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A Detailed Proofs for Binary Classification

A.1 Proof of Theorem 1

Theorem 1. The dual problem of Eq. (5) is given by:
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Proof. For Lagrangian variables –i Ø 0, we can write the Lagrangian function of the optimization problem in
Eq. (5) as
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in which Eq. (8) utilizes the trace definition of the matrix inner product.

By the definition of the dual function,
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We notice that by the definition of conjugate function (Boyd & Vandenberghe, 2004), g
1

takes the form of
the conjugate function of the nuclear norm, i.e. for f
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is the conjugate function of the loss function ¸(›i). Therefore, the dual
problem of Eq. (5) is as follows:
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Therefore we have:
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in which K (·, ·) = „ (·)€
„ (·) is the kernel function.

A.2 Proof of Theorem 2

Theorem 2. Given the optimal dual solution {–̂i}n
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For the left side of Eq. (21), we know by the properties of SVD that Û
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= Û€
2

Û
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Now we show that the eigenvectors of V̂
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A.3 Proof of Theorem 3
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Experimentally, the total number of vectors associated to eigenvalues close to 1 was very small. Thus, most likely we are

recovering only

ˆV1 and not

ˆV2, and so we do not believe this is an issue in practical terms.
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Then to construct the convolution output, we multiply � (xi) on the right for both sides of the equation:
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Ê€Û€
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Taking transpose on both sides of the equation completes the proof.

B Detailed Proofs for Multi-class Classification

B.1 Proof of Theorem 4

Theorem 4. For all dual variables –k,i Ø 0 with i œ [n] and k œ [m], the dual problem of Eq. (16) is given
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By the definition of the dual function,
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in which ¸ú(·) = sup›k,i
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. Therefore we have the following dual optimization problem for

multiclass classification:

maximize
–

≠ c

nÿ

i=1

mÿ

k=1

¸ú
3

≠–k,i

c

4

subject to ⁄
max

1 nÿ

i=1

nÿ

j=1

mÿ

k=1

–Õ
k,i–

Õ
k,jK Õ

k(xi, xj)
2

Æ 1 , (17)

–k,i Ø 0, –yi,i = 0, ’i œ [n], ’k œ [m] .

B.2 Proof of Theorem 5

Theorem 5. We can recover the linear weight V̂
1

œ Rmp◊r by

V̂
1

=
Ë
Ṽ (i)

È
, ’ i such that ⁄i = 1, (37)
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in which Ṽ œ Rmp◊mp comes from

Ṽ �Ṽ ≠1 =
nÿ

i=1

nÿ

j=1

mÿ

k=1

–Õ
k,i–

Õ
k,jK Õ

k

!
xi, xj

"
, (38)

and � = diag(⁄
1

, ..., ⁄mp) œ Rmp◊mp, –̂Õ
k,i =

qm
s=1

–̂s,i [k = yi] ≠ –̂k,i.

Proof. The proof of this theorem also leverages the stationary condition and the subdi�erential of nuclear
norm as in Theorem 2. For the stationary condition of problem (16) with respect to parameter A,

0 œ ˆ
..Â

..
ú ≠

nÿ

i=1

mÿ

k=1

–̂Õ
k,i�Õ

k (xi) , (39)

Then for Â œ Rd2◊mp, consider its compact SVD Â = Û
1

D̂
1

V̂ €
1

, in which Û
1

œ Rd2◊r, D̂
1

œ Rr◊r, and
V̂

1

œ Rmp◊r, and the full SVD Â = ÛD̂V̂ €, in which Û = [Û
1

| Û
2

] œ Rd2◊d2 , V̂ = [V̂
1

| V̂
2

] œ Rmp◊mp. By
Lemma 2, we know that ÷ Ê œ R(d2≠r)◊(mp≠r) such that

Û
1

V̂ €
1

+ Û
2

ÊV̂ €
2

=
nÿ

i=1

mÿ

k=1

–̂Õ
k,i�Õ

k (xi) . (40)

