
Appendix

A Pseudocode for AdaOPS

Algorithm 7 AdaOPS

Input:
bel: Initial belief.
ξ: The parameter for adjusting the desired
gap between upper and lower bounds at the
root.
δ: The δ-packing of beliefs will be generated.
mmin: The minimum number of particles for
approximating beliefs.
D: The maximum depth of the belief tree.
t: The planning time allowance per step.

1: b← bel
2: while True do
3: a∗ ← PLANNING(b)
4: Execute action a∗
5: Receive observation o
6: Update the belief b with a∗ and o

7: function PLANNING(b0)
8: b̄0 ← KLD-SAMPLING(b0)
9: while time permitting, l(b̄0) < u(b̄0) do

10: b̄← b̄0
11: while depth(b̄) < D do
12: if b̄ is a leaf node then
13: EXPAND(b̄)
14: BACKUP(b̄)
15: if current branch is subopti-

mal or EU(b̄) ≤ 0 then
16: break
17: end if
18: a∗ ← arg maxa∈A u(b̄, a)
19: o∗ ← arg maxo∈Ob̄,a p̂(o |

b̄, a)EU(τ(b̄, a∗, o))

20: b̄← τ(b̄, a∗, o∗)

21: if depth(b̄) ≥ D then
22: u(b̄)← l(b̄)

23: return arg maxa∈A l(b̄0, a)

24: function EXPAND(b̄)
25: if |b̄|/ESS(b̄) > µ then
26: b̄← KLD-SAMPLING(b̄)

27: for a ∈ A do
28: Bb̄,a, Rb̄,a, p̂(·)← PROPAGATE(b̄, a)
29: Pb̄,a ← GENERATEPACKING(Bb̄,a, p̂(·))
30: Expand action node a

31: Expand beliefs in Pb̄,a as child beliefs
of a

32: function BACKUP(x)
33: for all b̄, a∗ from x to the root do
34: Update u(b̄, a∗), l(b̄, a∗), u(b̄), l(b̄)

by Equation (4)

35: function KLD-SAMPLING(b̄)
36: Count the number of bins with support

for belief b̄
37: Calculate N using Equation (2)
38: Sample N particles in belief b̄

39: function PROPAGATE(b̄, a)
40: O ← ∅, B ← ∅, R← 0, p̂(·)← 0

41: Initialize b̃ as an empty weighted particle
collection

42: for (w, s) ∈ b̄ do
43: s′, o, r ← G(s, a)

44: b̃← b̃ ∪ {(w, s′)}, O ← O ∪ {o}
45: R← R+ wr
46: p̂(o)← p̂(o) + w

47: for o ∈ O do
48: Initialize b̄′ as an empty weighted par-

ticle collection
49: ρ =

∑
(w,s′)∈b̃ wZ(o | s′, a)

50: for (w, s′) ∈ b̃ do
51: b̄′ ← b̄′ ∪ {wZ(o | s′, a)/ρ, s′}
52: B ← B ∪ {(o, b̄′)}
53: return B,R, p̂

54: function GENERATEPACKING(B, p̂)
55: P ← ∅
56: for (o, b̄) ∈ B do
57: covered← false
58: for (o′, b̄′) ∈ P do
59: if ||b̄′ − b̄||1 ≤ δ then
60: p̂(o′)← p̂(o′) + p̂(o)
61: p̂(o)← 0
62: covered← true
63: break
64: if not covered then
65: P ← P ∪ {(o, b̄)}
66: return P

13

B Bounds Initialization

Since AdaOPS maintains an approximation for all belief nodes it expanded, it can utilize all kinds of
value approximation techniques to initialize its upper and lower bounds. This paper takes the simplest
choice, fixed strategy approximation for lower bounds and the QMDP [29] or MDP approximation
for upper bounds.

