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ABSTRACT

Comprehensible neural network explanations are foundations for a better under-
standing of decisions, especially when the input data are infused with malicious
perturbations. Existing solutions generally mitigate the impact of perturbations
through adversarial training, yet they fail to generate comprehensible explanations
under unknown perturbations. To address this challenge, we propose AGAIN, a
factor graph-based interpretable neural network, which is capable of generating
comprehensible explanations under unknown perturbations. Instead of retraining
like previous solutions, the proposed AGAIN directly integrates logical rules by
which logical errors in explanations are identified and rectified during inference.
Specifically, we construct the factor graph to express logical rules between expla-
nations and categories. By treating logical rules as exogenous knowledge, AGAIN
can identify incomprehensible explanations that violate real-world logic. Further-
more, we propose an interactive intervention switch strategy rectifying explana-
tions based on the logical guidance from the factor graph without learning per-
turbations, which overcomes the inherent limitation of adversarial training-based
methods in defending only against known perturbations. Additionally, we theoret-
ically demonstrate the effectiveness of employing factor graph by proving that the
comprehensibility of explanations is strongly correlated with factor graph. Exten-
sive experiments are conducted on three datasets and experimental results illus-
trate the superior performance of AGAIN compared to state-of-the-art baselines1.

1 INTRODUCTION

Comprehensibility of neural network explanations depends on their consistency with human insights
and real-world logic. Comprehensible explanations promote better understanding of decisions and
establish trust in the deployment of neural networks in high-stake scenarios, such as healthcare
and finance (Virgolin & Fracaros, 2023; Fokkema et al., 2023; Luo et al., 2024a;b). However, as
shown in Figure 1, interpretable neural networks are vulnerable to malicious perturbations which are
infused into inputs, misguiding the model to generate incomprehensible explanations (Tan & Tian,
2023; Baniecki & Biecek, 2024). Such explanations may cause users to make wrong judgments,
resulting in security concerns in high-stake domains. For example, a doctor prescribing medication
based on a medically illogical explanation (i.e., incomprehensible explanation) of the pathological
prediction may lead to misdiagnosis. Therefore, it is crucial to ensure that interpretable neural
networks generate comprehensible explanations under perturbations.

Several existing efforts have been devoted to investigating comprehensible explanations (Kamath
et al., 2024; Sarkar et al., 2021; Chen et al., 2019). Many of them craft adversarial samples by
adding perturbations to the dataset beforehand and retrain the model with extra regularization terms.
Regularization terms constrain model to generate explanations that are similar to the explanation
labels of the adversarial samples. Empirical results show that retrained models are able to learn the
adversarial sample data distribution and reduce the probability of being misled by the predetermined
perturbation.

However, the above solutions assume perturbations are known to the model, which leads to their
failure to generate comprehensible explanations under unknown perturbations (Novakovsky et al.,
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2023). The reasons are as follows: 1) it is impossible to craft adversarial samples for all unknown
perturbation types (Gürel et al., 2021); 2) even if the adversarial samples are available, retraining is
effective for only a limited number of perturbation types simultaneously (Tan & Tian, 2023). Thus,
despite recent progress on comprehensible interpretability, it is still challenging to provide compre-
hensible explanations under unknown perturbations. Considering this, we seek to solve this problem
from a different perspective - instead of optimizing the training strategy, we innovate the inference
process. Our goal is to design an interpretable neural network capable of rectifying incomprehensi-
ble explanations under unknown perturbations during inference. We draw inspiration from knowl-
edge integration with factor graphs. Unknown perturbations cause the explanatory semantics to
violate the exogenous knowledge in the factor graph (Tu et al., 2023; Xia et al., 2021). Factor graph
reasoning enables us to identify and rectify explanatory logical errors without learning perturbations.

Figure 1: Interpretable neural networks suffer from pertur-
bations that generate incomprehensible explanations. For in-
stance, the model predicts the input as “Dog” but explains it
with “Wings” and “Plume”.

We propose AGAIN (fActor GrAph-
based Interpretable neural Network),
which generates comprehensible
concept-level explanations based
on the factor graph under unknown
perturbations (Tiddi & Schlobach,
2022). AGAIN consists of three
modules, including factor graph
construction, explanatory logic
errors identification, and explanation
rectification. In the first module,
semantic concepts, label catergories,
and logical rules between them are encoded as two kinds of nodes (i.e., variable and factor) in
the factor graph, while their correlations are encoded as the edges. Based on the constructed
factor graph, the logic relations among concepts and categories are explicitly represented. In the
second module, AGAIN generates the concept-level explanations and predictive categories and
then imports them into the factor graph to identify erroneous concept activations through logical
reasoning. In the third module, we propose an interactive intervention switch strategy for concept
activations to correct logical errors in explanations. The explanations that are further regenerated
align with external knowledge. The regenerated explanations are used to predict categories.
Extensive experiments are conducted on three datasets including CUB, MIMIC-III EWS, and
Synthetic-MNIST. Experimental results demonstrate concept-level explanations generated by
the proposed AGAIN under unknown perturbations have better comprehensibility compared to
baselines such as ICBM, PCBM, free CBM, and ProbCBM.

Our contributions can be summarized as follows: 1) against unknown perturbations: we present
an innovative interpretable neural network based on factor graph. It integrates real-world logical
knowledge to generate comprehensible explanations under unknown perturbations; 2) forward feed-
back: we design logic error identification and rectification methods based on the factor graph. Our
method is able to rectify logic violating explanations during inference without learning perturba-
tions, unlike previous methods; 3) theoretical foundation of factor graph: we prove that the com-
prehensibility of explanations is positively correlated with the involvement of factor graph; 4) supe-
rior performance: we conduct extensive experiments on three datasets to demonstrate that AGAIN
can generate more comprehensible explanations than existing methods under unknown perturba-
tions.

2 RELATED WORK

Comprehensible Explanation under Perturbation. Studies of comprehensible explanations un-
der perturbations can be divided into two categories: attacks on comprehensibility and defenses of
comprehensibility. Studies of attacks on comprehensibility aim to design perturbations that misguide
the model to generate incomprehensible explanations. Some methods modify salient mappings with
perturbations that make the explanation incomprehensible to users (Ghorbani et al., 2019; Dom-
browski et al., 2022). Furthermore, there are several efforts that propose additional types of pertur-
bations (Rahmati et al., 2020; Carmichael & Scheirer, 2023; Huai et al., 2022). They demonstrate
that many types of perturbations can undermine the comprehensibility of explanations. In contrast,
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studies on defenses of comprehensibility aim to design defensive strategies to suppress the effects
of perturbations on interpretations. These studies focus on adversarial training of interpretable neu-
ral networks so that the model generates comprehensible explanations despite perturbations. These
studies are implemented in two ways. In the first approach, some methods annotate the adversarial
samples with explanatory labels, and constrain the model to generate explanations similar to the
labels (Boopathy et al., 2020; Lakkaraju et al., 2020; Chalasani et al., 2020). While promising,
excessive adversarial training can easily lead to overfitting. In the second approach, some efforts
further utilize different regularization terms based on adversarial training to mitigate overfitting, and
allowing reasonable local shifts in explanations (Kamath et al., 2024; Sarkar et al., 2021; Chen et al.,
2019). In addition, concept-based interpretable methods, which explain model decisions by gener-
ating a set of high-level semantic concepts, have gained great attention recently Koh et al. (2020b);
Havasi et al. (2022); Wang et al. (2022). Moreover, it has been demonstrated that concept-based
explanations can be erroneous and lose comprehensibility under perturbations Sinha et al. (2023).
Meanwhile, they verify that retraining is effective in enhancing the comprehensibility of concept-
based explanations. However, all the above methods assume that the perturbation is known to the
model. Thus, how to improve the comprehensibility of the explanation under unknown perturbations
remains open.