By computing the Gram matrix of both sides of Eq. (40),
1

Û
1

V̂ €
1

+ Û
2

ÊV̂ €
2

2€ 1
Û

1

V̂ €
1

+ Û
2

ÊV̂ €
2

2
=

nÿ

i=1

nÿ

j=1

mÿ

k=1

mÿ

l=1

–̂Õ
k,i–̂

Õ
l,j�Õ

k (xi)€ �Õ
l

!
xj

"

=
nÿ

i=1

nÿ

j=1

mÿ

k=1

–̂Õ
k,i–̂

Õ
k,jK Õ

k

!
xi, xj

"

where we generate the kernel generating matrix in the form of Eq. (36) on the right side. For the left side, by
a similar simplification procedure as in the proof of Theorem 2, we have

V̂
1

V̂ €
1

+ V̂
2

Ê€ÊV̂ €
2

=
nÿ

i=1

nÿ

j=1

mÿ

k=1

–̂Õ
k,i–̂

Õ
k,jK Õ

k

!
xi, xj

"
.

Consequently, following the proof steps of Theorem 2, we can say that V̂
1

=
#
Ṽ (i)

$
for all i such that �ii = 1

is the linear weight we recover, where we compute Ṽ and � by

Ṽ �Ṽ ≠1 =
nÿ

i=1

nÿ

j=1

mÿ

k=1

–̂Õ
k,i–̂

Õ
k,jK Õ

k

!
xi, xj

"
.

B.3 Proof of Theorem 6

Theorem 6. We can implicitly recover the convolutional weight in the convolution output for multi-class
classification. That is, for all i œ [n], we have

� (xi)€
Û

1

=
nÿ

j=1

mÿ

k=1

–Õ
k,j

#
0p◊(k≠1)p, K

!
xi, xj

"
, 0p◊(m≠k)p

$
V̂

1

, (41)

where –̂Õ
k,i =

qm
s=1

–̂s,i [k = yi] ≠ –̂k,i.

Proof. From Eq. (40) we know that

V̂
1

Û€
1

=
nÿ

j=1

mÿ

k=1

–̂Õ
k,j�Õ

k

!
xj

"€ ≠ V̂
2

Ê€Û€
2

. (42)
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To form the convolution output on the left and the kernel generating matrix on the right, we multiply � (xi)
on the right for both sides of the equation:

V̂
1

Û€
1

� (xi) =
nÿ

j=1

mÿ

k=1

–̂Õ
k,j�Õ

k

!
xj

"€ � (xi) ≠ V̂
2

Ê€Û€
2

� (xi)

=
nÿ

j=1

mÿ

k=1

–̂Õ
k,j

Ë
0d2◊(k≠1)p, �

!
xj

"
, 0d2◊(m≠k)p

È€
� (xi) ≠ V̂

2

Ê€Û€
2

� (xi)

=
nÿ

j=1

mÿ

k=1

–̂Õ
k,j

5
0p◊(k≠1)p,

1
�

!
xj

"€ � (xi)
2€

, 0p◊(m≠k)p

6€
≠ V̂

2

Ê€Û€
2

� (xi)

=
nÿ

j=1

mÿ

k=1

–̂Õ
k,j

Ë
0p◊(k≠1)p, K

!
xj , xi

"€
, 0p◊(m≠k)p

È€
≠ V̂

2

Ê€Û€
2

� (xi) . (43)

For both sides of the equation, multiply with V̂ €
1

on the left, we have

V̂ €
1

V̂
1

Û€
1

� (xi) =
nÿ

j=1

mÿ

k=1

–̂Õ
k,j V̂ €

1

Ë
0p◊(k≠1)p, K

!
xj , xi

"€
, 0p◊(m≠k)p

È€

+ V̂ €
1

V̂
2

Ê€Û€
2

� (xi) .

Knowing that V̂ €
1

V̂
1

= I and V̂ €
1

V̂
2

= 0, we have

Û€
1

� (xi) =
nÿ

j=1

mÿ

k=1

–̂Õ
k,j V̂ €

1

Ë
0p◊(k≠1)p, K

!
xj , xi

"€
, 0p◊(m≠k)p

È€
. (44)

Taking transpose on both sides gives the form of the convolution output and completes the proof.