Lower Bound Initialization The blind policy is a policy that takes the same action regardless of
the observations it receives. A blind policy approximation can be represented as |A| alpha vectors,

αa(s) = R(s, a) + γ
∑
s′∈S

T (s′ | s, a)αa(s′),

where αa is the alpha vector corresponds to action a. With these alpha vectors, l(b̄) =
arg maxa∈A

∑
s∈S b̄(s)αa(s) constitutes a value lower bound for belief b̄. Fixed action policy

simplifies the blind policy comprising only one alpha vector αa. It provides a lower bound,
l(b̄) =

∑
s∈S b̄(s)αa(s). Similarly, a random policy can also be represented as an alpha vector,

αrand(s) =
1

|A|
∑
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)αrand(s′)

)
.

Upper Bound Initialization The MDP approximation assumes full observability and can be
described by an alpha vector,

αMDP(s) = max
a∈A

(
R(s, a) + γ

∑
s∈S

T (s′ | s, a)αMDP(s′)

)
.

The QMDP [29] approximation assumes the full observability after the first step and is represented
by a set of |A| alpha vectors,

αa(s) = R(s, a) + γ
∑
s∈S

T (s′ | s, a) max
a′∈A

αa
′
(s′),

where αa is the QMDP alpha vector corresponding to action a.

C Theoretical Analysis

C.1 Termination

The particle number given by KLD-Sampling is bounded because the number of multidimensional
bins is finite. According to Alg. 2, in each exploration, at least one leaf node will be expanded.
Moreover, the overall size of the belief tree is O((|A|min(P δmax, Nmax))D), where Nmax is the
maximum sample size given by KLD-Sampling, P δmax = supb,a P

δ(Yb,a), and Yb,a is the set of
reachable beliefs after executing action a at belief b. The tree size is limited since Nmax is finite.
Thus, we have the conclusion that AdaOPS is guaranteed to terminate.

When the algorithm terminates, as indicated by Equation (3), it is guaranteed that the gap at the root
is 0. Since the upper and lower bounds are equal, we denote the value at a belief node b̄ as Ṽ ∗(b̄).

C.2 Convergence

Lemma 1. By assigning the same set of N samples different weights, we get b̄(s) =
∑N
i=1 wiI(s =

si) and b̄′(s) =
∑N
i=1 w

′
iI(s = si) approximating beliefs b and b′. The weights are normalized,

i.e.,
∑N
i=1 wi =

∑N
i=1 w

′
i = 1. There exist bounded functions α and α′ such that V ∗(b) =∫

α(s)b(s) ds, and V ∗(b′) =
∫
α′(s)b′(s) ds. Supposing that ‖b̄ − b̄′‖1 =

∑N
i=1 |wi − w′i| ≤ δ,

|V ∗(b)−
∑N
i=1 wiα(si)| ≤ λ, and |V ∗(b′)−

∑N
i=1 w

′
iα
′(si)| ≤ λ, it follows that

|V ∗(b)− V ∗(b′)| ≤ 2λ+
Rmax

1− γ
δ. (8)

14

Proof. First, we will demonstrate that the value of any belief can be formulated as an integral. The
optimal value of belief b can be written as

V ∗(b) = max
a

Q∗(b, a) = max
a

∫
(R(s, a) + γV∗(s, b, a)) b(s) ds

=

∫
α(s)b(s) ds,

(9)

where α(s) = R(s, a∗) + γV∗(s, b, a∗), a∗ is the optimal action, and

V∗(s, b, a) =

∫
S

∫
O
V ∗(τ(b, a, o))Z(o|a, s′)T (s′|s, a) ds′ do. (10)

It is worth noting that α is bounded by Rmax

1−γ .

