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A EXPERIMENTAL DETAILS

A.1 DATA DESCRIPTIONS

We conduct extensive experiments on nine widely-used time series datasets. (1) ETT Zhou et al.
(2021) contains data collected from electricity transformers located in two regions of China, between
July 2016 and July 2018. The dataset includes two different granularities: ETTh for 1 hour and
ETTm for 15 minutes. Each data point consists an ‘oil temperature’ value and six external power
load features. (2) Electricity1 contains electricity consumption data for 321 clients in kilowatts
(kW) of 1 hour from 2012 to 2014, which is released from the UCL Machine Learning Repository.
(3) Exchange-Rate Lai et al. (2018) records the daily exchange rates of eight different countries,
spanning from 1990 to 2016. (4) Traffic2 contains hourly road occupancy rates recorded by the real-
time individual detectors located on San Francisco Bay area freeways between 2015 to 2016. (5)
Weather3 contains 21 meteorological indicators recorded every 10 minutes in Germany during the
year 2020, including air temperature, wind velocity, etc. (6) ILI4 consists of the ratio of patients seen
with influenza-like illness to the total number of patients, which is collected by the United States
Centers for Disease Control and Prevention on a weekly basis from 2002 to 2021. Following the
standard protocol outlined in Wu et al. (2021), we partition all datasets into training, validation, and
testing sets chronologically, with a ratio of 6:2:2 for the ETT dataset and 7:1:2 for other datasets.

A.2 EVALUATION METRICS

In this paper, we perform zero-mean normalization to the data and select the Mean Absolute Error
(MAE) and the Mean Squared Error (MSE) as evaluation metrics:

MAE =
1

H

H∑
k=0

||xt+k − x̂t+k||, (11)

MSE =
1

H

H∑
k=0

||xt+k − x̂t+k||2, (12)

where H is the output length, x̂t+k is the prediction of the model, and xt+k is the ground truth.

A.3 BASELINE MODELS

We compare MPPN with a variety of state-of-the-art models in the domain of multivariate long-term
time series forecasting, including Linear-based models, CNN-based models and Transformer-based
models. We summarize them as follows.

• PatchTST Nie et al. (2023): PatchTST is a Transformer-based model with two key innova-
tions: patching and channel-independence. Patching involves segmenting time series data
into subseries-level patches, while channel-independence ensures that each input token ex-
clusively contains information from a single channel.

• NLinear Zeng et al. (2023): NLinear performs a simple normalization, where the input is
first subtracted by the last value of the sequence, then goes through a single-layer linear
model. NLinear demonstrates an effective capability to address distribution shifts within
datasets.

• DLinear Zeng et al. (2023): DLinear first decomposes the raw time series into a trend
component by moving average and a seasonal component. Then it adopts two one-layer
linear layers to each component and sum up the two features to produce the final prediction.

• TimesNet Wu et al. (2022): TimesNet introduces two types of temporal variations, namely
intraperiod- and interperiod-variants, and unifies these representations into 2D space. Sub-
sequently, an inception block with multi-scale 2D kernels is employed to effectively model
these temporal variations.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2http://pems.dot.ca.gov/
3https://www.bgc-jena.mpg.de/wetter/
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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• MICN Wang et al. (2023): MICN initially decomposes the input series into trend-cyclical
and seasonal parts. It then uses down-sampled convolution and isometric convolution to
capture both the local and global correlations presented in time series.

• SCINet Liu et al. (2022a): SCINet is a hierarchical convolution network with downsample-
convolve-interact operations. The input sequence is downsampled into multiple resolution
sub-sequences, which are then iteratively extracted and exchanged to facilitate the learning
of an effective representation for the time series.

• FEDformer Zhou et al. (2022): FEDformer incorporates a set of decomposition blocks with
different sizes to effectively capture the global profile of the time series. Additionally, it
performs the attention mechanism with low-rank approximation in the frequency domain
with Fourier transform to enhance the performance for long-term prediction.

• Autoformer Wu et al. (2021): Autoformer is a deep decomposition architecture that in-
corporates the built-in decomposition block and the series-wise attention based on auto-
correlation mechanism. The decomposition block is designed to progressively isolate the
long-term trend information from the predicted hidden variables.