Knowledge Integration with Factor Graph. There have been extensive studies on knowledge
integration with factor graphs (Tian et al., 2024; Gürel et al., 2021; Yang et al., 2022). These studies
typically utilize factor graph reasoning to assemble predictions from multiple ML models. When
one model predicts incorrectly, the factor graph can combine the exogenous knowledge to correct
the error based on the predictions of other models. Empirical evidence suggests that integration
of exogenous knowledge in factor graphs contributes to the predictive accuracy of ML models. In
this paper, instead of improving predictive accuracy, we explore the possibility of using exogenous
knowledge to guide interpretable neural networks for generating comprehensible explanations.

3 NOTATIONS AND PRELIMINARIES

Figure 2: An example of the
factor graph. It consists of 4
factors and 8 variables.

Interpretable Neural Network. Interpretable neural networks
are defined as neural networks that automatically generate expla-
nations for decisions (Esterhuizen et al., 2022; Rieger et al., 2020;
Peng et al., 2024). For more comprehensible explanations, we uti-
lize a concept bottleneck model to generate concept-level explana-
tions, which utilize various semantic concepts to explain the pre-
dictions Koh et al. (2020b); Huang et al. (2024). Specifically, let
x denote an input sample, the concept bottleneck model predicts
the category y and outputs a boolean vector c ∈ {0, 1}M of M
concepts. Let c ∈ c denote a concept. Let c = 1 indicate that
concept c is present in x and influences the model decision. c is
the concept-level explanation of the model prediction.

Factor Graph. Factor graph serves as a probabilistic graphical model to depict relationships
among events (Yu et al., 2023; Bravo-Hermsdorff et al., 2023). As shown in Figure 2, within a
factor graph, two node types exist: 1) variables, which delineate events; 2) factors, which articulate
the relationships between events. Formally, a factor graph G = (V,F) contains the set of variables
V and the set of factors F . We denote the set of edges as E . For any vi ∈ V and fi ∈ F , we let
(vi, fi) ∈ E denote an edge of G. Let N (fi) = {vi ∈ V |(vi, fi) ∈ E } denote the set of neighbors of
factor fi in G. We let variables correspond to concept and category labels. We let factors correspond
to logical rules. This enables G to encode logical rules between concepts and categories.

Known and Unknown Perturbation. Formally, let δ denote perturbations uniformly. The de-
signer of the model crafts adversarial samples against one perturbation δk to obtain a retrained model
h that minimizes ∥h (x; θ)− h (x+ δk; θ)∥. θ is the model parameter. For model h, δk denotes one
known perturbation, and any δu ∈ {δ |δ ̸= δk } denotes one unknown perturbation.

Adversarial Attacks against Concept-level Explanations. Unlike standard adversarial attacks,
adversarial attacks against explanations do not compromise task predictions. For concept-level in-
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Figure 3: Overall structure of AGAIN.

terpretable models, such attacks can be categorized into three types: erasure attacks, introduction
attacks, and confounding attacks (Sinha et al., 2023). 1) Erasure attacks: the goal of the erasure at-
tacks is to subtly remove concepts from a concept-level explanation; 2) introduction attacks: the goal
of introduction attacks is to allow the existence of irrelevant concepts; 3) confounding attacks: the
goal of confounding attacks is to simultaneously remove relevant concepts and introduce irrelevant
concepts. These attacks are technically simpler to implement (see the Appendix E for implementa-
tion details of these attacks).

4 THE DESIGN OF AGAIN

AGAIN consists of three modules: 1) first, we encode logic rules of the real-world as a factor graph
(Section 4.1); 2) then, we generate the initial concept-level explanation through the concept bottle-
neck. The factor graph reasoning is utilized to identify whether the explanation of concept bottleneck
violates the external logic, and thus to detect whether the perturbation exists (Section 4.2); 3) finally,
an interactive intervention strategy is designed to rectify the explanation and input it to the category
predictor (Section 4.3). The overall architecture of AGAIN is shown in Figure 3.

4.1 FACTOR GRAPH CONSTRUCTION

To construct a factor graph, we first define the logic rule set R = {ri}Ni=1, which contains two types:
1) concept-concept rule: all predicates consist of concepts. Such rules are used to constrain potential
relationships among various concepts. For instance, there is a rule of coexistence or exclusion
between concepts ci and cj , which can be formalized in logical notation as: ci ⇔ cj or ci ⊕ cj .

Figure 4: Factor graph construction.

2) Category-concept rule: all predicates are defined by con-
cepts and categories. Such rules are used to constrain po-
tential correlations between concepts and categories. For
instance, the coexistence or exclusion rule that exists be-
tween concept ci and category label yj can be formalized
as: ci ⇔ yj or ci ⊕ yj .

Then, we encode the above logic rules into a factor graph G.
As shown in Figure 4, we illustrate the construction of the
factor graph. Specifically, there are two types of variables
V = Vc ∪ Vy , where Vc and Vy denote concept and cate-
gory variable set, respectively, and are linked by F . In this
way, each factor fi ∈ F corresponds to the i-th logic rule
ri. Each factor is defined as a potential function that per-
forms logical operations based on different rules, which can
be categorized into coexistence and exclusion operations.
Moreover, we define a potential function ψi for each factor fi, which outputs a boolean value for
each N (fi). If N (fi) makes ri true, ψi (N (fi)) = 1, otherwise ψi (N (fi)) = 0.
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For convenience, we denote ψi (N (fi)) as ψi. We define the weight wi ∈ [0, 1] to represent the
confidence level of fi in two methods, i.e., prior setting and likelihood estimation (The details can
be referred to the Appendix C.5). Higher wi indicates that the logic rules of fi are more important
for reasoning, and vice versa.

4.2 EXPLANATORY LOGIC ERRORS IDENTIFICATION

AGAIN generates an initial concept-level explanation and identifies logical errors in the initial expla-
nation. Specifically, we employ a concept bottleneck structure, a popular concept-level interpretable
module, to capture the semantic information from instances, which can learn the mapping between
semantic information and concepts (Koh et al., 2020a). The concept bottleneck contains a concept
predictor hc : RD → RM and a category predictor hy : RM → R. The instance x is first mapped
to the concept space by hc and obtains the corresponding concept activation vector, i.e., ĉ = hc(x),
where ĉ ∈ [0, 1]

M , and then the conceptual activation vector is fed into hy to yield the final predicted
category, i.e., ŷ = hy(ĉ), where ŷ ∈ {0, 1}. ĉ is defined as the initial explanation.

Next, G takes ĉ and ŷ as inputs to assign Vc and Vy , respectively. If concept ĉ > 0.5, ĉ ∈ ĉ, we set
variable vĉ = 1, vĉ ∈ Vc, otherwise vĉ = 0. For the category variables, we set vŷ = 1, vŷ ∈ Vy ,
and Vy \ vŷ = {0}K−1.

Subsequently, we evaluate the likelihood of the variable assignment under rule constraints through
logical reasoning. Firstly, after each variable (concept and category) in G is assigned a value, boolean
values are output from potential functions of all factors. These boolean values indicate whether the
assignments of concepts and categories satisfy the logical rules represented by potential functions.
Therefore, the weighted sum of all potential functions quantifies the extent to which concept assign-
ments satisfy the logic rules in G.