Hence, we can write V ∗(b) and V ∗(b′) as
∫
α(s)b(s) ds and

∫
α′(s)b(s) ds, respectively. The value

difference |V ∗(b)− V ∗(b′)| can then be separated into three terms as follows,

|V ∗(b)− V ∗(b′)| ≤

∣∣∣∣∣V ∗(b)−
N∑
i=1

wiα(si)

∣∣∣∣∣+

∣∣∣∣∣
N∑
i=1

wiα(si)−
N∑
i=1

w′iα
′(si)

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

w′iα
′(si)− V ∗(b′)

∣∣∣∣∣ .
(11)

We can bound the first and third terms, respectively, by λ in light of the assumptions. The second
term is bounded following the proof presented in [11]. Let wci = βwi + (1 − β)w′i such that∑N
i=1 w

c
iα(si) =

∑N
i=1 w

c
iα
′(si), where β ∈ [0, 1]. It can be shown that∣∣∣∣∣

N∑
i=1

wiα(si)−
N∑
i=1

w′iα
′(si)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

wiα(si)−
N∑
i=1

wciα(si) +

N∑
i=1

wciα
′(si)−

N∑
i=1

w′iα
′(si)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

(1− β)α(si)(wi − w′i) +

N∑
i=1

βα′(si)(wi − w′i)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

((1− β)α(si) + βα′(si)) (wi − w′i)

∣∣∣∣∣
≤Rmax

1− γ

N∑
i=1

|wi − w′i| ≤
Rmax

1− γ
δ.

(12)

The proof is completed.

Lemma 2. [26] Let P and Q be two probability measures on the measurable space (X ,F) with
P � Q and d = ess supx∼Q wP/Q(x) < +∞. Let x1, . . . , xN be i.i.d.r.v. sampled from Q,
and f : X → R be a bounded Borel function (‖f‖∞ < +∞). Then, for any λ > 0 and N
large enough such that λ > ‖f‖∞d/

√
N , the following bound holds with probability at least

1− 3 exp(−N · t2(λ,N)):
|Ex∼P [f(x)]− µ̃P/Q| ≤ λ, (13)

where t(λ,N) is defined as:

t(λ,N) =
λ

‖f‖∞d
− 1√

N
. (14)

This lemma is a concentration inequality of self-normalized importance sampling estimator. It will
enable us to establish the concentration of the value estimate in AdaOPS.

15

Theorem 1. Suppose that all assumptions listed below hold:

1. The ESS threshold µ for adaptive resampling is set to∞.

2. The reward function is Borel measurable and bounded, and Rmax = ‖R‖∞.

3. The upper bound of AdaOPS is initialized to +∞. Its lower bound is initialized with any
function bounded by Rmax

1−γ .

4. The state and observation spaces are continuous, and the action space is finite.

5. For all d ∈ {0, 1, . . . , D − 1} and all observation sequences {on}, the essential supremum
of the importance weight ess supx∼Qd wPd{on}/Q

d(x) is upper bounded by dmax, where

wP/Q(x) = P(x)
Q(x) .

Suppose that all assumptions listed above hold. Let N = |b̄0| ≥ mmin. For ε > 0,

|V ∗0 (b0)− V̂ ∗0 (b̄0)| ≤ ε (15)

holds with a probability of at least

1− 15|A|N(|A|min(N,P δmax))D exp
(
−N · t2max

)
, (16)

where tmax = (1−γ)λ
Rmaxdmax

− 1√
N

, δ = (1−γ)2ε
3γRmax

, λ = (1−γ)ε
3(1+5γ/2) , D = logγ

(1−γ)ε
6Rmax

, P δmax =

supb,a P
δ(Yb,a), and Yb,a is the set of reachable beliefs after executing action a at belief b.

Proof. The assumption on the ESS threshold µ ensures that the resampling is turned off since the
effective sample size is less than or equal to the actual sample size. After the initial resampling
(Line 1 in Alg. 2), the particle number for belief approximation will be fixed to a constant N ≥ mmin.
The restriction on the bounds initialization makes sure that the estimated lower bound will not surpass
the estimated upper bound until all beliefs up to depth D are expanded. Without this assumption, we
can still derive a similar conclusion by handling the error introduced when an estimated lower bound
wrongly surpasses the estimated upper bound.

