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Appendix A. Comparison with POT

The subgradient of Sliced Wasserstein distance can be computed using the POT library.9

Here, we compare the runtime of Algorithm 2 with POT. We performed the runtime com-
parison using the point cloud datasets with the dataset sizes ranging from 1000 to 10000.
We also varied the number of slices for 10, 50, and 100. Figure 7 shows that the runtime of
Algorithm 2 is smaller than POT, regardless of the dataset sizes and the number of slices.
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Figure 7: Comparison of runtimes for subgradient computation of Sliced Wasserstein dis-
tance using Algorithm 2 and POT.

We also conducted the runtime comparison using the synthetic dataset in Section 6.1.
We varied the dataset size from 1000 to 100000, and we fixed the number of slices to 100.
Figure 8 shows that Algorithm 2 is again faster than POT.
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Figure 8: Runtime comparison on the synthetic dataset.

9. https://pythonot.github.io/

https://pythonot.github.io/
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Appendix B. Additional Experimental Results

Here, we show the runtime comparisons in Section 6.3 on the COMPAS and Adult datasets.

B.1. The effects of ε

Figure 9 shows the results on the COMPAS and Adult dataset for each method over 10
runs for several different choice of ε. The figures show that the choice of ε does not have
any significant impact on the quality of the benchmark Z.
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Figure 9: The effects of ε on FastSBS on the COMPAS and Adult dataset experiments.

B.2. The effects of S

Figure 10 shows the results on the COMPAS and Adult dataset for each method over 10
runs for several different choice of S. The figures show that the choice of S does not have
any significant impact on the quality of the benchmark Z.



Fast Stealthily Biased Sampling

Baselines SBS FastSBS S = 10 50 100 Random

COMPAS

0.4 0.5 0.6 0.7 0.80
0.05

0.1
0.15

0.2
0.25

α

A
v
er
a
g
e
D
P

(a) Demographic Parity

0.4 0.5 0.6 0.7 0.8
0.6
0.8
1.0
1.2

α

A
v
er
a
g
e
W

D

(b) W(D′, Z)

0.4 0.5 0.6 0.7 0.8
0.6

0.8

1.0

1.2

α
A
v
er
a
g
e
W

D

(c) W(D′
y=0, Zy=0)

0.4 0.5 0.6 0.7 0.8
0.6
0.8
1.0
1.2

α

A
v
er
a
g
e
W

D

(d) W(D′
y=1, Zy=1)

Adult + Logistic Regression

0.1 0.2 0.3 0.40.0
0.05

0.1
0.15

0.2

α

A
v
er
a
g
e
D
P

(e) Demographic Parity

0.1 0.2 0.3 0.4
20
23
26
29
32

α

A
v
er
a
g
e
W

D

(f ) W(D′, Z)

0.1 0.2 0.3 0.4
31
34
37
40
43

α

A
v
er
a
g
e
W

D

(g) W(D′
y=0, Zy=0)

0.1 0.2 0.3 0.418
21
24
27
30
33

α
A
v
er
a
g
e
W

D

(h) W(D′
y=1, Zy=1)

Adult + RandomForest

0.1 0.2 0.3 0.40.0
0.05

0.1
0.15

0.2

α

A
v
er
a
g
e
D
P

(i) Demographic Parity

0.1 0.2 0.3 0.4
20
23
26
29
32

α

A
v
er
a
g
e
W

D

(j ) W(D′, Z)

0.1 0.2 0.3 0.4
31
34
37
40
43

α

A
v
er
a
g
e
W

D

(k) W(D′
y=0, Zy=0)

0.1 0.2 0.3 0.418
21
24
27
30
33

α

A
v
er
a
g
e
W

D

(l) W(D′
y=1, Zy=1)

Figure 10: The effects of S on FastSBS on the COMPAS and Adult dataset experiments.
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Appendix C. FastSBS with Tree-Sliced Wasserstein Distance

In FastSBS, we used Sliced Wasserstein distance for efficient computation. Here, we consider
another variant of FastSBS that uses Tree-Sliced Wasserstein distance (Le et al., 2019).

C.1. Tree-Sliced Wasserstein Distance

Tree Wasserstein distance (Le et al., 2019) represents the distance between distributions on
a given tree structure. Let T = (V,E) be a tree with a set of nodes V and a set of edges
E. Here, we consider a tree T consisting of Nin internal nodes and N leaf nodes so that
|V | = Nin + N . We assume that each instance of the dataset D corresponds to each leaf
node of T .