C Fenchel conjugate of Common Losses

C.1 Hinge Loss

The hinge loss function is given by ¸H(x) = max{0, 1 ≠ x}, ’x œ R. Its Fenchel conjugate is

¸ú
H(xú) =

I
xú , xú œ [≠1, 0]

Œ, otherwise
. (45)

Derivation can be found in (Heinrich, 2013).

C.2 Squared Hinge Loss

The squared hinge loss function is given by ¸SH(x) = (max{0, 1 ≠ x})2, ’x œ R. Its Fenchel conjugate is

¸ú
SH(xú) =

I
xú + xú2

4

, xú Æ 0
Œ, otherwise

. (46)

Derivation can be found in (Heinrich, 2013).

C.3 Logistic Loss

The logistic loss function is given by ¸L(x) = log(1 + e≠x), ’x œ R. Its Fenchel conjugate is

¸ú
L(xú) =

I
≠xú log(≠xú) + (1 + xú) log(1 + xú) , xú œ [≠1, 0]

Œ, otherwise
. (47)

Derivation can be found in (Borwein & Lewis, 2005).
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C.4 Exponential Loss

The exponential loss function is given by ¸E(x) = e≠x, ’x œ R. Its Fenchel conjugate is

¸ú
E(xú) =

I
xú ≠ xú log(≠xú) , xú Æ 0

Œ, otherwise
. (48)

Derivation can be found in (Borwein & Lewis, 2005).

D Dual Optimization with Hinge Loss

We apply hinge loss for experimental evaluation. Given the dual optimization problem derived in Theorem 1:

maximize
–

≠ c

nÿ

i=1

¸ú
3

≠–i

c

4

subject to ⁄
max

1 nÿ

i=1

nÿ

j=1

–i–jyiyjK(xi, xj)
2

Æ 1 , (6)

–i Ø 0 , ’i œ [n] ,

and the Fenchel conjugate of the hinge loss function given in Appendix C.1, we know the objective function
becomes

≠c

nÿ

i=1

¸ú
3

≠–i

c

4
= ≠c

nÿ

i=1

3
≠–i

c

4

=
nÿ

i=1

–i,

for ≠ –i
c œ [≠1, 0], i.e. ’i œ [n], –i œ [0, c]. Therefore the dual optimization problem with hinge loss is:

maximize
–

nÿ

i=1

–i

subject to ⁄
max

1 nÿ

i=1

nÿ

j=1

–i–jyiyjK(xi, xj)
2

Æ 1 ,

0 Æ –i Æ c , ’i œ [n] .
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E Algorithms

E.1 Coordinate Descent Optimization

Algorithm 2 Coordinate Descent Optimization of the Dual Problem (6)
Input: Data {(xi, yi)}n

i=1

; Kernel function K; Hyperparameter c.
1: Compute ⁄

max

(K(xi, xi)) for i = 1 to n.
2: Let Indices be the sorted coordinates according to the ascending order of ⁄

max

(K(xi, xi))
3: for iteration = 1, 2, . . . do
4: Let S = ? be the set of the optimized coordinates.
5: Let R = 0p◊p.
6: for i in Indices do
7: Compute T =

q
jœS –̂jyiyj

!
K(xi, xj) + K(xj , xi)

"

8: if ⁄
max

!
c2K(xi, xi) + cT + R

" Æ 1 then
9: Let –̂i = c.

10: else
11: Find the largest –̂i œ [0, c] such that ⁄

max

!
–̂2

i K(xi, xi) + –̂iT + R
" Æ 1 using binary search.

12: end
13: Add i to S.
14: R = R + –̂2

i K(xi, xi) + –̂iT .
15: end for
16: end for

Output: Dual solution {–̂i}n
i=1

.

