
Under review as a conference paper at ICLR 2022

A TRAINING PROCEDURE

Training Algorithms. We pre-train the operation policy π̂ with imitation learning (Ross et al.,
2011), minimizing the cross entropy between its action distributions with those of a shortest-path
oracle. We use advantage actor-critic (Mnih et al., 2016) to train the interaction policy ψθ. This
method simultaneously estimates an actor policy ψθ : B̄ → ∆(Ā) and a critic function Vφ : B̄ → R.
Given an execution τ̄ = (s̄1, ā1, c̄1 · · · , s̄H), the gradients with respect to the actor and critic are
computed as follows

∇θLactor =

H∑
t=1

(
Vφ(b̄vt )− Ct

)
∇θ logψθ(āt | b̄at ) (7)

∇φLcritic =

H∑
t=1

(
Vφ(b̄vt )− Ct

)
∇φVφ(b̄vt ) (8)

where Ct =
∑H
j=t cj , b̄

a
t is a belief state summarizes the partial execution τ1:t for the actor, and b̄vt

is a belief state for the critic.

Cost function. The cost function introduced in § 4.4 is not effective for learning the interaction
policy because the task error is given only at the end of an episode. We extend the reward-shaping
method proposed by Ng et al. (1999) to goal-conditioned policies, augmenting the original cost
function with a shaping function Φ(s, g) that measures the shortest-path distance from a location s
to a goal g. The cost received by the agent at time step t is c̃t , c̄t + Φ(st+1, gt+1)−Φ(st, gt). We
assume the agent transitions to and remains in a special terminal state sterm ∈ S after it terminates
execution of the main goal. We set Φ(sterm, None) = 0, where gt = None signals that the episode
has ended. Hence, the cumulative cost of an execution under this new cost function is

H∑
t=1

c̃t =

H∑
t=1

c̄t + Φ(st+1, gt+1)− Φ(st, gt) =

H∑
t=1

c̄t − Φ(s1, g1) (9)

Since Φ(s1, g1) does not depend on the action taken in s1, minimizing the new cumulative cost does
not change the optimal policy for the task (s1, g1).

Model Architecture. We adapt the V&L BERT architecture (Hong et al., 2020) for modeling the
operation policy π̂. The model has two components: an encoder and a decoder; both are imple-
mented as Transformer models (with self-attention). The encoder takes as input a description dst or
dgt and generates a sequence of hidden vectors. In every step, the decoder takes as input the previous
hidden vector bst−1, the sequence of vectors representing dst , and the sequence of vectors represent-
ing dgt . It then performs self-attention on these vectors and computes the current hidden vector bst
and a probability distribution over navigation actions pt.

The representation of each object is computed as follows. Let f name, f horz, f vert f dist, and f type are
the name, horizontal angle, vertical angle, distance, and type of a room or object f (a type is either
“room” or “object”). For simplicity, we discretize the feature values into 12 horizontal angles, 3
vertical angles, and 5 distances (by rounding down a real-valued distance to the nearest integer). For
a room, f horz, f vert f dist are zeroes. We lookup the embedding of each feature from an embedding
table and sum all the embeddings into a single vector that represents the corresponding room or
object.

During pre-training, we randomly drop room or object features in dst or dgt so that the navigation
policy is familiar with making decision under incomplete information. Concretely, we define a
feature set as all features of an object or the room name feature. For dst , letM be the number objects
in a description. We keepm feature sets wherem ∼ Uniform(min(5,M),M). For dst , we have two
cases. If g1 is not within one node from s1, we uniformly randomly alternate between giving dense
and sparse descriptions. Otherwise, when g1 is adjacent or equals to s1, with a probability of 1⁄3, we
either give (a) a dense description (b) a (sparse) description that contains the goal room’s name and
the target object’s features, or (c) a (sparse) description that describes the next ground-truth action.

The interaction policy ψθ is an LSTM-based recurrent neural network. The input of this model is
navigation policy outputs, bst and pt, and the embedding of the previously taken action. The critic

12



Under review as a conference paper at ICLR 2022

Table 3: Dataset.

Split Number of examples

Pre-training 82,104
Pre-training validation 3,000
Training 65,133
Validation UNSEENSTR 1,901
Validation UNSEENOBJ 1,912
Validation UNSEENENV 1,967
Test UNSEENSTR 1,653
Test UNSEENOBJ 1,913
Test UNSEENENV 1,777

Table 4: Hyperparameters.

Hyperparameter Value

Environment
Max. subgoal distance 3 nodes
Max. stack size 2
Max. object distance for dst 5 meters
Max. object distance for dgt 3 meters
Max. number of objects (for dense dst and dgt ) 20
Cost of taking each CUR, GOAL, SUB, action 0.01

Operation policy π̂
Hidden size 256
Number of hidden layers 2
Attention dropout probability 0.1
Hidden dropout probability 0.1
Number of attention heads 8
Optimizer Adam
Learning rate 10−4

Batch size 32
Number of training iterations 105

Maximum number of time steps 15

Interaction policy ψθ
Hidden size 512
Number of hidden layers 1
Entropy regularization weight 0.001
Optimizer Adam
Learning rate 10−5

Batch size 32
Number of training iterations 5× 104

Maximum number of time steps 30

model also has a similar architecture but outputs a real number (the V value) rather than an action
distribution. When training the interaction policy, we always fix the parameters of the navigation
policy. We find it necessary to pre-train the critic policy before training it jointly with the actor
policy.

Data. See Table 3 for a summary of the data splits. From a total of 72 environments provided
the Matterport3D dataset, we use 36 environments for pre-training, 18 as unseen during training, 11
for validation UNSEENENV, and 7 for test UNSEENENV. We use a vocabulary of size 1738, which
include object and room names, and special tokens for distances and directions. Each navigation
path in our dataset has from 5 to 10 nodes.

Hyperparameters. See Table 4.

13