During the planning, a set of states are sampled from the current belief b0. These samples are
then propagated according to the transition function. With the action sequence fixed, this process
can be considered as sampling from a proposal distribution Qd({sn}) = T1:db0, where T1:d =∏d
n=1 T (sn|sn−1, an) is the transition density of state sequence {sn} given the action sequence.

However, the interested target distribution is the posterior distribution for a given observation sequence
{on},

Pd{on}({sn}) =
Z
{on}
1:d T1:db0∫

Sd+1 Z
{on}
1:d T1:db0 ds0:d

, (17)

where Z{on}1:d =
∏d
n=1 Z(on|an, sn) is the conditional density of the observation sequence given the

state and action sequence. The belief at depth d can be obtained by marginalizing out s0:d−1 from
distribution Pd{oi}. The approximation of the target distribution can be obtained by reweighting the
proposal samples with the following self-normalized importance sampling weights:

wPd/Qd{on}
({sn}) =

Z
{on}
1:d∫

Sd+1 Z
{on}
1:d T1:db0 ds0:d

∝ Z{on}1:d . (18)

For a node at depth D, its value estimation error is bounded by 2Rmax

1−γ , i.e.,

|V ∗D(bD)− V̂ ∗D(b̄D)| ≤ 2Rmax

1− γ
= εD (19)

holds for any belief bD at depth D. Here, b̄d represents the particle approximation of belief bd.

16

With d = D as the base case, we bound the estimation error via backward induction. For 0 ≤ d ≤
D − 1, we have

|Q∗d(bd, a)− Q̂∗d(b̄d, a)|

≤

∣∣∣∣∣E[R(sd, a)|bd]−
N∑
i=1

wd,ird,i

∣∣∣∣∣︸ ︷︷ ︸
(A)

+γ

∣∣∣∣∣E[V ∗d+1(τ(b, a, o))|bd]−
N∑
i=1

wd,iṼ
∗
d+1(b̄d, a, oi)

∣∣∣∣∣︸ ︷︷ ︸
(B)

, (20)

where wd,i is the importance weight of the i-th sample at depth d, and

Ṽd+1(b̄d, a, oi) =

{
V̂d+1(τ(b̄d, a, oi)) if τ(b̄d, a, oi) ∈ Pb̄d,a,
V̂d+1(NN(τ(b̄d, a, oi), Pb̄d,a)) otherwise.

(21)

Here, NN(b̄, P) is the nearest neighbor of b̄ in the set P measured by the L1 distance, and Pb̄d,a is
the belief packing built under the action branch a of belief b̄d.

(A) is bounded by (1 − γ)λ with a probability of at least 1 − η according to Lemma 2, where
η = 3 exp(−N · t2max), and

tmax =
(1− γ)λ

Rmaxdmax
− 1√

N
. (22)

For (B), we first separate it into three terms,∣∣∣∣∣E[V ∗d+1(τ(bd, a, o))|bd]−
N∑
i=1

wd,iṼ
∗
d+1(b̄d, a, oi)

∣∣∣∣∣
≤

∣∣∣∣∣E[V ∗d+1(τ(bd, a, o))|bd]−
N∑
i=1

wd,iV
∗
d+1(sd,i, bd, a)

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

wd,i
(
V∗d+1(sd,i, bd, a)− V ∗d+1(τ(bd, a, oi))

)∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

wd,i

(
V ∗d+1(τ(bd, a, oi))− Ṽ ∗d+1(b̄d, a, oi)

)∣∣∣∣∣ ,

(23)

where

V∗d+1(sd,i, bd, a) =

∫
S

∫
O
V ∗d+1(τ(bd, a, o))Z(o|a, sd+1)T (sd+1|sd,i, a) dsd+1 do. (24)

The analysis for the first two terms is already presented in [26]. We only rehearsal their arguments
here. Observing that E[V ∗d+1(τ(b, a, o))|bd] =

