Under review as a conference paper at ICLR 2022

A TRAINING PROCEDURE

Training Algorithms. We pre-train the operation policy 7 with imitation learning (Ross et al.,
2011), minimizing the cross entropy between its action distributions with those of a shortest-path
oracle. We use advantage actor-critic (Mnih et al., 2016) to train the interaction policy 1)g. This
method simultaneously estimates an actor policy 1y : B — A(.A) and a critic function Vj, : B — R.
Given an execution 7 = (51,a1,¢1 -+ ,85), the gradients with respect to the actor and critic are

computed as follows

H

Vo Lactor = Z (V¢(B§) - Ct) Vo 1Og (o (dt | B?) (7
t=1
H — —

Vg Leitic = Z (Vo (b)) = Cr) VsV (b)) ®)
t=1

where C; = Zf:t cj, Bta is a belief state summarizes the partial execution 7y.; for the actor, and B;’
is a belief state for the critic.

Cost function. The cost function introduced in [§4.4]is not effective for learning the interaction
policy because the task error is given only at the end of an episode. We extend the reward-shaping
method proposed by |[Ng et al.| (1999) to goal-conditioned policies, augmenting the original cost
function with a shaping function ®(s, g) that measures the shortest-path distance from a location s
to a goal g. The cost received by the agent at time step ¢ is ¢; L2z + D(St41, gtr1) — P(st, 9¢). We
assume the agent transitions to and remains in a special terminal state Semm € S after it terminates
execution of the main goal. We set ®(sierm, None) = 0, where g, = None signals that the episode
has ended. Hence, the cumulative cost of an execution under this new cost function is

H H H
Zét = Zét + (5441, G1+1) — P(se, 9¢) = Z ¢ — ®(s1,01) 9
t=1 t=1 t=1
Since ®(s1, g1) does not depend on the action taken in s;, minimizing the new cumulative cost does
not change the optimal policy for the task (s1, g1).

Model Architecture. We adapt the V&L BERT architecture (Hong et al., [2020) for modeling the
operation policy 7. The model has two components: an encoder and a decoder; both are imple-
mented as Transformer models (with self-attention). The encoder takes as input a description d; or
dJ and generates a sequence of hidden vectors. In every step, the decoder takes as input the previous
hidden vector b;_,, the sequence of vectors representing d;, and the sequence of vectors represent-
ing df. It then performs self-attention on these vectors and computes the current hidden vector b3
and a probability distribution over navigation actions p;.

The representation of each object is computed as follows. Let frame, fhorz - fvert gdist and fype gre
the name, horizontal angle, vertical angle, distance, and type of a room or object f (a type is either
“room” or “object”). For simplicity, we discretize the feature values into 12 horizontal angles, 3
vertical angles, and 5 distances (by rounding down a real-valued distance to the nearest integer). For
a room, fhorz fyert fdist are zeroes. We lookup the embedding of each feature from an embedding
table and sum all the embeddings into a single vector that represents the corresponding room or
object.

During pre-training, we randomly drop room or object features in d§ or df so that the navigation
policy is familiar with making decision under incomplete information. Concretely, we define a
feature set as all features of an object or the room name feature. For dj, let M be the number objects
in a description. We keep m feature sets where m ~ Uniform(min(5, M), M). For df, we have two
cases. If g; is not within one node from s;, we uniformly randomly alternate between giving dense
and sparse descriptions. Otherwise, when g; is adjacent or equals to s, with a probability of /3, we
either give (a) a dense description (b) a (sparse) description that contains the goal room’s name and
the target object’s features, or (c) a (sparse) description that describes the next ground-truth action.

The interaction policy 1 is an LSTM-based recurrent neural network. The input of this model is
navigation policy outputs, b7 and p;, and the embedding of the previously taken action. The critic

12

Under review as a conference paper at ICLR 2022

Table 3: Dataset.

Split Number of examples
Pre-training 82,104
Pre-training validation 3,000
Training 65,133
Validation UNSEENSTR 1,901
Validation UNSEENOBJ 1,912
Validation UNSEENENV 1,967
Test UNSEENSTR 1,653
Test UNSEENOBIJ 1,913
Test UNSEENENV 1,777

Table 4: Hyperparameters.

Hyperparameter Value
Environment
Max. subgoal distance 3 nodes
Max. stack size 2
Max. object distance for dj 5 meters
Max. object distance for d 3 meters
Max. number of objects (for dense di and d}) 20
Cost of taking each CUR, GOAL, SUB, action 0.01
Operation policy 7
Hidden size 256
Number of hidden layers 2
Attention dropout probability 0.1
Hidden dropout probability 0.1
Number of attention heads 8
Optimizer Adam
Learning rate 1074
Batch size 32
Number of training iterations 10°
Maximum number of time steps 15
Interaction policy o
Hidden size 512
Number of hidden layers 1
Entropy regularization weight 0.001
Optimizer Adam
Learning rate 107°
Batch size 32
Number of training iterations 5 x 10*
Maximum number of time steps 30

model also has a similar architecture but outputs a real number (the V' value) rather than an action
distribution. When training the interaction policy, we always fix the parameters of the navigation
policy. We find it necessary to pre-train the critic policy before training it jointly with the actor
policy.

Data. See for a summary of the data splits. From a total of 72 environments provided
the Matterport3D dataset, we use 36 environments for pre-training, 18 as unseen during training, 11
for validation UNSEENENV, and 7 for test UNSEENENV. We use a vocabulary of size 1738, which
include object and room names, and special tokens for distances and directions. Each navigation
path in our dataset has from 5 to 10 nodes.

Hyperparameters. See

13