Then, we seek to obtain the likelihood of the current concept assignments occurring, conditional on
the known categories and logic rules. We quantify this likelihood by computing a conditional prob-
ability using the weighted sum of potential functions. We consider all possible concept assignments
and compute the expectation of current concept assignments. This expected value is considered as
the conditional probability, which is then used to detect whether concept activations are perturbed.
For illustrative purposes, we provide an example. Suppose there are concepts A and B. The current
concept assignment is {1, 0} denoting A = 1 (active) and B = 0 (inactive). We iterate through all
four possible assignments: {1, 0}, {0, 1}, {1, 1}, {0, 0}. We compute the weighted sum of the po-
tential functions for each of the four cases and compute the expectation of the potential function for
{1, 0}. This expectation is the conditional probability that concept assignment {1, 0} occurs condi-
tionally on the known categories and logic rules. Formally, we denote this conditional probability
as P (Vc |Vy ):

P (Vc |Vy ) = exp

(∑
i∈N

wiψi

)/∑
Ṽc∈Φ

(
exp

(∑
i∈N

wiψi

))
, (1)

where Φ represents all cases of concept assignments, and Ṽc represents a case in Φ. This implies
that the denominator of Eq. (1) is the normalized constant term. We use P (Vc |Vy ) to evaluate the
comprehensibility of explanation ĉ. Higher P (Vc |Vy ) indicates that ĉ is more comprehensible, and
vice versa. In theory, we consider that a comprehensible ĉ should satisfy each ri ∈ R, ensuring that
P (Vc |Vy ) attains an upper bound denoted as ∨P (Vc |Vy ):

∨P (Vc |Vy ) =
1

a
max

(
exp

(∑
i∈N

wiψi

))
, (2)

where a denotes the denominator of Eq. (1). However, in practice, even concept explanations gener-
ated in a benign environment (without perturbations) rarely satisfy all the rules. Overly strict logical
constraints may instead cause G to lose its ability to recognize perturbations. Therefore, we allow
a comprehensible explanation to violate some low-weight rules. Naturally, we establish a relaxed
identification condition for distinguishing explanations corrupted by perturbations from comprehen-
sible explanations:

P (Vc |Vy ) > ∂ · ∨P (Vc |Vy ) , (3)
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where ∂ ∈ [0, 1] is a hyperparameter controlling the relaxation. ∂ approximate 1 implies a stricter
constraint imposed by G on the explanation. If Vc, Vy satisfies Eq. (3), then ĉ is comprehensible;
otherwise, it is recognized as having logical error under perturbation. Further, we demonstrate
theoretically that G contributes to comprehensible explanations. For a detailed theoretical analysis,
please refer to Appendix B.

4.3 EXPLANATION RECTIFICATION

Once explanations with logical errors are identified, AGAIN rectifies the explanation and put it as an
input to the category predictor for the final prediction. For this objective, we propose an interactive
intervention switch strategy aimed at enhancing the conditional probability of the G. The proposed
strategy intervenes on the values of Vc and interactively observing the potential function difference.
In this paper, we assume that ŷ are unaffected under perturbations, thus we do not intervene in Vy .
The pseudocode of the interactive intervention switch is listed in Appendix A.

Our intervention strategy can be divided into three steps. First, we traverse all factors with ψi = 1.
For factor fi ∈ F , we modify the boolean value of its concept variables, considering the modification
as a single intervention operation. Given that fi may be connected to multiple concept variables,
there exist numerous intervention cases. For instance, consider fi containing concept variables
vi and vj . There are three possible intervention cases: intervene only vi, intervene only vj , and
intervene both vi and vj . We define the full set of possible intervention cases for fi as Ti. For each
case ti ∈ Ti, we compute the potential function difference si, which represents the change in the
potential function after executing ti. Note that ti does not only change fi, but also changes the 1-hop
neighbor factors of N (fi). Thus, we define si as follows:

si =
∑

j∈|Fi|

wj

(
ψti
j − ψj

)
, (4)

where Fi = {fj |N (fi) ∈ N (fj)} ∪ {fi}. ψti
j denotes the ψj value after ti intervention. Subse-

quently, after traversing through all possible interventions in Ti, we identify the intervention with the
highest si as a candidate intervention. We generate the candidate intervention for each factor with
ψi = 1. We aggregate all the candidate interventions into a final intervention, denoted as t∗. We
execute t∗ on Vc. From the set of intervened Vc and t∗, we generate a binary concept intervention
vector z ∈ {−1, 1}M and a binary mask vector mt∗ ∈ {0, 1}M . z denotes the concept activation
status, where -1 indicates activated, and 1 indicates inactivated. mt∗ denotes whether the concept is
intervened or not, where 1 indicates intervened, and 0 indicates not intervened.

Finally, we employ z and mt∗ to rectify the initial explanation ĉ. We utilize mt∗ to aggregate ĉ and
z for a rectified concept activation vector ĉre:

ĉre = z⊙mt∗ + ĉ⊙m′
t∗ , (5)

where m′
t∗ is obtained by flipping the bits of mt∗ . ⊙ denotes dot product operation. The purpose of

employing the intervention mask is to facilitate ĉre to retain activations in ĉ that are not intervened.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Baselines. We evaluated AGAIN on two real-world datasets, CUB, MIMIC-III
EWS, and one synthetic dataset, Synthetic-MNIST. We choose two categories of methods. (1)
Concept-level methods: CBM (Koh et al., 2020a), Hard AR (Havasi et al., 2022), ICBM (Chauhan
et al., 2023), PCBM (Yuksekgonul et al., 2023), ProbCBM (Kim et al., 2023), Label-free
CBM (Oikarinen et al., 2023), ProtoCBM (Huang et al., 2024), and ECBMs (Xu et al., 2024).
(2) Knowledge integration methods: DeepProblog Manhaeve et al. (2018), MBM Patel et al. (2022),
C-HMCNN Giunchiglia & Lukasiewicz (2020), LEN Ciravegna et al. (2023), DKAA Melacci et al.
(2021), and MORDAA Yin et al. (2021). In addition, we compare AGAIN with the retrained ver-
sions of these baselines that employ state-of-the-art adversarial training strategy. More details on
the datasets and baselines are provided in Appendix C.1 and C.2. The experimental results on the
synthetic dataset are presented in Appendix D.4.

6



Published as a conference paper at ICLR 2025

Evaluation Metrics and Implementation Details. To evaluate the performance of AGAIN, we
use five metrics: predictive accuracy (P-ACC), explanatory accuracy (E-ACC), logical satisfaction
metric (LSM), identification rate (IR), and success rate (SR). Higher scores indicate better perfor-
mance for all metrics. Detailed descriptions of each metric are given in Appendix C.3. Additionally,
the implementation details of AGAIN are provided in Appendix C.4.

5.2 EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS

Identifying Perturbations. We apply adversarial perturbations acquired during black-box train-
ing to randomly perturb multiple instances in the test set. Known and unknown perturbations are
denoted by δk and δu, respectively, with ϵ representing the perturbation magnitude. We evaluate the
ability of AGAIN to recognize logical errors of explanations by reporting SR and IR values under
different perturbation magnitudes in Table 1. The results demonstrate that AGAIN achieves remark-
able IR and SR values under both δk and δu. Specifically, AGAIN attains nearly 100% IR across all
perturbation magnitudes. With SR results averaging up to 98%, we also validate that factor graph
G can effectively identify explanations from benign instances and permit them to directly predict
categories without logical reasoning. Furthermore, it is also worth noting that as the perturbation
magnitude increases, the IR value also gets larger. This observation is attributed to the larger pertur-
bation magnitude causing a more pronounced logical violation in the generated explanations. The G
more readily identifies these violations.

Table 1: IR and SR on two real-world datasets.

