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ABSTRACT

We consider a parking permit problem with three permit types. We propose a
randomized primal-dual algorithm, and a learning-augmented modification for it.
We prove consistency and robustness bounds for this modification.

1 INTRODUCTION

Online algorithms make decisions using only the information available at the moment, without being
able to account for information revealed later. Because of this uncertainty the algorithms are usually
analysed for the worst-case scenario, resulting in pessimistic quality metrics.

In the last decade studies have used machine-learning based predictions to improve online algo-
rithms’ quality. This new approach is made possible with the latest achievements of artificial intelli-
gence and machine learning methods, enabling predictions of input data for optimization problems.
This additional information can improve online algorithms, as is evident with semi-online algo-
rithms. However, semi-online algorithms assume total correctness of this additional data. This
assumption often cannot be achieved in practice. On the opposite, predictions are rarely guaranteed
to be correct. Thus, prediction accuracy should not be relied upon when designing prediction-
augmented algorithms. The algorithms are instead required to be consistent and robust, i.e. - if the
prediction is close to accurate, the found solution must be ”close” to either the best offline solution or
to the optimal solution, - if the prediction is arbitrarily inaccurate, found solution should be ”close”
to the classic online solution.

The difficulty in designing such an algorithm arises in finding a balance between these qualities. Fol-
lowing the prediction blindly can lead to a bad solution. On the other hand, if the algorithm doesn’t
trust the prediction at all, it cannot benefit from a good prediction. This approach was first described
in Lykouris & Vassilvitskii (2021) and Medina & Vassilvitskii (2017), where such algorithms were
named ”learning-augmented” or ”prediction-augmented”. Similar algorithms were later developed
for other combinatorial optimization problems, such as the ski rental problem Angelopoulos et al.
(2020); Gollapudi & Panigrahi (2019); Kumar et al. (2018); Wang et al. (2020), scheduling problems
Kumar et al. (2018); Bamas et al. (2020); Bampis et al. (2022); Evripidis et al. (2023); Lindermayr
& Megow (2022); Wei & Zhang (2020) and many others.

Our paper considers the parking permit problem, which was first proposed in Meyerson (2005), and
is a generalization of the ski rental problem. We propose a randomized primal-dual algorithm for the
restricted version of the problem with three permit types, and present a bound for its’ competitive
ratio. We also propose parametrized learning-augmented algorithms with two prediction types, and
show the consistency and robustness bounds.

1.1 PROBLEM DEFINITION

We consider the following problem, denoted as P3. There are three parking permit types. For permit
type k, k = 1..3 its cost Ck and duration Dk are known. For each k the entire time interval of the
problem consists of disjoint intervals of length Dk. Permit is only valid during the time interval it
was purchased on. W.l.o.g. we suppose that

• C1 = 1, D1 = 1,
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• C2 = B,D2 = d, we designate this time interval as a ”week”,

• C3 = A,D3 = nd, we designate this time interval as a ”year”.

The schedule consists of days, some of which are marked as rainy. The days are revealed to the
algorithm one at a time. If the new day is rainy and no purchased permit covers it, algorithm must
choose, which type of permit to purchase. Purchased permits cannot be refunded. Algorithm has to
find the set of permits with the minimum total cost.

An instance I of the problem P3 is defined by concrete values of A,B, d, n and the schedule of
rainy days. Denote the cost of algorithm’s solution with ALG(I) and the cost of optimal solution
with OPT (I) for the instance I . Value R(A) = max

I
(ALG(I)
OPT (I) ) is called the competitive ratio of the

algorithm.

1.2 PREDICTION MODEL

In our work,we consider a new prediction model. At the start the algorithm is advised, whether
it should buy the year-long permit. At the start of each week the algorithm is advised, whether it
should buy the permit covering this week. We denote the entire set of these advice as the prediction
Π. Thus, if the prediction is perfectly accurate, we can compute the cost of optimal solution of
instance I of the problem P3. As this cost depends on the prediction, we denote it as c(Π).

If for any instance I and any prediction Π

ALG(I,Π)

OPT (I)
≤ β,

we say that the algorithm is β-robust.

If for any instance I and any prediction Π

ALG(I,Π)

c(Π)
≤ σ,

we say that the algorithm is σ-consistent.

The consistency and robustness have the following intuitive interpretation. A consistent algorithm
finds an approximation for the solution of the predicted schedule, and if the schedule was predicted
correctly, the algorithm approximates the optimal solution well. Robustness is independent of the
prediction, and guarantees the algorithm will approximate the optimal solution regardless of predic-
tion errors.