• Crossformer Zhang & Yan (2023): Crossformer embeds the input series into a 2D vector
with time and dimension features, and two attention layers are proposed to capture the
cross-time and cross-dimension dependencies, respectively.

• Informer Zhou et al. (2021): Informer introduces the ProbSparse self-attention mechanism
and self-attention distilling operation to address the problems of quadratic time complexity
and quadratic memory usage in vanilla Transformer.

• LogTrans Li et al. (2019): LogTrans introduces convolutional self-attention to involve local
context and LogSparse Transformer to reduce space complexity in vanilla Transformer
models.

A.4 HYPERPARAMETER

By default, MPPN employs multi-resolution patching (non-overlapping patches) and the multiple
temporal resolutions (convolutional kernel sizes) are set as [1, 3, 4, 6]. Referring to the results in
Table 2, for datasets with obvious periodicity, we select the top-2 period (k = 2) computed by the
method of FFT as discussed in Section 3 for periodic pattern mining, including Electricity, Weather,
Traffic, ILI, ETTh1 and ETTm1. For datasets with less obvious periodicity, we set the period to the
default value of 24 in the case of Exchange-Rate, ILI, and ETTh2. For ETTm2 with a granularity of
15 minutes, we set the period to 96, which corresponds exactly to the default daily period. At last,
we set the hyperparameter D = 48 which is the hidden state of the series for all datasets.

For MPPN, we employ different input length on different datasets. Specifically, experiments con-
ducted on the Weather, Traffic, and Electricity dataset employ an input length of 720. For the
Exchange-Rate and ETT dataset, we opt an input length of 336. Lastly, for the ILI dataset, we em-
ploy the input length as 96. We adopt the default hyperparameters of each baseline model mentioned
in their papers to train them. Increasing the length of the input length offers substantial performance
benefits for Linear-based models, while Transformer-based models tend to overfit temporal noises
rather than extracting temporal information Zeng et al. (2023). We set the input length L = 96 for
Transformer-based, and L = 336 for CNN-based models and Linear-based models. Since the ILI
dataset sampled at weekly granularity is smaller in size, we use a different set of parameters (L = 36
for Transformer-based models and CNN-based models, and L = 104 for Linear-based models).

B MORE RESULTS

B.1 FULL BENCHMARK OF MPPN

In this section, we present a comprehensive benchmark of multivariate long-term time series fore-
casting results in Table 5, which serves as an expanded version of Table 3. We incorporate two
recently released models from arXiv, RLinear and RMLP Li et al. (2023), which currently represent
the state-of-the-art in Linear-based approaches, along with the classical Informer Zhou et al. (2021),
for the purpose of comparative analysis.
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Table 5: Multivariate long-term time series forecasting results with different prediction length
O ∈ {24, 36, 48, 60} for ILI dataset and O ∈ {96, 192, 336, 720} for others. The SOTA results are
bolded, while the sub-optimal results are underlined.

Models MPPN RLinear RMLP Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE
W

ea
th

er 96 0.144 0.196 0.175 0.225 0.151 0.202 0.375 0.437
192 0.189 0.240 0.218 0.260 0.194 0.241 0.483 0.496
336 0.240 0.281 0.265 0.294 0.245 0.286 0.588 0.542
720 0.310 0.333 0.339 0.428 0.324 0.335 1.061 0.755

Tr
af

fic

96 0.387 0.271 0.409 0.281 0.386 0.270 0.746 0.416
192 0.396 0.273 0.414 0.282 0.399 0.276 0.483 0.496
336 0.410 0.279 0.428 0.290 0.414 0.285 0.588 0.542
720 0.449 0.301 0.463 0.310 0.450 0.304 1.046 0.588

E
le

ct
ri

ci
ty 96 0.131 0.226 0.143 0.240 0.132 0.227 0.323 0.409

192 0.145 0.239 0.153 0.250 0.146 0.242 0.347 0.431
336 0.162 0.256 0.171 0.268 0.165 0.260 0.349 0.432
720 0.200 0.289 0.211 0.300 0.204 0.293 0.394 0.457