∫
S V

∗
d+1(sd, bd, a)bd · dsd, and V∗d+1 is bounded by

Rmax/(1− γ), it follows that the first term is bounded by λ with a probability at least 1− η. The
second term can be considered as an estimator of

E
[
V∗d+1(sd, bd, a)− V ∗d+1(τ(bd, a, o))

]
=∫

(V∗d+1(sd, bd, a)− V ∗d+1(τ(bd, a, o)))Z(o|a, sd+1)T (sd+1|sd, a)bd(s) dsd:d+1 do = 0.
(25)

Since V∗d+1(sd, bd, a)− V ∗d+1(τ(bd, a, o)) is bounded by 2Rmax/(1− γ), we can bound the second
term by λ/2 with a probability of at least 1− η.

For the third term, it should be noted that only part of observation branches are expanded in AdaOPS.
The value of a belief b̄ that are not expanded is set to the value of the nearest belief b̄′ in the belief
packing. Therefore, for a belief τ(b̄d, a, oi) in the packing, we have∣∣∣V ∗d+1(τ(bd, a, oi))− Ṽ ∗d+1(b̄d, a, oi)

∣∣∣ =
∣∣∣V ∗d+1(τ(bd, a, oi))− V̂ ∗d+1(τ(b̄d, a, oi))

∣∣∣
≤ εd+1.

(26)

17

For a belief τ(b̄d, a, oi) not in the packing, there must exist an observation oj such that ‖τ(b̄d, a, oi)−
τ(b̄d, a, oj)‖1 ≤ δ, and τ(b̄d, a, oj) is in the packing. Then, we have∣∣∣V ∗d+1(τ(bd, a, oi))− Ṽ ∗d+1(b̄d, a, oi)

∣∣∣
=
∣∣∣V ∗d+1(τ(bd, a, oi))− V̂ ∗d+1(τ(b̄d, a, oj))

∣∣∣
≤
∣∣V ∗d+1(τ(bd, a, oi))− V ∗d+1(τ(bd, a, oj))

∣∣+
∣∣∣V ∗d+1(τ(bd, a, oj))− V̂ ∗d+1(τ(b̄d, a, oj))

∣∣∣
≤
∣∣V ∗d+1(τ(bd, a, oi))− V ∗d+1(τ(bd, a, oj))

∣∣+ εd+1.

(27)

For any function α bounded by Rmax

1−γ , |
∫
α(s)b(s) ds −

∑N
i=1 wd+1,iα(sd+1,i)| is bounded by λ

with a probability of at least 1− η. Therefore, we have the assumptions in Lemma 1 holding with
a probability of at least 1− 2η. Consequently, for a belief τ(b̄d, a, oi) not in the packing, the error∣∣∣V ∗d+1(τ(bd, a, oi))− Ṽ ∗d+1(b̄d, a, oi)

∣∣∣ is bounded by 2λ + Rmax

1−γ δ + εd+1 with a probability of at
least 1− 2η. Hence, we can bound the error of all child beliefs by the same quantity as well with
probability 1− 2Nη.

With the above argument, we have bounded (B) by 7λ/2 + Rmax

1−γ δ + εd+1. When combined with the
part (A), we get

|Q∗d(bd, a)− Q̂∗d(b̄d, a)| ≤ (1− γ)λ+ γ

(
7

2
λ+

Rmax

1− γ
δ + εd+1

)
= λ+ γ

(
5

2
λ+

Rmax

1− γ
δ + εd+1

)
,

(28)

with a probability 1− (3 + 2N)η.