1.3 RELATED WORK

The ski rental problem requires you to decide whether to pay a small fee to rent skis on the current
day or buy skis and ski on them on subsequent days. Unfortunately, you don’t know how long
you’ll be skiing. It depends on the weather, health and a host of other circumstances. Thus, you
are faced with the simplest online problem, first mentioned by Rudolph in the context of the work
on competitive snoopy caching. By applying a simple rule: buy skis when the rental cost reaches
the cost of the skis, we guarantee a 2-approximation solution in the worst case. This rule represents
the best possible deterministic strategy. A randomized e

e−1 -competitive algorithm was proposed in
Karlin et al. (1994).

Due to the simplicity and universality of the ski rental problem, various formulations with predic-
tions are intensively studied for it Bamas et al. (2020); Gollapudi & Panigrahi (2019); Kodialam
(2019); Kumar et al. (2018); Wang et al. (2020). Note that in our work we use an approach based on
the construction of a primal-dual algorithm proposed for online problems with predictions in Bamas
et al. (2020).

The ski rental problem allows for many direct generalizations: the multi-shop ski rental problem
et al. (2023), the parking permit problem Meyerson (2005), the Bahncard problem Fleicher (2001).
In addition, the issue of renting or buying is key for such complex online problems as snoopy cashing
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Karlin et al. (1988; 1994), TCP acknowledgmentBuchbinder et al. (2007), total completion time
scheduling Seiden (2000) and others.

In this paper, we consider the parking permit problem proposed by Meyerson Meyerson (2005). In
his paper, Meyerson considered the problem with k types of permits and presented k-competitive
deterministic and O(log k)-competitive randomized online algorithms. He also proved that an ar-
bitrary deterministic algorithm has a competitive ratio of at least k/3, and an arbitrary randomized
algorithm has a competitive ratio of at least (log k)/2. Note that these results do not provide a
reasonable lower bound on the competitive ratio for small values of k. For k = 3, Kharchenko &
Kononov (2024) showed that no deterministic algorithm can obtain a competitive ratio of less than
3 and presented a parameterized deterministic prediction-augmented algorithm.

2 A PRIMAL-DUAL ONLINE ALGORITHM

In this section we present a randomized algorithm for P . The algorithm is based on the primal-dual
approach. For each day the algorithm computes fractional values x, yi, zij , that correspond to the
probabilities of purchasing respective permit types on this day. Then a random value q is obtained
from the uniform distribution on [0, 1]. If q is in [0, x], the year-long permit is purchased. If q is in
(x, x + yi], the week-long permit is purchased. Else the day-long permit is purchased. Buchbinder
et al. (2007) shows that the expected cost of the solution constructed with this procedure is equal to
the cost of the fractional solution.

To apply the primal-dual method we formulate the parking permit problem with 3 permit types as a
linear programming problem. Let D denote the set of pairs (i, j), where j is the number of a rainy
day in the i-th week.

The linear programming problem is formalized as follows:

Ax+B

n∑
i=1

yi +
∑

(i,j)∈D

zij → min (1)

x+ yi + zij ≥ 1 ∀(i, j) ∈ D (2)
x ≥ 0, yi ≥ 0, zij ≥ 0 (3)

The dual problem is formalized as follows∑
(i,j)∈D

ξij → max (4)

∑
(i,j)∈D

ξij ≤ A (5)

∑
j|(i,j)∈D

ξij ≤ B ∀i (6)

0 ≤ ξij ≤ 1 ∀(i, j) ∈ D (7)

Denote eT (α) = (1 + 1
T )αT . Note that when T increases, eT (α) appoaches eα from below.

Algorithm 1 is a primal-dual algorithm, which is a modification of the algorithm for the ski rental
problem presented in Buchbinder et al. (2007). The algorithm starts with a zero solution to the
primal problem. Each new rainy day (i, j) ∈ D adds a new constraint x+ yi + zij ≥ 1. To satisfy
this constraint, the algorithm updates the primal and dual variables in such a way as to keep the ratio
between the objective function values of the primal and dual problems as small as possible.
Theorem 1. Algorithm 1 is 1 + 1

(eA(1)−1) + 1
(eB(1)−1) -competitive.