E
xc

ha
ng

e 96 0.089 0.204 0.089 0.209 0.096 0.222 0.947 0.771
192 0.177 0.295 0.191 0.309 0.219 0.334 1.244 0.882
336 0.344 0.418 0.363 0.434 0.369 0.438 1.792 1.070
720 0.929 0.731 0.963 0.731 1.000 0.735 2.936 1.415

IL
I

24 1.796 0.860 1.762 0.879 1.443 0.793 5.248 1.580
36 1.748 0.840 1.775 0.857 1.444 0.794 5.057 1.561
48 1.692 0.840 1.731 0.863 1.849 0.932 5.110 1.564
60 1.840 0.881 1.863 0.909 1.872 0.947 5.397 1.606

E
T

T
h1

96 0.371 0.393 0.366 0.391 0.390 0.410 0.934 0.764
192 0.405 0.413 0.403 0.412 0.431 0.433 1.006 0.785
336 0.426 0.425 0.420 0.423 0.441 0.441 1.036 0.783
720 0.436 0.452 0.442 0.456 0.506 0.496 1.174 0.856

E
T

T
h2

96 0.278 0.335 0.274 0.337 0.310 0.361 2.978 1.360
192 0.344 0.380 0.345 0.387 0.375 0.409 6.203 2.078
336 0.362 0.400 0.335 0.393 0.360 0.408 5.437 1.961
720 0.393 0.434 0.412 0.441 0.437 0.460 4.115 1.692

E
T

T
m

1 96 0.287 0.335 0.301 0.343 0.298 0.346 0.624 0.558
192 0.330 0.360 0.341 0.367 0.345 0.376 0.725 0.618
336 0.369 0.382 0.374 0.386 0.381 0.399 1.006 0.750
720 0.426 0.414 0.430 0.418 0.448 0.444 0.967 0.741

E
T

T
m

2 96 0.162 0.250 0.164 0.253 0.175 0.260 0.382 0.463
192 0.217 0.288 0.219 0.290 0.245 0.308 0.849 0.724
336 0.273 0.325 0.273 0.326 0.297 0.340 1.423 0.915
720 0.368 0.383 0.366 0.385 0.368 0.389 3.929 1.469

B.2 UNIVARIATE FORECASTING

We present the univariate time-series forecasting results in Table 6. Following the results from
MICN Wang et al. (2023), we include LogTrans Li et al. (2019) in comparison. Our MPPN
model continues to demonstrate superior performance in comparison to the baseline models, par-
ticularly in the context of the weather dataset with obvious periodicity. MPPN achieves signif-
icant reductions in MSE, with decreases of 62.07%(0.0029→0.0011), 33.33%(0.0021→0.0014),
30.43%(0.0023→0.0016), and 32.26%(0.0031→0.0021) observed for forecast horizons of 96, 192,
336, and 720, respectively. The experimental results provide evidence for the effectiveness of MPPN
in extracting essential characteristics of time series and performing univariate forecasting.
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Table 6: Univariate long-term time series forecasting results with different prediction length O ∈
{24, 36, 48, 60} for ILI dataset and O ∈ {96, 192, 336, 720} for others. The SOTA results are
bolded, while the sub-optimal results are underlined. Correspondingly, IMP. shows the percentage
improvement of MPPN over the state-of-the-art baseline models.

Models MPPN DLinear MICN∗ FEDformer∗ Autoformer∗ Informer∗ LogTrans∗ IMP.