Notice that the action value estimation error is related the value estimation error in the following way:

|V ∗d (bd)− V̂ ∗d (b̄d)| = |max
a∈A

Q∗d(bd, a)−max
a∈A

Q̂∗d(b̄d, a)|

≤ max
(
|Q∗d(bd, a∗)− Q̂∗d(b̄d, a∗)|, |Q∗d(bd, â∗)− Q̂∗d(b̄d, â∗)|

)
≤ λ+ γ

(
5

2
λ+

Rmax

1− γ
δ + εd+1

)
= εd,

(29)

where a∗ = arg maxa∈AQ
∗
d(bd, a), and â∗ = arg maxa∈A Q̂

∗
d(b̄d, a). Expanding the recurrence,

we find the error at the depth 0 is given by

|V ∗0 (b0)− V̂ ∗0 (b̄0)| ≤ ε0 = λ+ γ

(
5

2
λ+

Rmax

1− γ
δ + ε1

)
≤ λ

1− γ
+

(
5

2
λ+

Rmax

1− γ
δ

)
γ

1− γ
+ γD

2Rmax

1− γ

=
1 + 5

2γ

1− γ
λ+

γRmax

(1− γ)2
δ +

2γDRmax

1− γ
.

By setting δ = (1−γ)2ε
3γRmax

, λ = (1−γ)ε
3(1+5γ/2) , and D = logγ

(1−γ)ε
6Rmax

, we can guarantee |V ∗0 (b0) −
V̂ ∗0 (b̄0)| ≤ ε with a probability of at least 1− (3 + 2N)|T |η. Here, |T | denotes the number of action

nodes on the tree. We have |T | ≤ |A| (|A|min(N,P δmax))D−1
|A|min(N,P δmax)−1

≤ |A|(|A|min(N,P δmax))D. Thus, the
total failure probability is at most 5|A|N(|A|min(N,P δmax))Dη.

C.3 Running Time Analysis

AdaOPS builds a tree of size at most O((|A|min(P δmax, Nmax))D), and it takes most of its time
to expand new nodes. Expanding a leaf node with m particles takes O(|A|m) time for propagat-
ing particles, O(|A|P δmaxm) time for weighting new beliefs, O(|A|P δmaxm

2) time for generating
packings, and O(|A|P δmaxm) time for initializing bounds. Although KLD-Sampling seems to be

18

resource-intensive due to the existence of a grid, it can be made efficient by not storing the entire grid
but only the coordinate of samples. This way, the computing and storage overhead of KLD-Sampling
is at an order of O(mnS log dS), where nS is the number of state dimensions, and dS is the number
of grids in each dimension.

It depends on the specific context to determine which of these is more costly. In domains with high
dimensional observation space, weighting new beliefs dominates since the observation function Z
may take more time. In other cases, particle propagation and bounds initialization often achieve
dominance.

D Experiments

The solvers used in our experiments are implemented by Zachary Sunberg and licensed under the
MIT “Expat” License. The Roomba domain is attributed to [28], and we have obtained consent to
cite it.

D.1 Domains

(a) Laser Tag (b) Rock Sample

(c) Roomba (d) Light Dark

Figure 4: Four domains: (a) Laser Tag. A robot (white) equipped with eight laser rangefinders tries to
locate itself and tags an escaping target (black). (b) Rock Sample. A Mars rover estimates the quality
of rocks by its noisy sensor, samples good rocks as many as possible, and then reaches the exit area
(east boundary). (c) Roomba. A robotic vacuum cleaner (red circle) attempts to locate itself in a
familiar room and reach the target region (green) while avoiding falling down the stair (red). Blue
points visualize the belief at the current step. (d) Light Dark. To reach the origin, the agent moving
on a real line needs to locate itself by going to the bright region. The red line shows the trajectory of
the agent using AdaOPS, and the white circles represent the belief.

D.1.1 Laser Tag

Laser Tag is an extended version of Tag, compared to which Laser Tag has a significantly larger
observation space. At each timestep, the robot will get noisy discrete measurements from eight laser
rangefinders, with which it will try to locate itself and the target. There are some obstacles on the
map that lasers and the robot cannot pass through. The robot can move to the four adjacent positions,
paying −1. If the escaping target is correctly tagged, it is rewarded +10. A penalty of −10 will be
given if it tags wrongly.

