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General ATLANTIS (Erfani et al., 2021), BDD100K (Yu et al., 2020),
Dark Zurich (Sakaridis et al., 2019), DRAM (Cohen et al., 2022),
FoodSeg103 (Wu et al., 2021), MHPv1 (Li et al., 2018)

Earth FloodNet (Rahnemoonfar et al., 2020), iSAID (Zamir et al., 2019),
ISPRS Potsdam (Rottensteiner et al., 2012), UAVid (Lyu et al., 2020),
WorldFloods (Mateo-Garcia et al., 2021)

Medical CHASE DB1 (Fraz et al., 2012), CryoNuSeg (Mahbod et al., 2021),
Kvasir-Inst. (Jha et al., 2021), PAXRay-4 (Seibold et al., 2022)

Engineering Corrosion CS (Bianchi & Hebdon, 2021), DeepCrack (Liu et al., 2019),
PST900 (Shivakumar et al., 2019), ZeroWaste-f (Bashkirova et al., 2022)

Agriculture CUB-200 (Wah et al., 2011), CWFID (Haug & Ostermann, 2015),
SUIM (Islam et al., 2020)

Table 6: Grouping of datasets in the MESS collection (Blumenstiel et al., 2023).

A Appendix

A.1 MESS dataset composition

MESS Dataset integrates 22 datasets selected for their unique challenges, grouped into General, Earth,
Medical, Engineering, and Agriculture domains. It evaluates model performance on out-of-distribution and
adversarial examples, featuring visually complex medical images like those in Kvasir-Inst., and granular
subclass divisions of common categories as seen in FoodSeg103 (Wu et al., 2021) and Caltech-UCSD Birds
(Wah et al., 2011) datasets. Table 6 displays the dataset grouping breakdown.

A.2 Extended qualitative analysis

Figure 4 showcases additional examples where LISA encounters di�culties with certain classes in FoodSeg103.
These images are selected from specific categories that proved challenging for the model. In the first image,
LISA struggles to identify mashed potato, possibly due to its transformed state from the raw ingredient.
The second image presents a biscuit-based cake, where the model incorrectly focuses on crumbs rather
than recognizing the entire structure as biscuit. The Hanamaki Baozi example represents an out-of-domain
concept, similar to the previously discussed Worm-eating Warbler case, highlighting the model’s limitations
with unfamiliar items. In the salad image, LISA misinterprets individual vegetables as the salad itself rather
than recognizing the complete dish. Lastly, an adversarial example shows an apricot that visually resembles
an egg, causing the model to fail in producing any output. This highlights LISA’s vulnerability to visual
similarities that deviate from expected appearances within a class. These examples illustrate the ongoing
challenges in visual recognition tasks, particularly when dealing with transformed ingredients, culturally
specific items, composite dishes, and visually ambiguous subjects.

Figure 5 presents additional visual examples of the top 10 classes that posed challenges for LISA. The hair
class consistently proves problematic, with LISA often predicting the entire person instead of isolating the
hair. For upper clothes, the model’s misinterpretation can be attributed to linguistic ambiguity; in this
instance, LISA incorrectly identified headwear as upper clothing despite being more accurately classified as
an accessory. In the soy example, LISA fails to segment the soybean, instead erroneously detecting meatballs.
The tea image shows the model including the cup in its segmentation rather than isolating the liquid alone.
The final example demonstrates partial success, with LISA correctly identifying some cashews. However, it
also exhibits a strong bias towards detecting non-relevant vegetables, leading to over-segmentation.
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Figure 4: Qualitative examples selected from the most challenging classes of FoodSeg103.

Figure 5: Qualitative analysis on examples of challenging classes for Text Prompting.
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Class name IoU TP IoU VP Di�erence
Pole (BDD100K) 41.71 07.64 34.07
Fire Hydrant 33.50 00.00 33.50
Person (ATLANTIS) 58.33 25.77 32.56
Potted Plant 72.37 40.20 32.17
Building (UAVid) 66.64 34.89 31.75
White Pelican 94.32 64.48 29.84
Person (DRAM) 78.82 49.04 29.78
Pole (ATLANTIS) 33.58 04.92 28.66
Building (Dark Zurich) 59.75 31.49 28.26
Boat 50.98 23.50 27.48

Table 7: Top 10 classes with the highest IoU di�erence between text- and visual-prompted models. Results
show that LISA outperforms SoftMatcher+ on classes encountered during training.