We use the following notations for the tree. Let leaf(i) be a set of leaf nodes in the sub-
tree rooted at the node i defined by leaf(i) = {j | j is the leaf of the subtree rooted at i}.
We also define the set of ancestor nodes by ans(j) = {i | j ∈ leaf(i)} and the parent node
of i by pa(i).

Given the tree T , Tree Wasserstein distance is defined as follows:

WT (µ, ν) =
∑
i∈V

Cpa(i),i|µ(leaf(i))− ν(leaf(i))|, (19)

where µ(leaf(i)) =
∑

j∈leaf(i) µj and ν(leaf(i)) =
∑

j∈leaf(i) νj . The cost Cpa(i),i =
∥xpa(i) − xi∥ where xpa(i) is the position of the parent node. No that the one-dimensional
Wasserstein distance is a special case of Tree Wasserstein distance.

To define Tree Wasserstein distance in the Euclidean space, one needs to construct a
tree T from the dataset D. Typical methods for constructing the tree include hierarchical
clustering (Johnson, 1967), farthest-point clustering (Gonzalez, 1985), and the Quadtree
algorithm (Shaffer and Samet, 1987). Once the tree T is constructed, Tree Wasserstein
distance can be computed in O(|V |) = O(Nin +N) time (Le et al., 2019).

Tree-Sliced Wasserstein distance is defined as the expectation of Tree Wasserstein dis-
tances over randomly generated trees:

TSW(µ, ν) = ET [W
T (µ, ν)]. (20)

C.2. FastSBS with Tree-Sliced Wasserstein Distance

Here, we consider FastSBSTree, a variant of FastSBS that uses Tree-Sliced Wasserstein
distance instead of Sliced Wasserstein distance, which is formulated as follows:

(FastSBSTree) min
µ

TSW(µ, ν), s.t. µ ∈ P (k), . (21)

For optimization, we can use Algorithm 1 also for FastSBSTree once we can computed an
unbiased subgradient of TSW(µ, ν). Here, a subgradient of the Tree-Wasserstein distance
for a randomly generated tree T is an unbiased subgradient of the Tree-Sliced Wasserstein
distance. Thus, it is sufficient to compute the subgradient of WT (µ, ν) for a given T .

Takezawa et al. (2021) has shown that one can rewrite the Tree-Wasserstein distance
WT (µ, ν) in (19) as

WT (µ, ν) = ∥diag(w)B(µ− ν)∥1 , (22)
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Algorithm 3: Subroutines

Procedure Rec∆(µ, ν ∈ RN
+ , node) ▷ Compute ∆µ,ν(leaf(i)) for all the nodes.

if node is leaf then node.∆← µnode − νnode ;
else

node.∆← 0
for i ∈ {child of node} do node.∆← node.∆+Rec∆(µ, ν, i) ;

end
return node.∆

Procedure Recg(δ ∈ R, node) ▷ Compute gi for all the leaf nodes.
if node is leaf then node.g ← δ + Cpa(node),node × sign[node.∆] ;

else
for i ∈ {child of node} do Recg(δ + Cpa(node),node × sign[node.∆], i) ;

end

Algorithm 4: Computing the subgradient g in (24)

Procedure Subgrad Tree(µ, ν ∈ RN
+ , T )

Rec∆(µ, ν, T.root) ; ▷ T.root denotes the root node of T .
Recg(0, T.root) ;

return g ← (node.g | node ∈ leaf(T.root))

where w ∈ RNin+N with wi = 0 if i is the root of T and wi = Cpa(i),i otherwise, and

B =

[
(I −D1)

−1D2

I

]
,

D1 ∈ RNin×Nin , (D1)ij = I[node j is a child of node i],
D2 ∈ RNin×N , (D2)kℓ = I[node ℓ is a leaf of node k].