Experimentally, we run Algorithm 2 above for only one iteration. To formally argue for the convergence of
the above algorithm, we have added the several iterations in Line 3. By changing the maximization problem
to the minimization of the negative of the objective function, and by using the extended-value extension
(Boyd & Vandenberghe, 2004), the dual problem in Eq. (6) becomes minimize–œRn f(–) where:

f(–) =

Y
__]

__[

c
qn

i=1

¸ú(≠–i/c), if ⁄
max

1qn
i=1

qn
j=1

–i–jyiyjK(xi, xj)
2

Æ 1 and –i Ø 0, ’i œ [n]

Œ, otherwise

We can now invoke Theorem 4.1 in (Tseng, 2001) to show the convergence of our algorithm. (See also Example
6.4 therein.)

E.2 Training D-layer DCCNNs

Algorithm 3 Training D-layer DCCNNs
Input: Number of convolutional layers D; Data {(xi, yi)}n

i=1

; Kernel function K.
1: for ¸ = 1 to D do
2: Construct dual problem in Eq. (6) with {(xi, yi)}n

i=1

and K
3: Solve for the dual solution in the ¸th layer {–̂¸

i}n
i=1

.
4: Recover the convolution output {x¸

i}n
i=1

and the linear weight L̂¸ with Algorithm 1.
5: Let xi = x¸

i .
6: end for
Output: Dual solution of every layer {{–̂¸

i}n
i=1

}D
¸=1

; Convolution output of every layer {{x¸
i}n

i=1

}D
¸=1

;
Linear weight of the every layer {L̂¸}D

¸=1

.
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E.3 Making Predictions with D-layer DCCNNs

Algorithm 4 Making Predictions with D-layer DCCNNs
Input: Test data xnew; Kernel function K; Dual solution of every layer {{–̂¸

i}n
i=1

}D
¸=1

; Convolution output
of every layer {{x¸

i}n
i=1

}D
¸=1

; Linear weight of the every layer {L̂¸}D
¸=1

.
1: for ¸ = 1 to D ≠ 1 do
2: Compute the convolution output for xnew by

xÕ
new = vec

! ÿn

j=1

–̂¸
jyjK(xnew, xj)L̂¸

"
.

3: Let xnew = xÕ
new.

4: end for
5: In layer D, compute the prediction by {Apply the final linear weight for classification}

f(xnew) = sign
!

Tr(
ÿn

j=1

–̂D
j yjK(xnew, xj)L̂DL̂€

D)
"
.

Output: Prediction f(xnew).

F Average Pooling Matrix

Convolutional output � (xi)€
Û

1

œ Rp◊r is formed by the output of r filters, i.e. the convolution output has r
channels. Pooling is done for each channel, also known as a feature map, of the convolutional output. Denote
one column of � (xi)€

Û
1

, i.e. one feature map as xÕ
i,k œ Rp for k œ [r]. In an average pooling operation, a

subset of entries, or a patch of the feature map is multiplied element-wise with an average pooling filter. The
total number of pooling operations depends on the pooling filter width and stride. We use q to represent
the total number of pooling operation on one feature map, then we can generate an average pooling matrix
G œ Rq◊p. Assume the pooling filter has b entries, then

Gs,t =
I

1

b pooling filter multiplied with the tth feature map entry in the sth pooling operation
0 otherwise

.

To perform average pooling on the convolution output, we can directly multiply the average pooling matrix
on the left of the convolution output before vectorizing it and feeding it to the next layer, i.e.

G� (xi)€
Û

1

=
nÿ

j=1

–̂jyjGK(xi, xj)V̂
1

.

Then for the next layerwise training, {vec
! qn

j=1

–̂jyjGK(xi, xj)V̂
1

"}n
i=1

is regarded as the input.

G Experiment

G.1 Experiment Settings

Data. We use the MNIST (Lecun et al., 1998) and the ImageNet datasets (Deng et al., 2009) under the
terms of the Creative Commons Attribution-Share Alike 3.0 license. In binary classification experiments,
for both the MNIST and ImageNet datasets, we randomly pick two classes, images of digit 2 versus 3 from
MNIST, images containing tench versus bathroom tissue from ImageNet, and use 2000 images for training,
100 images for validation, and 600 images for testing. We center crop the ImageNet images to 224 ◊ 224, and
transfer the pixel values to [0, 1] independently for each of the three RGB channels. No other preprocessing is
applied.