Dataset Metrics Clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CUB
IR - 97.3(1.3) 98.9(0.4) 98.9(0.8) 99.3(1.0) 97.3(0.5) 97.2(0.8) 97.5(1.1) 98.3(0.9)
SR 98.7(0.4) 98.0(1.2) 98.7(0.4) 97.7(0.6) 97.2(0.5) 97.4(0.7) 97.2(1.1) 96.8(0.9) 97.7(1.1)

MIMIC-III EWS
IR - 97.4(0.2) 98.3(0.3) 99.7(0.2) 99.8(0.1) 98.3(0.4) 99.5(0.1) 100.0(0.0) 100.0(0.0)
SR 100.0(0.0) 98.91(0.4) 99.3(0.1) 98.7(0.4) 98.2(1.1) 99.3(0.3) 97.1(0.3) 98.6(0.4) 99.4(0.1)

Comprehensibility of Explanations. To investigate the comprehensibility of the explanations
generated by AGAIN, we perform extensive experiments on both datasets for evaluating the LSM
of the explanations, and the comparison are reported in Table 2. The baselines subjected to the
retraining are identified by the ”-AT” suffix. The results reveal that the comprehensibility of the
explanations generated by AGAIN outperforms all concept-level methods, including the ”-AT” ver-
sions of these baselines, under different perturbation magnitudes. Particularly, previous interpretable
models fail to generate logically complete explanations with LSMs lower than 48 under unknown
perturbations of magnitude 32, but explanations from AGAIN can reach as high as 92.30. More-
over, we demonstrate that AGAIN is hardly affected by the perturbation magnitude compared to the
baseline methods. This effect is attributed to the corrective capability provided by G for any level of
logic violation. For kowledge integration methods, since DeepProblog, MBM, and C-HMCNN are
unable to generate concepts, we splice their knowledge integration modules onto the CBM. The re-
sults show that the LSM of AGAIN is optimal. In contrast, deepProblog can only constrain category
predictions, not concept predictions, which results in low LSM under perturbation. The knowledge
introduced by methods MBM and C-HMCNN can constrain concepts, but they only use logical
rules between concepts and concepts, making their performance inferior to AGAIN. Meanwhile,
since DKAA and MORDAA have Multi-label predictors, we directly use Multi-label predictors to
predict concepts. LEN can only constrain category predictions. DKAA and MORDAA detect ad-
versarial perturbations in the samples using external knowledge, but they cannot correct the wrong
concepts triggered by these perturbations.

Validity of the Factor Graph. As the theoretical analysis in Appendix B demonstrates, G im-
proves the comprehensibility of explanations. We experimentally validate this claim and further
demonstrate that increasing the number of factors in G enhances the predictive accuracy of con-
cepts. Specifically, we employ subgraph G′ extracted from the original G for reasoning and analyze
the impact on prediction accuracy by increasing the ratio of G′ to G. In Figure 5, we depict the
changes in P-ACC and E-ACC across four perturbation magnitudes on both datasets. It is evident
that both P-ACC and E-ACC exhibit substantial improvement as the number of factors in G′ in-
creases. This observation indicates that G contributes in generating explanations with similarity to
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Table 2: Comparisons of LSM for AGAIN with other concept-level interpretable baselines.

Dataset Method clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CUB

CBM 96.3(2.2) 89.2(3.5) 77.4(2.8) 53.7(1.3) 39.4(5.4) 89.3(3.1) 77.4(5.5) 53.1(3.8) 39.4(5.3)
Hard AR 85.6(0.9) 77.3(1.2) 66.4(3.2) 50.8(1.8) 47.6(0.8) 77.4(0.5) 66.2(2.6) 50.4(1.4) 47.2(1.8)

ICBM 95.4(1.3) 86.4(0.8) 77.3(0.4) 56.4(1.6) 39.5(1.5) 86.7(0.7) 77.6(2.4) 56.9(1.9) 39.8(3.2)
PCBM 95.7(1.6) 85.6(1.0) 76.3(1.5) 58.7(2.1) 40.3(1.2) 87.5(1.5) 78.1(1.4) 57.6(1.8) 41.6(2.6)

ProbCBM 96.8(0.4) 85.5(0.2) 77.6(1.1) 59.7(1.5) 39.7(1.3) 87.7(1.2) 77.4(1.0) 57.4(1.4) 40.3(1.2)
Label-free CBM 96.4(1.3) 84.3(1.7) 76.9(1.4) 58.5(2.1) 40.8(0.3) 87.3(1.6) 77.8(1.2) 57.3(1.4) 40.0(1.8)

ProtoCBM 97.3(0.2) 92.3(1.3) 84.5(1.6) 64.5(3.2) 54.3(1.3) 92.4(1.1) 84.4(1.9) 64.5(2.4) 54.1(3.6)
ECBMs 96.4(1.3) 92.1(1.5) 87.5(3.7) 70.4(2.8) 64.7(2.1) 92.2(0.9) 86.6(3.7) 70.4(2.9) 64.4(6.1)

CBM-AT 93.4(1.4) 92.9(1.3) 85.6(0.7) 75.6(1.7) 59.6(1.6) 87.6(0.6) 77.5(1.0) 53.3(1.9) 39.7(1.5)
Hard AR-AT 82.5(0.3) 78.6(0.5) 76.6(1.6) 69.9(1.3) 60.5(1.7) 76.6(0.6) 65.2(1.4) 51.9(1.1) 47.5(2.1)

ICBM-AT 91.5(1.3) 91.6(2.4) 86.3(1.9) 79.3(1.6) 70.6(1.5) 80.4(1.2) 77.6(2.1) 56.4(1.8) 39.4(1.6)
PCBM-AT 93.6(0.6) 92.5(1.6) 84.4(0.9) 76.5(1.3) 70.9(1.9) 80.4(1.5) 75.3(1.2) 55.6(1.6) 41.6(2.1)

ProbCBM-AT 93.5(0.9) 90.3(1.4) 83.3(1.3) 78.2(1.6) 70.3(1.8) 87.4(0.9) 77.6(1.2) 57.5(1.6) 40.6(1.4)
Label-free CBM-AT 93.4(1.3) 91.4(0.8) 86.2(1.4) 80.9(1.6) 78.5(1.5) 87.8(1.4) 77.4(1.8) 57.7(1.7) 41.8(2.9)

ProtoCBM-AT 94.4(0.7) 92.7(1.1) 87.2(1.9) 70.3(4.2) 68.7(2.7) 91.7(1.2) 82.5(1.5) 60.2(2.4) 52.1(6.1)
ECBMs-AT 93.6(1.0) 91.9(2.5) 88.1(2.1) 83.1(3.8) 78.4(3.4) 90.7(2.4) 83.7(2.5) 68.7(2.7) 66.7(3.7)

LEN 96.4(0.8) 89.1(3.4) 77.8(1.6) 56.7(1.2) 40.4(1.3) 89.1(3.4) 77.8(1.6) 56.7(1.2) 40.4(1.3)
DKAA 96.2(1.1) 91.2(1.5) 85.6(1.6) 76.9(1.3) 73.7(5.3) 91.2(1.5) 85.6(1.6) 76.9(1.3) 73.7(5.3)

MORDAA 96.5(0.1) 91.7(1.5) 86.1(1.8) 80.6(2.1) 76.8(3.1) 91.7(1.5) 86.1(1.8) 80.6(2.1) 76.8(3.1)
DeepProblog 96.4(0.2) 89.2(3.5) 77.4(2.8) 53.7(1.3) 39.4(5.4) 89.2(3.5) 77.4(5.5) 53.1(3.8) 39.4(5.4)

MBM 96.2(0.2) 93.5(3.1) 90.3(2.4) 88.7(3.2) 85.7(6.7) 93.5(3.2) 90.3(2.7) 88.7(3.2) 85.7(6.7)
C-HMCNN 96.5(0.4) 93.6(7.2) 89.7(1.2) 87.6(2.5) 85.0(3.2) 93.6(7.2) 89.7(1.2) 87.6(2.5) 85.0(3.2)

AGAIN 96.3(0.5) 92.4(1.2) 93.1(2.3) 93.8(1.9) 91.5(1.7) 94.5(1.6) 93.3(1.7) 93.8(1.4) 92.1(2.1)

MIMIC-III
EWS

CBM 95.7(0.2) 90.4(1.7) 75.7(1.3) 50.4(1.5) 39.8(1.4) 90.7(0.9) 75.7(1.3) 50.9(1.4) 30.7(1.5)
Hard AR 96.7(0.3) 78.8(1.5) 69.6(1.3) 53.8(1.7) 45.3(1.6) 77.4(1.8) 65.3(1.3) 53.8(3.2) 47.9(2.8)

ICBM 95.6(0.4) 86.5(1.3) 75.0(1.6) 56.8(2.1) 39.3(3.2) 86.5(1.7) 77.6(1.4) 56.7(2.1) 30.7(1.9)
PCBM 96.1(0.2) 86.5(1.4) 73.0(1.2) 53.8(2.5) 44.2(2.6) 88.4(1.2) 78.7(1.4) 57.8(2.2) 32.6(2.5)