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

W
ea

th
er 96 0.0011 0.025 0.0057 0.063 0.0029 0.039 0.0062 0.062 0.011 0.081 0.0038 0.044 0.0046 0.052 62.07%

192 0.0014 0.027 0.0062 0.066 0.0021 0.034 0.0060 0.062 0.0075 0.067 0.0023 0.040 0.0056 0.060 33.33%
336 0.0016 0.030 0.0064 0.068 0.0023 0.034 0.0041 0.050 0.0063 0.062 0.0041 0.049 0.0060 0.054 30.43%
720 0.0021 0.034 0.0068 0.070 0.0048 0.054 0.0055 0.059 0.0085 0.070 0.0031 0.042 0.0071 0.063 32.26%

Tr
af

fic

96 0.115 0.191 0.126 0.202 0.158 0.241 0.207 0.312 0.246 0.346 0.257 0.353 0.226 0.317 8.73%
192 0.118 0.204 0.129 0.208 0.154 0.236 0.205 0.312 0.266 0.370 0.299 0.376 0.314 0.408 8.53%
336 0.118 0.200 0.130 0.213 0.165 0.243 0.219 0.323 0.263 0.371 0.312 0.387 0.387 0.453 9.23%
720 0.146 0.237 0.142 0.226 0.182 0.264 0.244 0.344 0.269 0.372 0.366 0.436 0.491 0.437 \

E
le

ct
ri

ci
ty 96 0.195 0.304 0.203 0.315 0.310 0.398 0.253 0.370 0.341 0.438 0.484 0.538 0.288 0.393 3.94%

192 0.230 0.329 0.233 0.337 0.300 0.394 0.282 0.386 0.345 0.428 0.557 0.558 0.432 0.483 1.29%
336 0.266 0.360 0.268 0.364 0.323 0.413 0.346 0.431 0.406 0.470 0.636 0.613 0.430 0.483 0.75%
720 0.316 0.413 0.307 0.408 0.364 0.449 0.422 0.484 0.565 0.581 0.819 0.682 0.491 0.531 \

E
xc

ha
ng

e 96 0.095 0.232 0.155 0.288 0.099 0.240 0.154 0.304 0.241 0.387 0.591 0.615 0.237 0.377 4.04%
192 0.204 0.339 0.194 0.351 0.198 0.354 0.286 0.420 0.300 0.369 1.183 0.912 0.738 0.619 \
336 0.431 0.492 0.420 0.508 0.302 0.447 0.511 0.555 0.509 0.524 1.367 0.984 2.018 1.070 \
720 1.274 0.858 0.814 0.727 0.738 0.662 1.301 0.879 1.260 0.867 1.872 1.072 2.405 1.175 \

IL
I

24 0.630 0.627 0.726 0.681 0.674 0.671 0.708 0.627 0.948 0.732 5.282 2.050 3.607 1.662 6.53%
36 0.517 0.573 0.793 0.745 0.712 0.733 0.584 0.617 0.634 0.650 4.554 1.916 2.407 1.363 11.47%
48 0.621 0.640 0.886 0.815 0.823 0.803 0.717 0.697 0.791 0.752 4.273 1.846 3.106 1.575 13.39%
60 0.695 0.688 0.960 0.860 0.992 0.892 0.855 0.774 0.874 0.797 5.214 2.057 3.698 1.733 18.71%

Results∗ are from MICNWang et al. (2023); Other results are implemented by us.

C ERROR BARS EVALUATION

To evaluate the robustness of MPPN across different settings, we conduct experiments based on
three independent runs on ETTh1, Weather and Electricity. As depicted in Table 7, the standard
deviation (Std.) is basically no more than 3% of the mean values (Mean). These results highlight
the robustness of MPPN in the face of diverse initialization settings.

Table 7: The error bars of MPPN with 3 runs, input length I = 720 and output length O ∈
{96, 192, 336, 720} on ETTh1, Weather and Electricity.

Dataset Weather Electricity ETTh1

Metric Seed1 Seed2 Seed3 Mean Std. Seed1 Seed2 Seed3 Mean Std. Seed1 Seed2 Seed3 Mean Std.