19

D.1.2 Rock Sample (RS)

Rock Sample is a common benchmark in the POMDP field. In a rock sample problem RS(n,m), a
rover moves on an n× n grid world with m rocks. Each rock could be either good or bad. The goal
of the rover is to sample all the good rocks and exit by the east boundary. Each step, the rover can
move to an adjacent grid, sense a rock, or sample a rock. Moving and sampling do not produce any
observation. When executing a sensing action, the robot observes the rock’s status with a noise that
increases exponentially with the distance to the rock. Sampling will reward +10 for good rock, −10
for a bad one, and 0 for nothing. Finally, the rover leaves the map from the east boundary and gets a
reward of +10.

D.1.3 Roomba

Roomba is a localization POMDP problem. A robotic vacuum cleaner, also known as Roomba, finds
itself in a familiar room but does not know its exact position. It then tries to locate itself and enters
the adjoining room (target area). When equipped with a Lidar sensor, it receives a noisy continuous
measurement. With a Bumper sensor, it can only sense its collision, causing the localization extremely
hard. For Lidar Roomba, a natural lower bound for the optimal value of belief b is what we call
Delayed MDP (DMDP), αDMDP(s) =

∑n−1
i=0 γ

irtime + γnαMDP(s), where rtime is the time penalty.
The term, Delayed MDP, means that the robot keeps rotating in situ for n steps until its position
is known with certainty and then operates in line with the optimal MDP policy. At each timestep,
it receives a time penalty of −0.1. If the robot hits a wall, it gets a penalty of −1. It is rewarded
+10 when reaching the target (green region) and is penalized −10 when falling down the stairs (red
region).

D.1.4 Light Dark

The Light Dark domain has a 1d continuous state that stands for the agent’s position on a real line.
The agent can move deterministically with action +1 or −1. The goal is to reach the origin. It can
also take action 0, which will reward +10 if the agent is close to the origin (within an error of 1) and
−10 if not. Each movement has a cost of −1. To make certain its position, the agent needs to move
towards the light region to obtain better vision. The agent is initially situated according to a normal
distribution of N (2, 3), and the light region is located around 5. The observation is continuous and
distributed according to N

(
x, |x−5|√

2
+ 0.01

)
, where x is the position of the agent.

D.2 Hyperparameters and Heuristics

The ranges of grid search are shown in Table 2.

Table 2: Ranges for Hyperparameter Selection
AdaOPS mmin ∈ {10, 30, 100} δ ∈ {0.1, 0.3, 1.0}
DESPOT K ∈ {30, 100, 300} λ ∈ {0.0, 0.001, 0.01, 0.1}

POMCPOW
c ∈ {1, 10, 100, 1000}
αO ∈ {0.01, 0.03, 0.1, 0.3, 1.0}
kO ∈ {1.0, 2.0, 4.0, 8.0}

The hyperparameters selected for each algorithm are shown in Table 3. For AdaOPS without belief
packing, δ is not presented since it is set to 0.

AdaOPS requires a state grid partitioning the state space into multidimensional bins. The size of the
grid is determined such that it is an appropriate discretization of the state space that can faithfully
reflect the dispersion of beliefs. Since a fine discretization results in enormous particle numbers
according to Equation (2), in practice, we discretize the state space into bins of roughly a hundred.
Laser Tag has a discrete state space of size 7 × 11 and needs no more additional discretization.
Roomba has a continuous state space of size 40× 25. We further discretize it into 16× 10, as shown
in Figure 5. Other reasonable discretization will yield similar results but having different optimal
hyperparameters. For Light Dark, a natural choice is to discretize the state space (a real line) with

20

Table 3: Hyperparameters Selected
Laser Tag RS(15,15) Bumper Roomba Lidar Roomba Light Dark