Proof. On each update the primal solution is feasible by definition of zij . Suppose the dual solution
is not feasible. We will show that the restrictions (5), (6) are satisfied. Suppose that∑

(i,j)∈D

ξij > A.
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Algorithm 1 The primal-dual online algorithm
1: x← 0, yi ← 0, zij ← 0
2: if schedule is empty then
3: return x, yi, zij as the fractional solution.
4: end if
5: Reveal the next rainy day (i, j) ∈ D.
6: if x < 1 and yi < 1− x: then (denote the following procedure as ”updating x, yi, zij”)
7: x← (1 + 1

A )x+ 1
(eA(1)−1)A

8: ŷi ← (1 + 1
B )yi + 1

(eB(1)−1)B

9: yi ← ŷi(1− x)
10: zij ← 1− x− yi
11: ξij ← 1
12: end if

It is only possible after at least A+ 1 updates of x. Note that after A updates

x =
1

(eA(1)− 1)A

A−1∑
k=0

(
1 +

1

A

)k
=

1

(eA(1)− 1)A
·

(1 + 1
A )A − 1

(1 + 1
A )− 1

= 1.

Thus, update number A+ 1 is not performed, as x is not less than 1, which leads to a contradiction.
Similarly, for any i = 1, . . . , n, ∑

j|(i,j)∈D

ξij ≤ B.

Thus, the dual solution is feasible.

Denote the value of target function for the primal problem as P, for the dual problem – as D. At
the start of the algorithm both of these values are zero. Suppose the algorithm has just processed an
arbirary rainy day. Let ∆P,∆D be the increments of target function for primal and dual problem
respectively. We will find a bound for ∆P

∆D .

∆P

∆D
≤ ∆P = A

(
x

A
+

1

(eA(1)− 1)A

)
+B

(
yi
B

+
1

(eB(1)− 1)B

)
+ zij =

= x+ yi + zij +
1

(eA(1)− 1)
+

1

(eB(1)− 1)
=

= 1 +
1

(eA(1)− 1)
+

1

(eB(1)− 1)
. (8)

Since the cost of a feasible solution of the dual problem is a lower bound for the cost of the optimal
solution of the primal problem, we get R ≤ 1 + 1

(eA(1)−1) + 1
(eB(1)−1) .

Remark 1. Note that for A ≥ 4 and B ≥ 2 we get R < 2.5,, and by increasing A and B the value
of R tends to e+1

e−1 ≈ 2.16. If A ≤ 4 and B ≤ 2 a deterministic 2-competitive algorithm can be
derived easily.

3 PREDICTION-AUGMENTED PRIMAL-DUAL ALGORITHM

Suppose that the algorithm receives binary values P3, P
i
2 and real-valued parameters λ, µ ∈ (0, 1].

W.l.o.g. we assume that λA, λB, Aλ and B
µ are integer numbers.

If P3 = 1, the prediction expects the year to be rainy, and the algorithm will increment x faster. In
the opposite case x is incremented slower. The week permit variables yi similarly depend on the
prediction. The values λ and µ reflect the degree of mistrust regarding the yearly and the weekly
predictions correspondingly. Raising these values makes the algorithm more robust to prediction
mistakes, but makes less use of the provided information.
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We begin the algorithm description by introducing two procedures. The first procedure is used if the
year is predicted to be rainy, the other is used if the prediction doesn’t recommend buying year-long
permit.

Additionally, the first procedure uses counters φ and νi, i = 1, . . . , n to keep track of rainy days for
the year and the current week respectively.

Algorithm 2 ”Rainy year” procedure

1: x← 0, yi ← 0, ŷi ← 0, zij ← 0, ξij ← 0 φ← 0, νi ← 0 ∀i, j
2: if schedule is empty then
3: return x, yi, zij as fractional solution.
4: end if
5: Reveal new rainy day (i, j) ∈ D. . Denote the following steps as ”variables update”
6: if P i2 = 1 then
7: if x < 1 and νi < B then
8: x← (1 + 1

A )x+ 1
(eA(λ)−1)A

9: ξij ← 1
10: φ← φ+ 1
11: νi ← νi + 1
12: if yi < 1− x and λA− φ > B − νi then
13: ŷi ← (1 + 1

B )ŷi + 1
(eB(µ)−1)B

14: end if
15: end if
16: end if
17: if P i2 = 0 and x < 1 then
18: if yi < 1− x then
19: ŷi ← (1 + 1

B )ŷi + 1
(eB( 1

µ )−1)B

20: ξij ← µ
21: end if
22: end if
23: yi ← ŷi(1− x)
24: zij ← 1− x− yi
25: Go to step 2.

Note that the ”Rainy day” procedure increases year-long purchase probability x on each rainy week,
even if x+ yi = 1. This can be interpreted as confirming the year-long prediction.