O=96 MSE 0.1441 0.1459 0.1479 0.1460 0.0016 0.1311 0.1310 0.1312 0.1311 0.0001 0.3715 0.3773 0.3751 0.3746 0.0024
MAE 0.1969 0.1986 0.2030 0.1995 0.0026 0.2263 0.2262 0.2263 0.2263 0.0001 0.3931 0.3993 0.3974 0.3966 0.0026

O=192 MSE 0.1893 0.1899 0.1898 0.1897 0.0002 0.1460 0.1459 0.1460 0.1460 0.0001 0.4055 0.4117 0.4118 0.4097 0.0029
MAE 0.2404 0.2409 0.2418 0.2410 0.0006 0.2398 0.2399 0.2399 0.2399 0.0000 0.4135 0.4201 0.4208 0.4181 0.0033

O=336 MSE 0.2401 0.2406 0.2396 0.2401 0.0004 0.1621 0.1621 0.1618 0.1620 0.0001 0.4269 0.4505 0.4321 0.4365 0.0101
MAE 0.2814 0.2817 0.2808 0.2813 0.0004 0.2565 0.2567 0.2566 0.2566 0.0001 0.4257 0.4492 0.4327 0.4359 0.0099

O=720 MSE 0.3104 0.3105 0.3106 0.3105 0.0001 0.2005 0.2006 0.2007 0.2006 0.0001 0.4366 0.4518 0.4455 0.4446 0.0062
MAE 0.3332 0.3330 0.3346 0.3336 0.0007 0.2898 0.2898 0.2902 0.2900 0.0002 0.4528 0.4619 0.4571 0.4573 0.0037

D HYPERPARAMETER SENSITIVITY

D.1 INPUT LENGTH SELECTION

In this section, we evaluate the impact of input length on model performance, as presented in Table 8.
The experimental results indicate that the impact of input length on model performance varies across
different datasets. Due to the differences in granularity and periodicity among datasets, fine-tuning
the input length for each specific dataset is preferable over adopting a one-size-fits-all approach in
real-world applications. For example, in datasets with simple patterns like ETTm1, an input length
of 336 is sufficient to capture substantial information. But for datasets characterized by intricate
time series patterns, such as Electricity and Weather, a longer input length is required to extract
more comprehensive information that can effectively contribute to the prediction task. Besides, the
performances of MPPN exhibit a notable growth as the size of lookback window increases, which
highlights the strong temporal relation extraction capability of our method Zeng et al. (2023).
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Table 8: Multivariate long-term series results on Weather, Electricity and ETTm1 dataset with pre-
diction length 96, and input lengths I in {96, 192, 336, 720}. Four differnet variants of MPPN are
evaluated, with the best results highlighted in bold.

Dataset Weather Electricity ETTm1

Metric MSE MAE MSE MAE MSE MAE
I=96 0.174 0.220 0.189 0.268 0.339 0.368

I=192 0.158 0.206 0.144 0.237 0.301 0.343

I=336 0.150 0.201 0.136 0.231 0.287 0.335
I=720 0.144 0.196 0.131 0.226 0.304 0.351

D.2 MULTIPLE RESOLUTION SELECTION

To evaluate the impact of multiple resolutions on prediction performance, we select three sets of
distinct kernel sizes. The selection of different resolutions better aligns with the typical diurnal
rhythm of daily activities. For Electricity at an hourly granularity, we have chosen a convolutional
filter with a size of 6 to partition a day into “morning, afternoon, evening, and late night”. For
Weather at a 10-minute granularity, convolutional filters with sizes of 3 and 6 can be employed to
uncover patterns and variations in the temporal data at intervals of every half-hour or every hour. The
corresponding results are presented in Table 9. It can be seen from Table 9 that the first set of kernel
size enjoys the best performance across different scenarios for both Weather and Electricity. As a
consequence, we adopt [1, 3, 4, 6] as the default kernel sizes in our main experimental results for
the nine public datasets. In practice, the selection of the optimal resolution depends on the specific
application context, data granularity, and periodicity, which requires a case-by-case analysis.

Table 9: Multivariate long-term series prediction results on Weather and Electricity with input length
720 and prediction length in {96, 192, 336, 720}. Three different combinations of convolutional
kernel sizes are evaluated, with the best results highlighted in bold.