A.3 Text Prompting Superiority

We perform a mirrored analysis of Section 4.2 to better understand when LISA outperforms SoftMatcher+.
Specifically, we sort the per-class IoU results and report the top 10 classes where TP surpasses VP in Table 7.
Additionally, in Figure 6, we present the images with the largest di�erence per class for the top five classes.

Results indicate that LISA performs best in classes aligned with its training data. In fact, 9 out of 10 classes
on the list appear in its training datasets (e.g., Pole, Building � ADE20K; Fire Hydrant � RefCOCOg;
Person, Potted Plant, Boat � COCO). This suggests that the evaluation of these classes is largely in-domain.
The alignment between test classes and training data further explains why LISA outperforms specialized
models trained in-domain on “General” datasets, as pointed out in Section 3.2

On the other hand, we attribute VP’s failure in these classes primarily to the broad internal variation within
each category. Classes like building and boat cover a vast range of visual diversity. For instance, boat includes
everything from freighters to rowboats, which in order to be solved a prompt optimization would be needed,
in a specular way to what would be done in language. For instance, while the general term “bird” might work
for identifying a worm-eating warbler, a more specific image prompt of a freighter would be more e�ective
than using a general image of a boat for identifying a freighter.

A.4 In-Domain Performance

In this section, we explain why we intentionally avoid the traditional in-domain model performance eval-
uation. In Table 8, we show how our proposed method compares to LISA, SoftMatcher+, and traditional
few-shot pipelines on standard few-shot semantic segmentation datasets like Pascal-5i and COCO-20i. LISA
alone significantly outperforms the chosen baselines from the FSS literature and SoftMatcher+, as it was
trained in-domain on the validation classes such as COCO, refCOCO and ADE20k among others. The pro-
posed PromptMatcher, which strives to balance LISA and SoftMatcher+ doesn’t reach LISA’s performance
levels, primarily due to the performance of the visual prompting branch, which performs significantly worse
on these types of datasets than LISA.

The results support our claim that VLMs trained on massive internet-scale datasets with domains similar
to (or the same as, in the case of COCO) the traditional datasets, perform exceptionally well in-domain.
However, this strong in-domain performance does not translate to technical out-of-domain performance,
which more closely mirrors real-world use cases. As a result, performance on traditional datasets is not a
reliable indicator of the few-shot performance of the underlying model.

A.5 Extended quantitative analysis

Tables 9 and 10 present comprehensive results for text prompted and vision-only models on MESS datasets,
respectively. Table 11 shows oracle results, while Table 12 displays TP-VP framework outcomes.
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Figure 6: Qualitative analysis of examples where text prompting excels. Classes like Potted Plant and
Building can vary significantly in appearance, making it challenging for SoftMatcher+ to generate accurate
predictions.

Method COCO-20i Pascal-5i

Painter 32.80 64.50
Seggpt 56.10 83.20

PAGMA-Net (CLIP-RN101) 59.40 77.60
HMNet 52.10 70.40
LISA 72.23 80.97

SoftMatcher+ 55.12 67.98
PromptMatcher 59.07 77.13

Table 8: In-domain performance on FSS Datasets.