Architecture. (1) MNIST experiments: we implement 1-layer and 2-layer DCCNN for binary classification
and 1-layer DCCNN for multiclass classification, and compare with its counterparts under the CCNN
framework and the CNN trained with back-propagation SGD. We test all methods with filter width 5, stride
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1, and padding size 2, and set the number of filters for CCNN and SGD-trained CNN to 16 for each layer. (2)
ImageNet experiments: we follow the architectures similar to AlexNet (Krizhevsky et al., 2012) and VGG11
(Simonyan & Zisserman, 2015) with some few modifications. For DCCNN and CCNN, we only count the
number of convolutional layers, that is, 5 layers in AlexNet and 8 layers in VGG11, and concatenate one final
linear layer for the purpose of classification. In order to reduce the number of patches for computational
e�ciency, we change the stride of the first layer from 4 to 8 for both AlexNet and VGG11. To ensure VGG11
keeps all information of the input image, we correspondingly change the filter width in the first layer from
3 to 9, and remove the pooling after layer 4 and 6. For the simplicity of matrix multiplication, we choose
average pooling as the pooling operation. Other settings of filter width, stride and padding size are kept the
same. All methods are trained with the same architecture.

Kernel function and activation function. For both DCCNN and CCNN, we choose the Gaussian RBF
kernel as in (Zhang et al., 2017) that has the form K(zi, zj) = exp{≠“Îzi ≠ zjÎ2

2

}, ÎziÎ2

= ÎzjÎ
2

= 1. For a
fair comparison, we choose the sinusoid function fl(·) = sin(·) (Isa et al., 2010; Sopena et al., 1999) as the
activation function, as it is proved in (Zhang et al., 2017) to be contained in the RKHS of Gaussian RBF
kernel.

CCNN kernel matrix factorization. For the approximate kernel factorization K ¥ QQ€ in the algorithm
of (Zhang et al., 2017), we use a 25-column matrix Q from either: (1) UD

1
2 for K = UDU€; (2) UD

1
2 V for

K = UDU€, in which V is a random orthonormal matrix; (3) K
1
2 ; (4) the Cholesky decomposition of K.

For the consideration of computational complexity, we only construct the block diagonal of the kernel matrix
K, and approximate the sample feature by the factorization of its corresponding block diagonal.

Loss function. For CCNN and DCCNN, we use the hinge loss for optimization, and for the nuclear norm
constraint in CCNN, we implement it as regularization in the optimization step. For back-propagation SGD,
we use the binary cross-entropy loss for optimization.

Hyperparameters. For CNNs trained with SGD, we use 50 epochs with batch size 50 and learning rate
0.1. For a fair comparison, we do not employ dropout, weight decay, or other tricks for training. We run 10
trials for each experiment and report the average and standard deviation of accuracy. For CCNN, since the
block diagonal kernel matrix is much smaller than the full kernel matrix, we set the CCNN hyperparameters
m = 25 and r = 16 for each layer. For DCCNN, even though we theoretically take the eigenvectors with
eigenvalue 1, there could be numerical issues during the optimization process, making the eigenvalues not
strictly 1. Therefore we set a threshold for the eigenvalues we take. For 1-layer DCCNN, 2-layer DCCNN,
AlexNet DCCNN, and VGG11 DCCNN, the threshold is set to 0.8, 0.9, 0.975, 0.85, respectively.

Platform and implementation. We implement DCCNN with Matlab 2018a. The code is tested on a
server with 4 CPU cores and 16GB memory size.

G.2 Results

We demonstrate the results of prediction accuracy in Table 2. The rows are organized by the datasets and
architectures while each column shows the performance of one method across di�erent tasks.

For SGD experiments, in particular, we run 10 trials for each setting with di�erent random seeds and report
the average and standard deviation of accuracy. The average accuracy is shown in Table 2. For binary
classification, we observe a 1.8% standard deviation for one-layer CNN trained with SGD on the MNIST
dataset, and 0.6% for the two-layer CNN trained end-to-end with SGD. For the network structure similar to
AlexNet on the ImageNet dataset, we observe a standard deviation of 2.5%, and for the architecture similar
to VGG11, the standard deviation is 1.7%. For multiclass classification, the standard deviation of SGD is
0.5%.