ProbCBM 96.1(0.1) 84.6(1.4) 76.6(1.6) 56.9(1.3) 39.7(3.1) 86.8(1.4) 76.9(3.1) 57.4(3.5) 40.3(4.0)
Label-free CBM 96.1(0.1) 86.5(1.2) 76.5(1.6) 65.5(2.1) 40.3(2.3) 86.9(0.9) 77.6(4.1) 56.8(6.3) 42.3(7.4)

ProtoCBM 96.7(0.6) 87.6(1.4) 81.4(1.0) 76.4(1.4) 70.8(2.4) 87.4(1.2) 81.7(1.1) 76.3(2.1) 69.4(2.4)
ECBMs 97.9(0.2) 88.4(1.2) 79.4(1.3) 70.8(2.6) 65.6(3.2) 88.6(2.7) 79.4(2.1) 70.4(5.4) 66.1(4.8)

CBM-AT 94.2(0.4) 90.3(1.2) 85.4(1.3) 78.8(1.9) 60.9(1.9) 85.7(2.5) 77.5(2.3) 50.8(3.1) 40.8(3.7)
Hard AR-AT 94.2(0.7) 88.4(1.4) 76.9(1.6) 70.2(2.6) 65.3(3.1) 77.5(1.1) 62.1(1.1) 50.7(1.1) 44.2(1.1)

ICBM-AT 92.3(0.4) 90.3(2.1) 86.3(1.9) 86.5(2.7) 71.1(3.5) 86.5(2.6) 77.6(4.7) 58.7(6.8) 39.4(9.3)
PCBM-AT 94.2(0.6) 90.3(1.7) 84.4(3.2) 76.9(3.4) 69.2(4.7) 81.7(3.7) 75.3(3.3) 54.6(4.1) 42.3(4.9)

ProbCBM-AT 93.0(0.4) 91.8(1.4) 88.4(1.5) 78.8(3.6) 73.0(3.8) 86.5(1.4) 76.9(4.8) 56.3(7.4) 40.6(12.8)
Label-free CBM-AT 94.2(0.6) 89.5(1.7) 86.7(1.8) 84.3(3.7) 77.3(3.8) 84.2(1.4) 78.9(2.5) 56.7(4.6) 44.2(7.9)

ProtoCBM-AT 94.5(1.2) 89.7(1.1) 81.4(1.0) 76.4(1.4) 70.8(2.4) 80.4(1.2) 76.7(4.1) 66.3(2.1) 61.3(5.4)
ECBMs-AT 93.9(0.6) 89.8(4.2) 82.3(2.1) 75.4(2.4) 70.6(2.8) 79.6(2.7) 74.2(6.2) 69.2(6.7) 65.9(6.5)

LEN 96.4(0.6) 90.3(2.6) 75.7(2.8) 50.3(3.8) 40.2(7.1) 90.3(2.6) 75.7(2.8) 50.3(3.8) 40.2(7.1)
DKAA 96.5(1.5) 96.1(1.6) 87.3(2.7) 79.8(2.1) 75.8(4.7) 96.1(1.6) 87.3(2.7) 79.8(2.1) 75.8(4.7)

MORDAA 95.2(1.4) 95.9(2.4) 93.7(2.3) 86.3(1.8) 79.4(4.6) 95.9(2.4) 93.7(2.3) 86.3(1.8) 79.4(4.6)
DeepProblog 95.5(1.3) 90.4(1.7) 75.7(1.3) 50.4(1.5) 39.8(1.4) 90.4(1.7) 75.7(1.3) 50.4(1.5) 39.8(1.4)

MBM 95.9(0.5) 92.7(4.2) 88.7(2.4) 86.3(1.3) 84.4(5.7) 92.7(4.2) 88.7(2.4) 86.3(1.3) 84.4(5.7)
C-HMCNN 96.6(1.2) 94.0(2.6) 92.5(1.6) 85.5(5.7) 83.5(5.2) 94.0(2.6) 92.5(1.6) 85.5(5.7) 83.5(5.2)

AGAIN 96.1(0.3) 96.1(0.7) 94.2(1.4) 96.1(1.2) 94.2(1.2) 94.0(2.7) 94.1(6.3) 94.2(2.4) 92.3(4.7)

Figure 5: The impact of the factor graph size on P-ACC and E-ACC across 4 perturbation magni-
tudes on two real-world datasets.

the ground truth explanations for improving the predictive accuracy. Moreover, as the number of fac-
tors in G′ exceeds that of G (ratio > 1.0), E-ACC begin to converge. This also validates the setting
for the number of factors in the original G is reasonable. In addition, we report the P-ACC and E-
ACC comparison results of AGAIN on the CUB dataset (see Table 3 and Table 4). The comparison
results of P-ACC and E-ACC on other datasets are provided in Appendix D.5. The results indicate
that AGAIN is optimal for E-ACC on all three datasets. Furthermore, since perturbations do not im-
pact the final predictions, the P-ACC remains consistent across different levels of perturbation. The
P-ACC of AGAIN are comparable to the other baselines because the factor graph does not improve
the task predictive accuracy. We present a comparison of E-ACC and P-ACC between the CBM and
AGAIN on the two real-world datasets in Figure 6. The results show that AGAIN achieves higher
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E-ACC values and comparable P-ACC compared to CBM under ϵ = 32 perturbation. In the benign
environment, E-ACC and P-ACC of AGAIN also remain comparable. The results suggest that factor
graph logical reasoning does not affect prediction accuracy in the absence of perturbation.

Table 3: Comparisons of E-ACC between AGAIN and baselines on CUB.

Method clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CBM-AT 97.6(1.2) 91.4(1.3) 90.1(1.2) 86.9(1.4) 85.4(2.1) 90.6(0.6) 89.5(1.2) 87.7(2.1) 80.4(1.4)
Hard AR-AT 97.5(1.4) 93.1(0.4) 90.4(1.6) 86.3(1.7) 84.7(2.5) 91.2(0.2) 86.7(1.5) 84.1(2.3) 79.6(2.1)

ICBM-AT 96.8(1.1) 94.0(2.1) 89.7(2.4) 85.8(2.3) 84.8(3.2) 89.3(2.7) 85.1(2.1) 80.5(3.1) 78.9(1.2)
PCBM-AT 97.8(1.1) 92.4(2.7) 89.4(1.2) 86.4(1.9) 83.5(2.4) 92.4(1.6) 89.8(3.1) 85.3(2.6) 80.4(1.5)

ProbCBM-AT 96.9(1.0) 92.5(1.0) 90.2(1.4) 84.6(2.3) 83.9(2.1) 90.6(3.2) 88.6(1.6) 82.5(1.7) 79.4(1.3)
Label-free CBM-AT 97.9(0.9) 93.1(1.1) 92.1(2.3) 86.7(1.6) 84.7(3.2) 90.4(2.1) 86.7(2.1) 85.6(1.2) 80.5(2.8)

ProtoCBM-AT 98.1(0.7) 93.1(1.3) 90.4(1.5) 85.4(3.1) 83.9(2.4) 91.6(1.8) 86.8(3.2) 83.1(1.3) 81.5(3.1)
ECBMs-AT 98.2(0.5) 92.8(2.4) 89.3(3.4) 86.6(2.2) 83.7(2.5) 91.3(1.3) 89.4(1.3) 84.8(2.5) 80.7(1.9)

LEN 97.7(0.2) 93.1(1.5) 89.4(1.4) 86.1(1.4) 79.9(3.7) 93.1(1.5) 89.4(1.4) 86.1(1.4) 79.9(3.7)
DKAA 98.2(1.1) 92.0(1.4) 90.6(1.3) 86.4(3.2) 80.3(2.6) 92.0(1.4) 90.6(1.3) 86.4(3.2) 80.3(2.6)

MORDAA 98.1(1.4) 93.1(0.7) 91.2(1.4) 86.3(1.8) 79.4(4.6) 93.1(0.7) 91.2(1.4) 86.3(1.8) 79.4(4.6)
DeepProblog 96.9(0.8) 91.0(2.3) 89.8(1.1) 85.2(1.3) 80.2(1.4) 91.0(2.3) 89.8(1.1) 85.2(1.3) 80.2(1.4)

MBM 97.9(1.0) 91.6(1.2) 90.3(1.4) 86.3(1.3) 82.7(3.2) 91.6(1.2) 90.3(1.4) 86.3(1.3) 82.7(3.2)
C-HMCNN 98.1(0.2) 91.3(1.4) 91.6(2.1) 85.5(5.7) 84.5(2.3) 94.0(2.6) 92.5(1.6) 85.5(5.7) 83.5(5.2)

AGAIN 97.5(0.1) 94.1(0.2) 94.1(0.2) 93.8(0.4) 93.6(0.7) 94.9(0.3) 94.9(0.7) 93.5(1.1) 93.9(0.7)

Table 4: Comparisons of P-ACC between AGAIN and baselines on CUB.