The λA− φ ≥ B − νi test in line 13 of the ”Rainy day” procedure allows to skip increasing ŷi( and
consequently yi) if x reaches 1 before ŷi reaches 1. Intuitively, if the algorithm is ”set on” buying
the year-long permit, it stops considering weekly permits, keeping fractional cost low.

Let β = max{1 + 1
eA(λ)−1 + 1

eB(µ)−1 ,
1
µ · [1 + 1

(eA(λ)−1) + 1
(eB(1/µ)−1) ],

1
λ · [1 + 1

(eA(1/λ)−1) + 1
(eB(µ)−1) ], 1

λµ · [1 + 1
(eA(1/λ)−1) + 1

(eB(1/µ)−1) ]}.

Let γ = max{ µ
1−eB(−µ) + λ

1−eA(−λ) , λ(1 + 1
eA(λ)−1 ) + λµ

1−eB(−µ)}.

Theorem 2. The described algorithm obtains a fractional solution with cost not greater than
min{β · OPT (I), γ · c(Π)}. There OPT (I) denotes the cost of optimal solution for the given
problem instance, c(Π) denotes the cost of predicted solution.

Proof. We will show that both the primal and dual solutions are feasible. The primal solution is
feasible by definition of zij . Suppose that the dual solution is not feasible. Consider possible
restriction violations.
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Algorithm 3 ”Clear year” procedure

1: x← 0, yi ← 0, zij ← 0, ŷi ← 0, ξij ← 0 ∀i, j
2: if schedule is empty then
3: return x, yi, zij as fractional solution.
4: end if
5: Reveal new rainy day (i, j) ∈ D. . Denote the following steps as ”variables update”
6: if x < 1 and yi < 1− x then:
7: x← (1 + 1

A )x+ 1
(eA( 1

λ )−1)A

8: ξij ← λ
9: if P i2 = 1 then

10: ŷi ← (1 + 1
B )ŷi + 1

(eB(µ)−1)B

11: else
12: ŷi ← (1 + 1

B )ŷi + 1
(eB( 1

µ )−1)B

13: ξij ← µξij
14: end if
15: yi ← ŷi(1− x)
16: end if
17: zij ← 1− x− yi
18: Go to step 2.

Algorithm 4 Primal-dual prediction-augmented algorithm

1: if P3 = 1 then
2: Execute ”Rainy year” procedure
3: else
4: Execute ”Dry year” procedure
5: end if

1. Suppose that P3 = 1. After λA updates of x

x =
1

(eA(λ)− 1)A

λA−1∑
k=0

(
1 +

1

A

)k
=

=
1

(eA(λ)− 1)A
·

(1 + 1
A )λA − 1

(1 + 1
A )− 1

= 1. (9)

If x = 1 the conditions in lines 7 and 17 of the ”Rainy day” procedure are not satisfied
and there are no more variable updates. Each update of x increments the sum

∑
(i,j)∈D

ξij at

most by 1. Thus,
∑

(i,j)∈D ξij ≤ A.

Suppose that P3 = 0. By reasoning similar to (9), x reaches 1 after Aλ updates. Each update
increases

∑
(i,j)∈D

ξij by at most λ. Thus
∑

(i,j)∈D ξij ≤ A. and the restriction (5) of the

dual problem is satisfied.

2. Suppose that for some i the condition (6) is violated, i.e.∑
j|(i,j)∈D

ξij > B.

Suppose that P i2 = 1. If the year is rainy, then, due to the condition νi < B on line 7 of the
”Rainy day” procedure, at most B variables ξij reach 1 and

∑
j|(i,j)∈D ξij ≤ B.

Suppose that P i2 = 1 and P3 = 0. After µB updates of yi we get
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ŷi =
1

(eB(µ)− 1)B

µB−1∑
k=0

(
1 +

1

B

)k
=

=
1

(eB(µ)− 1)B
·

(1 + 1
B )µB − 1

(1 + 1
B )− 1

= 1. (10)

Thus, after µB updates yi = ŷi(1 − x) = 1 − x and there are no more variable updates.
Each update increases

∑
j|(i,j)∈D

ξij by at most λ, λ ≤ 1, thus the sum is less than or equal

to B.

Suppose that P i2 = 0. With reasoning similar to (10), we get that yi reaches 1− x after Bµ
updates. Each update increases

∑
j|(i,j)∈D

ξij by at most µ. Thus,
∑
j|(i,j)∈D ξij ≤ B and

the restriction (6) of the dual problem is satisfied.

Thus, the dual solution is feasible. Similar to 1 denote primal and dual increments by ∆P,∆D.
Consider possible increment combinations.