Here, the indicator function I returns 1 if the condition is satisfied, and 0 otherwise.
By the chain rule, the subgradient of (22) with respect to µ is given by

g = B⊤diag(w) sign [diag(w)B(µ− ν)] , (23)

where sign[·] is an element-wise sign function that, for a vector a ∈ RN , returns (sign[a])i = 1
if ai ≥ 0 and (sign[a])i = −1 otherwise. While Takezawa et al. (2021) computed the
subgradient (23) by explicitly constructing the matrix B, we show that we can compute
the subgradient more efficiently. Let us recall that (Dk

1)ij = 1 if and only if the node j is
reachable from the node i in k-hops. Hence, ((I − D1)

−1)ij = (
∑∞

k=0D
k
1)ij = 1 indicates

that the node j is reachable from the node i. Because we are considering a tree, this is
equivalent to the fact that the node j is a descendant of the node i in the tree. We can then
conclude that ((I − D1)

−1D2)ij = 1 if and only if the leaf node j belongs to the subtree
rooted at the node i.

We rewrite the subgradient g by using the property of B above. First, we have

sign [wi (B(µ− ν))i] = sign
[
Cpa(i),i∆µ,ν(leaf(i))

]
= sign [∆µ,ν(leaf(i))] ,

where ∆µ,ν(leaf(i)) =
∑

k∈leaf(i)(µk − νk) and because Cpa(i),i ≥ 0. We then have

gj =
∑

i∈ans(j)

Cpa(i),i sign [∆µ,ν(leaf(i))] . (24)
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Algorithm 4 computes the subgradient (24) by using recursions. In the algorithm, we
first compute ∆µ,ν(leaf(i)) for all the node i in the tree by using the recursion

∆µ,ν(leaf(i)) =
∑

i′:child of i

∆µ,ν(leaf(i
′)).

We then compute (24) by using the recursion∑
i∈ans(j)

Cpa(i),i sign [∆µ,ν(leaf(i))] =
∑

i∈ans(pa(j))

Cpa(i),i sign [∆µ,ν(leaf(i))]

+ Cpa(j),j sign [∆µ,ν(leaf(j))] .

Because Algorithm 4 visits each node only twice, once in Rec∆ and once in Recg, its time
complexity is O(Nin +N), which is typically Õ(N) for a balanced tree.

C.3. Experiments

Here, we show the experimental results on FastSBSTree. We found that the quality of the
benchmark created by FastSBSTree were comparable with the ones of FastSBS. However,
FastSBSTree tends to take longer time than FastSBS because the tree generation is more
costly than the projections. We therefore concluded that FastSBS would be more practical
because of its smaller runtime.

For FastSBSTree, we set the number of fixed slices S = 10 in our heuristics. We randomly
generated trees using the farthest-point clustering (Gonzalez, 1985). When constructing a
tree, we set two hyper-parameters, the depth of the tree b and the number of child nodes c.
In each node of the tree, we split the set of instances belonging to the node to c child nodes
based on the splitting criterion of the farthest-point clustering. We repeat the procedure
until the tree depth reaches b. We set the position of the child nodes as the average of
the instances belonging to that node. It takes O(Nbc) time to construct a tree from the
dataset of size N . In the experiments, we tried a few candidates of (b, c) and adopted
the one that performed well. For the synthetic, COMPAS, and Adult datasets, we set
(b, c) = (5, 3), (5, 5), and (5, 7), respectively. The other experimental settings were the same
with Sections 6.1 and 6.2.

Results Figure 11 shows the results on the synthetic, COMPAS, and Adult datasets. The
figures show that, for both requirements (R1) and (R2), FastSBSTree performed comparable
with SBS and FastSBS. Thus, FastSBSTree could successfully generate fake benchmark as
expected.

Figures 12 and 13 show the results when we varied the stopping threshold ε and the
number of fixed slices S. The figure indicates that the runtime of FastSBSTree is significantly
faster than that of SBS for any S ≤ 100. The results of Random of FastSBSTree is exceptional
who randomly generates a tree in every iteration of the optimization. The results on the
Adult dataset show that FastSBSTree with Random tends to be slower than the original
SBS. This finding shows that the generation of the trees is a dominating step if we naively
implement FastSBSTree. Thus, the use of the proposed heuristic would be essential to
speedup FastSBSTree.
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Figure 11: The results on the synthetic dataset (a)–(d), COMPAS (e)–(h), Adult + Logistic
Regression (i)–(l), and Adult + RandomForest (m)–(p). The solid lines represent
the average over 100 runs, and the shaded areas represent the standard deviation.
The black dashed lines are the same as those in Figures 1 and 2.
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Figure 12: Runtimes of FastSBSTree for difference choice of ε on the synthetic and Adult
datasets.
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Figure 13: Runtimes of FastSBSTree for difference choice of S on the synthetic and Adult
datasets.