Method clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CBM-AT 62.5(1.2) 62.4(1.2) 62.4(1.1) 62.2(1.4) 60.5(1.1) 62.4(1.0) 62.6(1.2) 59.4(0.8) 59.6(1.2)
Hard AR-AT 62.4(1.3) 62.2(0.6) 61.2(0.6) 61.6(0.4) 59.6(0.8) 61.6(1.2) 60.3(0.3) 59.4(0.6) 59.7(1.2)

ICBM-AT 62.4(1.7) 62.2(0.6) 61.3(0.6) 61.8(1.0) 59.3(1.1) 62.4(1.1) 60.2(0.2) 59.5(0.4) 59.8(1.2)
PCBM-AT 62.5(0.4) 62.1(0.6) 61.0(0.6) 61.6(0.3) 59.6(0.8) 62.6(1.2) 61.0(0.1) 59.4(0.7) 59.5(1.1)

ProbCBM-AT 62.4(0.5) 62.2(0.4) 61.4(1.1) 61.6(0.4) 59.5(0.8) 61.6(1.2) 60.6(0.3) 59.3(1.1) 59.6(0.8)
Label-free CBM-AT 62.7(1.3) 62.7(0.6) 61.1(0.4) 61.3(0.2) 60.7(1.1) 61.3(1.2) 60.6(0.3) 59.3(0.6) 59.5(0.8)

ProtoCBM-AT 62.4(1.3) 62.1(0.7) 61.3(0.8) 61.6(0.3) 59.2(0.7) 61.4(1.0) 60.1(1.2) 59.4(0.9) 59.5(1.2)
ECBMs-AT 62.6(1.2) 62.4(1.6) 62.4(1.6) 61.7(0.4) 59.6(0.8) 61.5(1.1) 60.3(1.2) 59.3(1.1) 59.6(1.2)

LEN 62.4(0.4) 62.2(1.3) 62.3(0.5) 59.4(1.6) 59.4(1.4) 62.2(1.3) 62.3(0.5) 59.4(1.6) 59.4(1.4)
DKAA 61.4(1.5) 62.6(1.2) 62.4(0.5) 59.4(1.2) 59.2(1.7) 62.6(1.2) 62.4(0.5) 59.4(1.2) 59.2(1.7)

MORDAA 62.2(0.1) 62.5(0.8) 61.8(1.3) 59.5(1.1) 59.3(0.9) 62.5(0.8) 61.8(1.3) 59.5(1.1) 59.3(0.9)
DeepProblog 59.2(0.3) 59.3(1.4) 59.7(0.2) 59.3(1.4) 59.5(1.7) 59.3(1.4) 59.7(0.2) 59.3(1.4) 59.5(1.7)

MBM 62.5(1.2) 62.5(1.2) 61.6(1.1) 59.7(1.4) 59.4(1.1) 62.5(1.2) 61.6(1.1) 59.7(1.4) 59.4(1.1)
C-HMCNN 62.5(1.2) 62.6(1.2) 62.4(1.1) 59.6(1.4) 59.4(1.1) 62.6(1.2) 62.4(1.1) 59.6(1.4) 59.4(1.1)

AGAIN 62.5(0.4) 62.2(0.6) 61.2(0.6) 61.6(0.4) 59.6(0.8) 61.6(1.2) 60.3(0.3) 59.4(0.6) 59.6(0.8)

Figure 6: The comparison of P-ACC and E-
ACC on the two real-world datasets.

Rectification of Interactive Intervention Switch.
In Figure 7(a) and 7(b), we illustrate several in-
stances of two real-world datasets along with rec-
tified explanation segments with a dimension of 5
and show the utilized rules. The interactive inter-
vention switch effectively rectifies the logical error
of the explanation based on the predefined rules,
thereby enhancing the overall logical coherence of
the explanation.

Ablation Study. We conducted ablation studies
to examine the effectiveness for each rule type in
G. The larger number of rules in CUB compared
to MIMIC-III EWS contributes to a more signifi-
cant ablation effect, so we executed ablation stud-
ies on the CUB data. We investigated the perfor-
mance of all factor graph variants by reporting the
LSM results in Table 5. Fy and Fc denote the set
of factors encoding category-concept rules and the set of factors encoding concept-concept rules,
respectively.

According to Table 5, we can draw the following conclusions. First, the variant without G (i.e.,
F = ∅) yielded the lowest LSM values, affirming the essential role of G in the model. Second, G
encoding both concept-concept and category-concept rules (i.e., F = Fy ∪ Fc) achieved the best
performance. This factor graph (constructed in this paper) demonstrates an average improvement
of 6.86 over other variants of G that encode only the concept-concept or category-concept rules.
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Figure 7: Rectified explanation results on three datasets. The bar represents the normalized activa-
tion values of the concepts. Blue bars indicate activated concepts and red bars indicate inactivated
concepts. The orange area shows the logical rules followed.

Table 5: Ablation study on the CUB dataset: impact
of rule types.

Factor Set ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32

F = ∅ 89.2(1.1) 77.4(2.1) 53.7(2.4) 39.4(3.1)
F = Fy 92.5(0.3) 89.5(2.1) 85.5(2.2) 84.0(2.5)
F = Fc 91.4 (0.4) 86.8(2.4) 82.6(2.3) 80.1(2.3)

F = Fy ∪ Fc 94.5(0.3) 93.3(2.9) 93.8(2.2) 92.1(6.1)

This indicates that both rules are essential
for comprehensibility of explanations. Fi-
nally, the variant containing only Fc per-
forms lower than the variant containing only
Fy . This suggests that the category-concept
rules contain more direct logical knowledge
about category prediction.

6 CONCLUSION AND DISCUSSION

In this paper, we explore the comprehensibility of explanations under unknown perturbations and
propose AGAIN, an factor graph-based interpretable neural network. Inspired by the knowledge
integration of factor graphs, AGAIN obtains comprehensible explanations by encoding prior logical
rules as the factor graph and utilizing factor graph reasoning to identify and rectify logical error in
explanations. It addresses the inherent limitations of current adversarial training-based interpretable
models by guiding explanation generation during inference. Furthermore, we provide a theoretical
analysis to demonstrate that factor graphs significantly contribute to obtaining comprehensible ex-
planations. We present an initial attempt to generate comprehensible explanations under unknown
perturbations from the inference perspective. AGAIN provides an effective solution for the defense
of interpretable neural networks against various perturbations and meanwhile saves the high cost
of retraining. It takes a significant step towards resolving the crisis of trust between humans and
interpretable models. In addition, we note two limitations of AGAIN: 1) the validity of AGAIN
relies on the correct prediction categories. Wrong categories imported into the factor graph cause
explanations to be wrongly rectified; 2) when domain knowledge changes, the factor graph needs to
be reconstructed, which implies AGAIN lacks generalizability. We leave these for future work.
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A ALGORITHMS

The overall algorithm for the interactive intervention switch is summarized in Algorithm 1.