Multiple resolutions [1,3,4,6] [1,3,5,7] [2,4,6,8]

Metric MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.196 0.147 0.203 0.153 0.211

192 0.189 0.240 0.190 0.242 0.198 0.250
336 0.240 0.281 0.241 0.283 0.244 0.287
720 0.310 0.333 0.312 0.335 0.311 0.335

E
le

ct
ri

ci
ty 96 0.131 0.226 0.132 0.227 0.140 0.241

192 0.145 0.239 0.146 0.241 0.155 0.255
336 0.162 0.256 0.162 0.257 0.169 0.267
720 0.200 0.289 0.200 0.290 0.210 0.304

E ABLATION OF PATCHING

This ablation study investigates the effect of not using patches, using overlapped and non-overlapped
patches to the forecasting performance. In the case of overlapped patches, we set stride = 1 in
Conv1d of multi-resolution patching. From Table 10, the prediction performance of the Traffic
dataset experiences a significant decline when patches are not employed. Conversely, for the Elec-
tricity dataset, the impact of using or not using patches is minimal. This observation underscores
the distinctive sensitivity of datasets towards patches. As a result, the design of patching emerges
as an important factor in improving forecasting performance, as well as optimizing running time
and memory utilization. Notably, prediction results on the Electricity dataset exhibits better than
baseline models even without the utilization of patches, highlighting the effectiveness of the multi-
periodic pattern mining and channel adaptive module in MPPN. Besides, the MSE and MAE scores
show minimal variations between the models utilizing overlapped and non-overlapped patches. This
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Table 10: Ablation studies: multivariate long-term series results on Electricity and Traffic with input
length 720 and prediction lengths O in {96, 192, 336, 720}. Three variants of patching are evaluated,
with the best results highlighted in bold.

Patching Overlap Non-overlap w/o Patch

Metric MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.130 0.225 0.131 0.226 0.131 0.225

192 0.145 0.239 0.145 0.239 0.146 0.239
336 0.162 0.256 0.162 0.256 0.162 0.256
720 0.200 0.289 0.200 0.289 0.200 0.289

Tr
af

fic

96 0.386 0.270 0.387 0.271 0.414 0.305
192 0.397 0.272 0.396 0.273 0.457 0.341
336 0.410 0.280 0.410 0.279 0.457 0.336
720 0.459 0.315 0.449 0.301 0.509 0.363

observation highlights the insensitivity of our model to changes in patch configuration, thus attesting
to its robustness. It is advisable to flexibly select different patching methods based on the character-
istics of the dataset, which enables a more tailored and effective modeling of the specific dataset.

F SPATIAL AND TEMPORAL EMBEDDING

Table 11: Ablation studies: multivariate long-term series prediction results on Traffic, Weather and
Electricity with input length 720 and prediction length in {96, 192, 336, 720}. The original MPPN
together with four embedding approaches is compared, with the best results highlighted in bold.

Methods MPPN + L embedding +H embedding + L & H embedding + S & H embedding

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.387 0.271 0.426 0.314 0.423 0.312 0.397 0.288 0.410 0.300
192 0.396 0.273 0.433 0.312 0.414 0.295 0.406 0.287 0.424 0.308
336 0.410 0.279 0.438 0.315 0.416 0.287 0.419 0.294 0.421 0.298
720 0.449 0.301 0.467 0.326 0.478 0.336 0.457 0.316 0.454 0.312

W
ea

th
er 96 0.144 0.196 0.147 0.203 0.177 0.258 0.146 0.201 0.187 0.270

192 0.189 0.240 0.193 0.253 0.213 0.284 0.192 0.245 0.240 0.315
336 0.240 0.281 0.253 0.303 0.255 0.311 0.255 0.305 0.326 0.357
720 0.310 0.333 0.330 0.366 0.329 0.363 0.326 0.357 0.328 0.360

E
tth

1

96 0.371 0.393 0.395 0.417 0.391 0.415 0.387 0.410 0.397 0.421
192 0.405 0.413 0.429 0.435 0.438 0.440 0.421 0.431 0.436 0.439
336 0.426 0.425 0.453 0.453 0.460 0.456 0.469 0.463 0.470 0.462
720 0.436 0.452 0.484 0.487 0.495 0.498 0.511 0.508 0.491 0.496