A.6 PromptMatcher Pseudocode

Algoritm 1 showcases PromptMatcher pseudocode.
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Algorithm 1: PromptMatcher

Input: reference_image, reference_mask, reference_text,target_image
Output: final_mask

ref _feats Ω extract_features(reference_image); // Extract Features
targ_feats Ω extract_features(target_image);
targ_sam_feats Ω extract_SAM_features(target_image);

probability_map Ω match_features(ref _feats, reference_mask, targ_feats); // SoftMatcher+
prompt_points Ω sample_and_cluster(probability_map);
softmatcher_masks Ω SAM_mask_decoder(prompt_points, target_sam_feats);

lisa_SEG_token Ω LISA_VLM(target_image, reference_text); // LISA
lisa_mask Ω LISA_mask_decoder(target_sam_feats, LISA_SEG_token) ;

mask_proposals Ω lisa_mask + mask_proposals ; // Merge masks

masks Ω reject_masks(mask_proposals) ; // Reject and merge masks
segmentation_mask Ω merge_masks(masks);

return segmentation_mask

Dataset SEEM txt CAT-Seg Florence PALI-Gem NACLIP LISA Supervised

G
en

er
al

ATLANTIS 48.4 30.5 14.4 46.8 46.79 63.9 45.1
BDD100K 32.6 30.6 04.5 25.9 27.54 78.0 82.3
Dark Zurich 33.1 45.8 11.4 21.8 34.37 41.1 44.8
DRAM 60.4 33.6 29.3 58.6 50.05 78.6 42.2
FoodSeg103 31.0 30.0 18.1 51.3 37.81 60.6 53.2
MHP v1 10.0 33.1 06.5 07.6 19.77 19.8 63.9

E
ar

th

FloodNet 59.6 09.2 28.6 62.5 66.35 72.9 84.6
iSAID 09.5 66.5 04.1 04.3 09.80 31.3 45.7
ISPRS Potsdam 40.7 53.9 11.0 23.9 39.36 41.0 74.0
UAVid 57.5 39.0 11.5 34.7 56.44 59.8 87.2
WorldFloods 16.9 16.1 14.4 20.3 33.94 33.4 65.3

M
ed

ic
al CHASE DB1 09.8 49.9 09.1 08.9 10.05 16.7 92.7

CryoNuSeg 24.1 39.8 06.7 24.2 24.77 31.9 82.2
Kvasir-Inst. 28.6 51.4 10.2 44.9 12.97 23.2 87.6
PAXRay-4 53.1 42.0 26.7 35.7 43.11 54.9 67.8

E
ng

in
. Corrosion CS 11.1 25.0 07.7 08.8 04.47 13.8 97.1

DeepCrack 04.2 35.1 05.5 04.5 04.78 06.8 73.5
PST900 14.3 79.4 06.3 02.9 03.87 12.1 93.7
ZeroWaste-f 26.2 54.5 09.8 12.9 13.93 18.5 93.8

A
gr

i. CUB-200 89.0 31.4 00.0 68.2 14.36 88.1 85.9
CWFID 13.7 25.3 04.2 07.0 11.79 36.6 52.5
SUIM 31.0 16.9 18.7 44.9 40.86 67.2 49.9

Table 9: Per dataset performance of text prompted methods
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Dataset SEEM vis DINOv VP SoftMatcher+ Supervised

G
en

er
al

ATLANTIS 15.8 52.8 45.0 51.4 45.1
BDD100K 07.2 37.8 53.1 58.5 82.3
Dark Zurich 04.0 22.6 45.4 47.7 44.8
DRAM 13.4 73.6 55.9 62.9 42.2
FoodSeg103 11.8 28.3 54.0 60.5 53.2
MHP v1 05.6 09.5 34.6 36.7 63.9

E
ar

th

FloodNet 41.6 59.9 56.7 57.4 84.6
iSAID 02.2 04.3 22.8 26.7 45.7
ISPRS Potsdam 13.0 24.2 41.2 41.4 74.0
UAVid 15.5 34.5 32.7 35.7 87.2
WorldFloods 11.9 17.3 16.4 20.0 65.3

M
ed

ic
al CHASE DB1 10.4 09.6 00.0 00.0 92.7

CryoNuSeg 26.8 24.0 21.2 24.5 82.2
Kvasir-Inst. 06.5 24.4 65.7 58.0 87.6
PAXRay-4 38.1 39.0 39.0 39.1 67.8

E
ng

in
. Corrosion CS 09.3 10.1 07.2 14.8 97.1

DeepCrack 03.6 04.5 30.7 39.3 73.5
PST900 04.5 04.8 16.4 38.9 93.7
ZeroWaste-f 10.4 13.9 21.0 21.9 93.8