Algorithm 1: Interactive intervention switch
Input : The factor graph G, original concept activation vector a
Output: Rectified concept activation vector are

1 for fi in F do
2 if ψi = 0 then
3 Obtain the set Ti of all possible intervention cases for fi;
4 for ti in Ti do
5 Compute si through a single intervention ti according to Eq. (4);
6 Select ti with the highest si as a candidate intervention;

7 Aggregate all candidate interventions into final intervention t∗;
8 Obtain intervention vector z and mask vector mt∗ ;
9 Aggregate z and a based on Eq. (5) yields the resulting ĉre;

10 return ĉre;

B THEORETICAL ANALYSIS OF AGAIN

In this section, we present theoretical proofs to ensure that the G in AGAIN contributes to generating
comprehensible explanations under unknown perturbations. Previous theoretical analyses on the
validity of interpretable models have emphasized that comprehensible explanations tend to have
a high similarity to explanatory labels (Li et al., 2020; Karpatne et al., 2017; Von Rueden et al.,
2021). Therefore, we hope to guarantee that AGAIN can generate comprehensible explanations by
proving that G contributes to explanations under unknown perturbations in approximation to the
explanatory labels. Specifically, our theoretical proof is divided into two parts. In the first part, we
establish correlations between the conditional probabilities of the factors and the lower bounds on
the predictive accuracy of concepts. In the second part, we show that this lower bound increases
according to the larger size of G.

B.1 THE CONCEPT PREDICTIVE ACCURACY LOWER BOUND FOR AGAIN

Under the adversarial distribution, given an perturbation δ and the concept explanation label c, the
accuracy of the explanation is denoted as Ah:

Ah :=
∏
c∈c

Pδ (ĉ = c) . (6)

To simplify the writing, we use hG (ĉ, ŷ) to denote the process of identifying (Section 4.2) and
rectifying (Section 4.3) in AGAIN. We extend this definition to assess the accuracy of explanations
generated by AGAIN:

AAGAIN :=
∏
c∈c

Pδ

(
h
(m)
G (ĉ, ŷ) = c

)
, (7)

where h(m)
G (·) denotes the output of the factor graph reasoning with respect to the m-th concept.

Lemma 1. Given a factor graph G, the following equation is valid:

AAGAIN =
∏
c∈c

Pδ (∆N (vĉ) > 0 |c ) , (8)

where
∆N (vĉ) =

∑
i∈|N (vĉ)|

(2wiψi − wi). (9)
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Proof. First, AAGAIN :=
∏

c∈c Pδ

(
h
(m)
G (ĉ, ŷ) = c

)
is known. Then, based on the properties of

G, Pδ

(
h
(m)
G (ĉ, ŷ) = c

)
can be expressed equivalently as Pδ (P (Fvĉ |vĉ = c) > P (Fvĉ |vĉ ̸= c) |c ).

According to Eq. (1), we extend P (N (vĉ) |vĉ = c) > (N (vĉ) |vĉ ̸= c) to a formulation that incor-
porates potential functions within G:

P (N (vĉ) |vĉ = c) > (N (vĉ) |vĉ ̸= c)

⇒
∑

i∈|N (vĉ)|

wiψi − (
∑

i∈|N (vĉ)|

wi(1− ψi)) > 0

⇒
∑

i∈|N (vĉ)|

wiψi −
∑

i∈|N (vĉ)|

wi +
∑

i∈|N (vĉ)|

wiψi > 0

⇒
∑

i∈|N (vĉ)|

2wiψi − wi > 0,

then, we obtain:

AAGAIN =
∏
c∈c

Pδ

(
h
(m)
G (ĉ, ŷ) = c

)
=
∏
c∈c

Pδ ((Fvĉ |vĉ = c) > (Fvĉ |vĉ ̸= c) |c )

=
∏
c∈c

Pδ

(∑
i∈|N (vĉ)|

2wiψi − wi > 0 |c
)

=
∏
c∈c

Pδ

(∑
i∈|N (vĉ)|

2wiψi − wi > 0 |c
)

We observe that ∆N (vĉ) determines the lower bound of Eq. (8). Further, we characterize the con-
straints on the concepts within G to impose bounds on the ∆N (vĉ), thereby restricting its left-tailed
probability below 0. To this end, considering a concept variable vĉ, we characterize the four cases
of constraints imposed by G on vĉ during reasoning with its neighbor factors fi ∈ N (vĉ):

L ≤ Pδ (ψi |c ) ≤ U, (10)

LT
P ≤ TP = Pδ (ψi = 1|vĉ = c) ≤ UT

P

LT
N ≤ TN = Pδ (ψi = 0|vĉ = 1− c) ≤ UT

N

LF
N ≤ FN = Pδ (ψi = 0|vĉ = c) ≤ UF

N

LF
P ≤ FP = Pδ (ψi = 1|vĉ = 1− c) ≤ UF

P .

(11)

Moreover, we employ factor graph characterizations to represent the lower bound of ∆N (vĉ). To
this end, a lemma is introduced below (Gürel et al., 2021). This lemma illustrates an inequality
property between ∆N (vĉ) and factor graph characterizations.

Lemma 2. Suppose each factor has the optimal weight. Then there exists

E (∆N (vĉ) |c ) ≥ Z1 + Z2 − log
c(1−2c)

1− c
, (12)

where

Z1 = c

(
TP log

LT
P

1− UF
P

+
(
1− TP

)
log

1− UT
P

1− LF
P

− FN log
UT
N

LF
N

+
(
1− FN

)
log

1− LT
N

1− UF
N

)
,

Z2 = (1− c)

(
TN log

LT
N

UF
N

+
(
1− TN

)
log

1− UT
N

1− LF
N

− FP log
UT
P

LF
P

+
(
1− FP

)
log

1− LT
P

1− UF
P

)
.

(13)

To facilitate the writing, we have opted for a simplified symbolic representation:

L
∆N(vĉ),c = Z1 + Z2 − log

c(1−2c)

1− c
. (14)

To further solve the bound of AAGAIN, we introduce another lemma (Chen et al., 2024). This lemma
outlines the definition and properties of Hoeffding’s inequality.
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Lemma 3. Suppose the given x1, ..., xt are independent random variables, and xt−xt−1 ∈ [at, bt].
The empirical mean of these variables denoted as x̄ = (x1 + ...+ xt)/t. Then for any β > 0 there
exists the Hoeffding’s inequality as shown below:

P (|x̄− E (x̄)| ≥ β) ≤ 2 exp

(
− 2β2∑

i∈t (τi)
2

)
, (15)

where (bi − ai) ≤ τi and E(·) denotes the expectation.

Herein, we provide the lower bound with respect to AAGAIN. This lower bound imposes a minimum
accuracy constraint on AGAIN.

Theorem 1. For the AGAIN with G, under the assumption that factors satisfying Z1 > 0 and
Z2 > 0 are considered, the following inequality is established:

AAGAIN ≥
∏
c∈c

(1− E (exp (∂))) , (16)

where

∂ = −2

(
L
∆N(vĉ),c

)2
∑

i∈N

(
log UT (1−LF )

LT (1−UF )

)2 . (17)

Proof. According to the symmetry of G, we can derive the following equation:

AAGAIN =
∏
c∈c

Pδ

(
h
(c)
G (ĉ, ŷ) = c

)
=
∏
c∈c

(
1− Pδ

(
∆N (vĉ) < 0 |c

))
.

According to Eq. (12), we can get

Pδ (∆N (vĉ) < 0 |c ) = Pδ

(
∆N (vĉ) − E

[
∆N (vĉ)

]
+ E

[
∆N (vĉ)

]
< 0 |c

)
= Pδ

((
∆N (vĉ) − E

[
∆N (vĉ)

])
< −E

[
∆N (vĉ)

]
|c
)

= Pδ

((
∆N (vĉ) − E

[
∆N (vĉ) |c

])
< −E

[
∆N (vĉ) |c

]
|c
)

≤ Pδ

((
∆N (vĉ) − E

[
∆N (vĉ) |c

])
< −L∆N(vĉ),c |c

)
.