In this section, we perform ablation studies on Traffic, Weather and Electricity dataset to investi-
gate the effect of different spatial and temporal embedding mechanisms: 1) L embedding: we add
time stamp encoding of the historical L-step input data (Month, Day, Weekday, Hour, etc.); 2) H
embedding: we add time stamp encoding of the H-step prediction output into MPPN; 3) L & H
embedding: we map the data at each time-step into a low dimensional vector both in the input and
the output. 4) S & H embedding: we consider spatial encoding for different channels of time series
after pattern extraction together with the H embedding. It can be observed from Table 11 that none
of the introduced spatio-temporal encoding mechanisms yields performance improvement for the
original MPPN. This indicates that time encoding may be not necessary for time series modeling, as
the multi-resolution and multi-period patterns extracted by MPPN could well capture the temporal
features of time series, thus enabling efficient and accurate long-term time series prediction.
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G SUPPLEMENTARY OF MAIN RESULTS

We plot the multivariate forecasting results of our MPPN and several baseline models on the ETTh1
and Weather dataset. All results are from the testing set for qualitative comparison. As depicted in
Figure 6-13, our model outperforms the baseline models, exhibiting superior performance in mod-
eling periodicity, short-term fluctuations, and long-term variations of time series. It demonstrates
remarkable proficiency in capturing the complex patterns inherent in temporal series data, show-
casing its effectiveness in accurately representing and analyzing diverse data characteristics over
different time resolutions.
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Figure 6: The prediction results on the ETTh1 dataset under the input-336-predict-96 settings.
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Figure 7: The prediction results on the ETTh1 dataset under the input-336-predict-192 settings.

18



Under review as a conference paper at ICLR 2024

0 100 200 300 400 500 600 700

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4 GroundTruth
Prediction

(a) MPPN

0 100 200 300 400 500 600 700

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4 GroundTruth
Prediction

(d) FEDformer

0 100 200 300 400 500 600 700

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4 GroundTruth
Prediction

(b) DLinear

0 100 200 300 400 500 600 700

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4 GroundTruth
Prediction

(e) Autoformer

0 100 200 300 400 500 600 700

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

GroundTruth
Prediction

(c) MICN

0 100 200 300 400 500 600 700

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00 GroundTruth
Prediction

(f) Informer

Figure 8: The prediction results on the ETTh1 dataset under the input-336-predict-336 settings.
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Figure 9: The prediction results on the ETTh1 dataset under the input-336-predict-720 settings.
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Figure 10: The prediction results on the Weather dataset under the input-336-predict-96 settings.
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Figure 11: The prediction results on the Weather dataset under the input-336-predict-192 settings.
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Figure 12: The prediction results on the Weather dataset under the input-336-predict-336 settings.
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Figure 13: The prediction results on the Weather dataset under the input-336-predict-720 settings.
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H LIMITATIONS AND FUTURE WORK

In this paper, we focus on extracting distinctive patterns to represent time series for long-term time
series forecasting. We adopt multi-resolution patching and periodic pattern mining mechanism to
explicitly extract the predictable patterns from time series data. Although MPPN can effectively
capture patterns (e.g., periodicity and trend) in historical time series, most real-world time series can
be very complex and influenced by various external factors, which may result in intricate patterns or
even previously unseen variations. For example, if a traffic accident occurs by chance on a certain
road causing traffic congestion, it will likely affect the speed of the road section; if extreme weather
disasters (such as earthquakes and hurricanes) suddenly occur in a certain area, they will greatly
affect the weather indicators. Sometimes, accidental events may also cause the peaks and valleys
of the time series to arrive earlier or later, such as a customer staying up late to watch a World Cup
game, resulting in a delay in electricity usage at home compared to historical baseline. Although
MPPN can quickly capture these variations from the data of lookback window, it is difficult to
foresee them.

In the future, we will consider how to capture the varying time series patterns and model the external
factors. We plan to introduce knowledge graph for incorporating the knowledge of external factors
to the prediction model. With the remarkable performance of foundation models in other fields,
we will further investigate the general patterns of time series and spatial-temporal series data and
construct task-general models to support multiple downstream time series analysis tasks. We believe
that this direction is a particularly intriguing and significant.
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