AdaOPS mmin 10 100 10 30 10
δ 0.1 0.1 0.0 0.3 1.0

AdaOPS(AR) mmin 30 100 10 30 30
δ 0.3 0.1 0.0 0.3 1.0

AdaOPS(KLD-S) mmin 100 \ 10 30 100
δ 0.1 0.0 0.3 1.0

AdaOPS(BP) mmin 30 100 \ 10 10

DESPOT K 300 100 30 30 30
λ 0.01 0.0 0.1 0.01 0.1

POMCPOW
c 10 10 100 1000 10
αO 0.03 1.0 1.0 0.03 0.03
kO 4.0 1.0 1.0 2.0 4.0

the step size 1. Rock Sample needs no state grid, as the dispersion of belief does not change. The
heuristics adopted in different domains are demonstrated in Table 4. The fixed action policy for Rock
Sample is moving east since the rover receives +10 whenever it arrives at the exit (east boundary).

Figure 5: Roomba Grid

The heuristics in different domains are shown in Table 4. It should be noted that although the QMDP
upper bound can achieve better performance on the Rock Sample domain, AdaOPS and DESPOT
consume more memory. Therefore, we use MDP upper bound instead of QMDP upper bound.

Table 4: Heuristics in Different Domains
Lower Bound Upper Bound Value Estimator

Laser Tag Blind Policy QMDP MDP
Rock Sample Fixed Action Policy MDP MDP
Lidar Roomba Delayed MDP MDP MDP
Bumper Roomba Blind Policy QMDP MDP
Light Dark Random Policy MDP MDP

D.3 Time Sensitivity Analysis

This section provides a time sensitivity analysis in Light Dark, in which we adjust the planning
time to t ∈ {0.125s, 0.25s, 0.5s, 1s, 2s, 4s, 8s} and test their performance for 1, 000 episodes. As
shown in Figure 6, even when the planning time is short, AdaOPS still outperforms POMCPOW and
DESPOT. Besides, the performance of AdaOPS is more stable across all settings (with smaller SEM)
compared to the others.

21

Figure 6: Time sensitivity analysis in Light Dark. Each point represents the average return for 1000
trials of the solver given a specific planning time. The vertical line on the dot represents the standard
error mean (SEM).

D.4 Hyperparameter Sensitivity Analysis

This section provides a hyperparameter sensitivity analysis in Light Dark, in which we change the
hyperparameters δ andmmin and test their performance for 1, 000 episodes. As illustrated in Figure 7,
AdaOPS is relatively stable to hyperparameter changing, and half tests achieve an average discounted
return greater than 3.

Figure 7: Hyperparameter sensitivity analysis in Light Dark. The color denotes the average discounted
return of 1, 000 episodes, which varies slowly with respect to the changing of hyperparameters δ and
mmin.

D.5 Tree Building Analysis

Figure 8 illustrates the exploration depths, particle numbers, and observation numbers throughout an
episode in various domains. In most domains, the state uncertainty diminishes with more information
gathered, and the belief gradually concentrates on a small region with the particle number, given by
KLD-Sampling, declining. Since approximating a belief requires less particles, the algorithm can
expand more nodes and make a deeper tree search. Besides, a low state uncertainty also induces a
smaller belief packing, which is for two reasons. On one hand, the support of the observation distri-
bution is affected by the support of the belief b, i.e., sup(Pr(o | b, a)) =

⋃
s∈sup(b) sup (Z(o | s, a))

for action a. On the other hand, it is often hard to distinguish between the remaining possible states.
If otherwise, these states may have already been made impossible by previous observations. Notice

22

that the depth of exploration decreases at the end of each episode. It is because AdaOPS already finds
the optimal policy, and there is no need to search deeper.

(a) Laser Tag

(b) Rock Sample

(c) Lidar Roomba

(d) Bumper Roomba

(e) Light Dark

Figure 8: Tree building analysis for AdaOPS in different domains. The solid red line denotes the
median, and the shadow area denotes the 90% confidence interval.

23