1. P3 = 1, P i2 = 1

∆P

∆D
≤ ∆P = A

(
x

A
+

1

(eA(λ)− 1)A

)
+B

(
yi
B

+
1

(eB(µ)− 1)B

)
+ zij =

= 1 +
1

eA(λ)− 1
+

1

eB(µ)− 1
= β1 (11)

2. P3 = 1, P i2 = 0

∆P

∆D
≤ ∆P

µ
≤ 1

µ
·
[
A

(
x

A
+

1

(eA(λ)− 1)A

)
+B

(
yi
B

+
1

(eB(1/µ)− 1)B

)
+ zij

]
=

=
1

µ
·
[
1 +

1

(eA(λ)− 1)
+

1

(eB(1/µ)− 1)

]
= β2 (12)

3. P3 = 0, P i2 = 1

∆P

∆D
≤ ∆P

λ
≤ 1

λ
·
[
A

(
x

A
+

1

(eA(1/λ)− 1)A

)
+B

(
yi
B

+
1

(eB(µ)− 1)B

)
+ zij

]
=

=
1

λ
·
[
1 +

1

(eA(1/λ)− 1)
+

1

(eB(µ)− 1)

]
= β3 (13)

4. P3 = 0, P i2 = 0

∆P

∆D
≤ ∆P

λµ
≤ 1

λµ
·
[
A

(
x

A
+

1

(eA(1/λ)− 1)A

)
+B

(
yi
B

+
1

(eB(1/µ)− 1)B

)
+ zij

]
=

=
1

λµ
·
[
1 +

1

(eA(1/λ)− 1)
+

1

(eB(1/µ)− 1)

]
= β4 (14)

For each algorithm defined by λ and µ the robustness is bounded by the maximum of βi, i = 1..4.
The following image displays the maximum of the values for each λ, µ pair.

We will now present the consistency bound. We suppose that the prediction is correct for the sched-
ule. Suppose that P3 = 1. Denote the number of rainy weeks before buying year-long permit as
r0, the number of rainy days before buying year-long permit and not included in any rainy week as
d0. Since x reaches or exceeds 1 after λA updates, and each rainy week causes exactly B updates,

7



Under review as a conference paper at ICOMP 2024

Figure 1: Robustness bound for given λ, µ

λA = r0B + d0. Each rainy week i caused µB updates of yi. Thus, the cost added by updates of yi
is equal to

µr0B

(
1 +

1

eB(µ)− 1

)
+ d0

(
1 +

1

eB( 1
µ )− 1

)
= r0B

(
µeB(µ)

eB(µ)− 1

)
+ d0

(
eB( 1

µ )

eB( 1
µ )− 1

)

Bamas et al. (2020) shows, that 1 + 1
eB(1/µ)−1 ≤

µ
1−eB(−µ) . Note also that µeB(µ)

eB(µ)−1 <
eB( 1

µ )

eB( 1
µ )−1

and µ < 1. Thus

r0B

(
µeB(µ)

eB(µ)− 1

)
+ d0

(
eB( 1

µ )

eB( 1
µ )− 1

)
≤ (r0B + d0)

µ

1− eB(−µ)
≤ µλA

1− eB(−µ)
.

Now we consider the cost added by the updates of x. As noted before, λA updates are performed,
each increasing the cost by 1 + 1

eA(λ)−1 .

Since P3 = 1 implies the optimal cost of A, we get

R ≤ λ
(

1 +
1

eA(λ)− 1

)
+

λµ

1− eB(−µ)
.

Now suppose that P3 = 0. Similarly let r0 be the number of rainy weeks, d0 the number of rainy
days during clear weeks. The optimal solution costs r0B + d0. Similarly to the previous step, the
cost added by updates of yi is not greater than (r0B+d0) µ

1−eB(−µ) . Variable x is updated r0B+d0

times, each time increasing the cost by 1 + 1
eA( 1

λ )−1
≤ λ

1−eA(−λ) . Thus,

R ≤ µ

1− eB(−µ)
+

λ

1− eA(−λ)

The consistency bound of the algorithm is not greater than max{ µ
1−eB(−µ) + λ

1−eA(−λ) , λ(1 +
1

eA(λ)−1 ) + λµ
1−eB(−µ)}.

4 CONCLUSIONS

In this work, we presented a randomized primal-dual algorithm, and a randomized learning-
augmented primal-dual algorithm for the parking permit problem with three types of permits. We
showed that the randomized primal-dual algorithm is a R-competitive, where R < 2.5 and tends
to e+1

e−1 as the costs A and B increase. We also obtained consistency and robust bounds for the
randomized learning-augmented primal-dual algorithm.
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