A
gr

i. CUB-200 20.7 92.2 85.4 87.0 85.9
CWFID 17.5 33.5 41.5 41.0 52.5
SUIM 26.9 51.4 52.5 54.1 49.9

Table 10: Per dataset performance of visual prompted methods

Dataset SoftMatcher+ LISA Oracle Oracle+ Supervised

G
en

er
al

ATLANTIS 51.4 63.9 63.9 68.9 45.1
BDD100K 58.5 78.0 78.0 79.2 82.3
Dark Zurich 47.7 41.1 47.7 55.0 44.8
DRAM 62.9 78.6 78.6 81.3 42.2
FoodSeg103 60.5 60.6 60.6 74.0 53.2
MHP v1 36.7 19.8 36.7 45.3 63.9

E
ar

th

FloodNet 57.4 72.9 72.9 74.8 84.6
iSAID 26.7 31.3 31.3 35.4 45.7
ISPRS Potsdam 41.4 41.0 41.4 50.2 74.0
UAVid 35.7 59.8 59.8 65.0 87.2
WorldFloods 20.0 33.4 33.4 33.4 65.3

M
ed

ic
al CHASE DB1 00.0 16.7 16.7 16.7 92.7

CryoNuSeg 24.5 31.9 31.9 34.5 82.2
Kvasir-Inst. 58.0 23.2 58.0 72.0 87.6
PAXRay-4 39.1 54.9 54.9 61.7 67.8

E
ng

in
. Corrosion CS 14.8 13.8 14.8 17.6 97.1

DeepCrack 39.3 06.8 39.3 42.2 73.5
PST900 38.9 12.1 38.7 39.7 93.7
ZeroWaste-f 21.9 18.5 21.9 30.5 93.8

A
gr

i. CUB-200 87.0 88.1 88.1 90.5 85.9
CWFID 41.0 36.6 41.0 48.4 52.5
SUIM 54.1 67.2 67.2 75.2 49.9

Table 11: Per dataset performance of Oracle ensembling baselines.
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Dataset SEEM LISA SoftMatcher+ PromptMatcher Oracle+ Supervised

G
en

er
al

ATLANTIS 15.8 63.9 51.4 55.7 68.9 45.1
BDD100K 06.9 78.0 58.5 67.3 79.2 82.3
Dark Zurich 04.3 41.1 47.7 51.7 55.0 44.8
DRAM 13.5 78.6 62.9 69.7 81.3 42.2
FoodSeg103 12.0 60.6 60.7 61.9 74.0 53.2
MHP v1 05.8 19.8 36.7 46.2 45.3 63.9

E
ar

th

FloodNet 40.7 72.9 57.4 61.4 74.8 84.6
iSAID 02.3 31.3 26.7 24.3 35.4 45.7
ISPRS Potsdam 13.1 41.0 41.4 45.9 50.2 74.0
UAVid 14.9 59.8 35.7 52.4 65.0 87.2
WorldFloods 14.2 33.4 20.0 14.7 33.4 65.3

M
ed

ic
al CHASE DB1 10.4 16.7 00.0 00.0 16.7 92.7

CryoNuSeg 27.1 31.9 24.5 24.1 34.5 82.2
Kvasir-Inst. 06.4 23.2 58.0 60.8 72.0 87.6
PAXRay-4 38.1 54.9 39.1 55.5 61.7 67.8

E
ng

in
. Corrosion CS 10.4 13.8 14.8 15.2 17.6 97.1

DeepCrack 03.8 06.8 39.3 42.6 42.2 73.5
PST900 04.9 12.1 38.9 39.3 39.9 93.7
ZeroWaste-f 10.1 18.5 21.9 24.6 30.5 93.8

A
gr

i. CUB-200 21.1 88.1 87.0 88.9 90.5 85.9
CWFID 17.5 36.6 41.0 38.4 48.4 52.5
SUIM 28.8 67.2 54.1 59.8 75.2 49.9

Table 12: Per dataset performance of visual-text prompted methods
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