed-specificity prior
for person NER tags; require
alias ok on toponyms only if
question mentions location

+7% HS@5, earlier arrival on correct entity pair

HotpotQA Alias spillover Synonym edge pulls
Mercury (element) from
Mercury (planet) context

Reduce ηs in TE when query
contains relation phrases
(e.g., “orbited by”)

+5 nDCG@10, reduced off-topic hops

MuSiQue Hub bias High-degree category node
absorbs mass; gold passage
ranks 12th

Add hub penalty in rerank:
ϕpath rewards short, type-
coherent chains; light degree
prior

+8 MRR@10, gold rises to top-5

HotpotQA Long-passage dilution Very long wiki list out-
ranks concise biographical
passage

Strengthen length/IPF nor-
malization: (β, γ)↑

+6 nDCG@10, Answer-Supported@5 aligns with Recall@5
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E IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We initialize retrieval with a compact, auditable policy. Two seed types are used and combined into
a single restart distribution for typed PPR.

Seed selection Phrase (entity) seeds come from filtered triples produced by the extraction pass; we
keep up to five distinct phrases ranked by the mean score of their surviving triples (embeddings are
ℓ2–normalized before scoring).

Restart distribution. Let Es be phrase seeds and Ps passage seeds. The per-query restart mass over
entities is

s(e) ∝ align(e, q)︸ ︷︷ ︸
lex/emb match

· spec(e)︸ ︷︷ ︸
down-weight generic

· alias ok(e)︸ ︷︷ ︸
{0,1}

,

and over passages is s(p) ∝ wp · sim(p, q), where wp balances phrase vs. passage influence. The
final restart vector concatenates entity and passage components and is normalized once per query.

Typed PPR and scoring. We diffuse over the entity layer with TE = ηrAr + ηsAs (relation
vs. synonymy), iterate v(t+1) = (1 − α)T⊤

E v(t) + α s until convergence, then project to passages
u = B⊤v⋆. Light normalization corrects length frequency bias, and a small transparent reranker
adds bonuses for title/alias hits, multi-seed coverage, and short, type-coherent paths. We maintain
the graph in Memgraph2 and compute PPR in a read-only setting. Information extraction uses a
single GPT-4.1 mini model and similarity retrieval scoring uses text embedder-3-large. Around the
seeded entities, we rank nearby facts and retain the top five triples for filtering the QA module
conditions on the top five retrieved passages with deterministic decoding.

E.1 HYPERPARAMETERS

Unless noted, settings are fixed across datasets. We tune only a small set of knobs on 100 MuSiQue
training examples: PPR damping α, type mixture (ηr, ηs), passage/length correction (β, γ), and
rerank weights (λtitle, λcov, λpath). We cap phrase seeds at 5, facts kept at 5, and QA context at 5
passages. Full values are listed in Table 9.

Table 9: PolicyRAG hyperparameters.

Hyperparameter Value
Synonym threshold 0.7
PPR damping factor 0.5
Generation temperature 0.0

Table 10: GraphRAG vs LightRAG hyperparameters

Parameter GraphRAG LightRAG
Mode Local Local
Response Short Short
Top-k phrases 60 60
Chunk size 1,200 1,200
Overlap 100 100
Max report len 2,000 –
Max input 8,000 –
Max cluster 10 –
Entity tokens – 500

2https://memgraph.com/docs
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E.2 BASELINES AND PROTOCOL

All methods operate on the identical passage pool under matched token and latency budgets. When
public checkpoints and recommended hyperparameters are available, we adopt them; otherwise, we
use the reported configurations. Dense retrievers are run with PyTorch and Hugging Face; BM25
uses BM25s. For GraphRAG and LightRAG, we retain the public configurations and ensure compute
parity. Full settings appear in Table 10.
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