G.3 Discussion on Performance Level

In the binary classification task of the MNIST data, we can see that DCCNN outperforms CNN optimized
by SGD and all di�erent kernel matrix factorizations for CCNN on one-layer and two-layer networks with
only one exception for the two-layer CCNN with Cholesky decomposition. This verifies the e�ectiveness of
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Dataset Architecture CCNN SGD
(end-to-end / layerwise) DCCNN

UD
1
2 UD

1
2 V K

1
2 Cholesky

MNIST 1-Conv-Layer 90.3% 90.3% 88.8% 93.7% 90.2% / 94.8%
2-Conv-Layer 93.7% 93.5% 93.5% 96.7% 95.2% / 92.4% 96.0%

ImageNet AlexNet 62.3% 62.3% 53.2% 62.0% 87.1% / 86.3% 83.3%
VGG11 55.3% 52.5% 59.8% 57.0% 89.2% / 86.7% 85.0%

(a) Test Accuracies on MNIST and ImageNet Binary Classification.

Dataset Architecture CCNN SGD DCCNN
UD

1
2 UD

1
2 V K

1
2 Cholesky

MNIST 1-Conv-Layer 75.4% 75.4% 82.3% 85.9% 87.0% 85.3%

(b) Test Accuracies on MNIST Multiclass Classification.

Table 2: Experiment results for binary and multiclass classification. Methods compared include CCNN, CNN
trained with SGD, and our proposed DCCNN. For CCNN we use a 25-column matrix Q from 4 di�erent
ways of kernel matrix factorization: (1) UD

1
2 for K = UDU€; (2) UD

1
2 V for K = UDU€, and random

orthonormal matrix V ; (3) K
1
2 ; (4) the Cholesky decomposition of K. The X-Conv-Layer in the architecture

column refers to the number of convolutional layers, as only one linear layer is concatenated at the end for
classification. For architectures with more than one convolutional layer, we list the result of SGD trained
both end-to-end and layerwise. The result of SGD only reflects its performance in our specific experiment
setting, e.g. few convolutional filters, and is listed for DCCNN sanity check purposes.

DCCNN. Furthermore, we observe that di�erent factorization approaches introduce turbulence to the CCNN
method, while our algorithm does not su�er from such ambiguity.

On the more complicated ImageNet dataset, DCCNN also performs comparably well with the end-to-end
SGD optimized CNNs under both AlexNet and VGG11 architectures, and significantly outperforms the
CCNN method. With the heuristic of kernel matrix factorization and cutting the weight matrix, CCNN does
not necessarily generalize to complex datasets like ImageNet. As the task gets di�cult, the performance level
of CCNN with di�erent factorization methods gets more arbitrary. This further highlights the merits of our
proposed DCCNN.

Moreover, we observe that there is a decrease of accuracy for CCNN with the increase on the number of
layers. That may be caused by the accumulated impact of the weight-cutting heuristic, i.e., the number of
filters heuristically enforced by a hyperparameter in each layer may not accurately reflect the information
learned. Setting it too large would include unnecessary noise while setting it too small may discard relevant
information. This further highlights the e�ectiveness of DCCNN on encouraging a small number of filters
without introducing heuristics or ambiguity.

G.4 Discussion on Computational Complexity

We first analyze theoretically that

• spatially, CCNN has to construct the whole kernel matrix of size np ◊ np with all of the n samples and p
patches, leading to spatial complexity of O(n2p2), while DCCNN only need the kernel generating matrix
of one sample at a time, which is of size p ◊ p, leading to the cost of O(p2) space;

• temporally, the factorization of the kernel matrix in CCNN takes O(n3p3), while the runtime of DCCNN
is dominated by the eigendecomposition in Algorithm 2, leading to time complexity of O(n2p3).
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Experimentally, we now demonstrate how the running time of each method scales with the number of samples
n and the number of patches p for the following reasons: (1) It takes an extremely long time to run the
full kernel matrix (size np ◊ np) factorization for CCNN without approximation tricks, thus making such
comparisons on actual running time trivial. So for CCNN baseline we only construct the kernel matrix of a
batch of samples as applied in the CCNN paper (Zhang et al., 2017) to accelerate CCNN. (2) Methods are
implemented di�erently, e.g. MATLAB versus PyTorch, hand-crafted matrix multiplications versus built-in
conv & pooling operations, etc.

For 2000 samples 784 patches and 200 samples and 100 patches on 1-Layer MNIST experiment, the running
time ratio is shown in Table 3:

1-Layer MNIST running time DCCNN CCNN SGD
(n, p) = (2000, 784) / (n, p) = (200, 100) 580x 1300x 55x

Table 3: Running time ratio between data and models of di�erent scales.

As we see from the result, DCCNN is more computationally e�cient than CCNN. Though SGD runs even
faster, we emphasize that SGD is a stochastic approximation algorithm in nature.

Furthermore, the improvement on space complexity originates naturally from the dual formulation of the
problem without the kernel matrix construction, which once again shows the significance of DCCNN. On
the other hand, time complexity relies more on the solving algorithm, which is only an initial design in
DCCNN as we focus more on the formulation of the dual problem and weight recovery from the optimized
dual solution, and may be improved with better engineering.

H Further Discussion on Related Works

On learning convolutional neural networks with kernel methods, following the work of Neural Tangent Kernel
(NTK) (Jacot et al., 2018), Arora et al. (2019) proposes the Convolutional Neural Tangent Kernel (CNTK)
that studies the exact computation of CNNs with infinitely many convolutional filters, i.e. infinitely wide
CNNs. As our approach uses kernel information and implies an infinite size of the convolutional weight matrix,
it is fundamentally di�erent from CNTK in both formulation and derivation: (1) In CCNN formulation
described in Eq. (1), the convolutional weight is W œ Rd2◊r. r is the number of filters, which is not only
finite but encouraged to be low by the nuclear norm constraint, while CNTK studies the case of infinite many
filters. In CCNN formulation, d

2

, the size of each filter, is the part that may go to infinity, while CNTK
assumes each filter has a fixed size. Therefore, the CCNN and CNTK frameworks are fundamentally di�erent.
(2) CNTK is to take the infinite limit of width so that the inputs of activation function tend to i.i.d. centered
Gaussian processes with fixed covariance (Jacot et al., 2018; Arora et al., 2019), under which condition the
output of the neural network would converge to the output of CNTK, asymptotically (Theorem 1 in Jacot
et al. (2018)) or non-asymptotically (Theorem 3.2 in Arora et al. (2019)). On the other hand, the infinity size
of the weight matrix in CCNN or DCCNN comes from the infinite dimension of the kernel basis function.

On deriving the convex equivalence of CNNs, Ergen & Pilanci (2020) derives a convex analytic framework
utilizing semi-infinite duality, and regards the CNN architecture as an implicit convex regularizer following
previous work (Pilanci & Ergen, 2020). As our approach utilizes the power of duality, it is not for the purpose
of convexifying CNNs, but to eliminate the need and the ambiguity of factorizing the very large kernel matrix
in CCNN (Zhang et al., 2017). As a result, the optimization problem is completely di�erent. The most
significant di�erence, the nuclear norm regularization in DCCNN poses challenges as it is non-di�erentiable,
leading to no closed-form solution for recovering the primal solution from the dual. For this particular
challenge, we proposed a highly-novel weight recovery algorithm to recover the linear weight and the output
of the convolutional layer directly, instead of the convolutional weight.

On optimization with low-rank constraint, (Shalev-Shwartz et al., 2011; Li & Fu, 2015; Cabral et al., 2013; He
et al., 2015) and many others have built up the connection between low-rankness and minimizing the nuclear
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norm, in the context of large-scale optimization, learning discriminative subspace, matrix factorization, image
restoration, etc. This further validates the soundness and significance of the DCCNN problem formulation.
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