Substituting Pδ

(
∆N (vĉ) < 0 |c

)
≤ Pδ

((
∆N(vĉ) − E

[
∆N (vĉ) |c

])
< −L∆N (vĉ),c |c

)
into Hoeffd-

ing’s inequality and letting β = L
∆N(vĉ),c in Lemma 3, we evidently derive the following inequality:

Pδ

(
∆N (vĉ) < 0 |c

)
≤ Pδ

(
∆N (vĉ) − E

[
∆N (vĉ) |c

]
< −L∆N(vĉ),c |c

)
≤ exp

−
2
(
L
∆N(vĉ),c

)2
∑

i∈N (τi)
2

 .

According to Lemma 3, we can use Eq. (9) and Eq. (12) to establish Hoeffding’s inequality with
respect to AAGAIN. If we consider ∆N (vĉ) as the independent random variable xt in Lemma 3, we
assume

x
(ĉ)
i+1 − x

(ĉ)
i = wi exp (ψi) s.t. i ∈ |N (vĉ)| ,

according to Eq. (10), Eq. (11), and Eq. (12), we can infer ai and bi for ψi in two cases. If ψi = 1,
then there exists

log
LT

UF
≤ wi exp (ψi) = wie ≤ log

UT

LF
,

if ψi = 0, then there exists

log
1− UT

1− LF
≤ wi exp (ψi) = wi ≤ log

1− LT

1− UF
.

Since wi > 0, it is evident that wie > wi. Therefore, for both cases above, there is a uniform range
interval that can be inferred

log
1− UT

1− LF
≤ wi exp (ψi) ≤ log

UT

LF
,
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further, it can be inferred that wi exp (ψi) ≤ τi. We know (bi − ai) ≤ τi and ai ≤ wi exp (ψi) ≤
biso xt − xt−1 ∈ [at, bt] holds.

log
UT

LF
− log

1− UT

1− LF
= log

UT (1− LF )

LF (1− UT )
≤ τi s.t. i ∈ |N (vĉ)| ,

according to

Pδ (∆N (vĉ) < 0 |c ) ≤ exp

(
−
2
(
L∆N (vĉ),c

)2∑
i∈N (τi)

2

)
,

we can be inferred that∏
c∈c

Pδ

(
h
(c)
G (ĉ, ŷ) = c

)
=
∏
c∈c

Pδ

(
∆N (vĉ) > 0 |c

)
=
∏
c∈c

(
1− Pδ

(
∆N (vĉ) < 0 |c

))

≥
∏
c∈c

1− E

exp
−

2
(
L
∆N(vĉ),c

)2
∑
i∈N

(τi)
2





=
∏
c∈c

1− E

exp
−

2
(
L
∆N(vĉ),c

)2
∑
i∈N

(
log UT (1−LF )

LF (1−UT )

)2




B.2 LOWER BOUND OF ACCURACY VERSUS NUMBER OF FACTORS IN THE FACTOR GRAPH

After analyzing the lower bound of concept accuracy, we aim to demonstrate a positive correlation
between this lower bound and the number of factors in the factor graph. In simpler terms, an increase
in the number of factors is directly proportional to an enhancement in predictive accuracy. This
implies that G contribute to the predictive performance of the model. To facilitate the analysis, we
introduce a lemma below (Gürel et al., 2021). This lemma illustrates an unequal relationship of the
accuracy lower bound under specific factor graph characterizations.

Lemma 4. Suppose that the upper and lower bounds of each factor graph characteristic are identi-
cal, then there exists

∏
c∈c

1− E

exp
−

2
(
L∆N (vĉ),c

)2
∑
i∈N

(
log UT (1−LF )

LF (1−UT )

)2


 ≥

∏
c∈c

(
1− exp

(
−2N

(
ΘT −ΘF

)))
, (18)

where
ΘT := UT = LT ΘF := UF = LF . (19)

Furthermore, we present a theorem that highlights a significant correlation between the lower bound
of concept accuracy and the number of factors in G.

Theorem 2. For the given G in AGAIN, if it satisfies the assumptions of Lemma 4 and each factor
in G satisfies ΘT > ΘF , the lower bound on the concept predictive accuracy increases strictly
monotonically as the number of factors N of the factor graph increases. Moreover, the lower bound
of concept predictive accuracy with factor graph is strictly larger than the lower bound without factor
graph.

Proof. According to Eq. (18), if ΘT > ΘF , we can achieve

AAGAIN =
∏
c∈c

Pδ

(
h
(c)
G (ĉ, ŷ) = c

)
≥
∏
c∈c

(
1− exp

(
−2N

(
ΘT −ΘF

)))
.
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Figure 8: Correlation of association scores between concepts on the CUB dataset. The horizontal
and vertical axes indicate the correlation scores of the two concepts. The top row shows the associ-
ation scores for the 6 groups of concept pairs with PCCs > 0.8 (red scatter). The bottom row shows
the association scores for the 6 sets of concept pairs with PCCs < -0.5 (blue scatter).

Let ΘT −ΘF = α > 0 and f(N) = 1− exp
(
−2N

(
ΘT −ΘF

))
. Then there exists the first order

derivative f ′(N) = 2αe−2αN > 0 of f(N). Therefore, f(N) is monotonically increasing, i.e.,
AAGAIN is a strictly monotonically increasing function with respect to N .

Notably, for the case without the factor graph (i.e., N = 0), we have f(N) = 1 −
exp

(
−2N

(
ΘT −ΘF

))
= 0. And for a factor graph G with an arbitrary number of nodes,

f(N) > f(0) = 0. Therefore, the concept predictive accuracy with the introduction of the fac-
tor graph is constantly greater than the case without the factor graph.

B.3 DISCUSSION

Our theoretical proof validates that G has the potential to enhance prediction accuracy, provided that
the rules embedded in the factor graphs restrict concept activation in alignment with prior logic,
satisfying the qualifying sufficient condition outlined in Theorem 2 (i.e., T > F ). Intuitively, as
the size of N increases, the lower bound on AAGAIN grows exponentially, leading to a substantial
improvement in AAGAIN. We observe that Theorem 2 holds depending on the condition set by
Lemma 4 (i.e., UT = LT and UF = LF ). Indeed, UT = LT and UF = LF are inherently met
when the rules governing G adhere to prior logic. More specifically, if a factor satisfies ΘT > ΘF

and its neighboring variables adopt the same value as ground-truth labels, then its potential function
value must be e. In this case, the conditional probability of the potential function is fixed.

C EXPERIMENTAL DETAILS

C.1 DATASETS AND DATA PREPROCESSING

All data processing and experiments are executed on a server with two Xeon-E5 processors, two
RTX4000 GPUs and 64G memory. We construct logical rule sets on the three datasets respectively.
The detailed information of data processing on both datasets is summarized as follows:

Synthetic-MNIST. The Synthetic-MNIST dataset is a composite dataset derived from the origi-
nal MNIST dataset. Each category of the MNIST handwritten digits is treated as a concept, and
four digits from different categories are concatenated to form a Synthetic-MNIST sample. Conse-
quently, each Synthetic-MNIST sample contains 4 concept labels and a synthetic category label.
The Synthetic-MNIST comprised 79,261 samples from 12 synthetic categories. The mapping of
each synthetic category to concepts is shown in Table 9. According to Table 9, we construct the
first-order logical rule set for Synthetic-MNIST. The samples, whose category label is 0, are taken
as examples. We construct category-concept rules: c0 ⇔ y0, c2 ⇔ y0, c4 ⇔ y0, c6 ⇔ y0; concept-
concept rules: c0⊕c1, c2⊕c3, c4⊕c5, c4⊕c6, c7⊕c8, c9⊕c5. Note that the logical rules used on the
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Table 6: Statistics of rule and factor graphs constructed on three datasets.

Dataset Synthetic
-MNIST CUB MIMIC

-III EWS

Logical
Rule

Category-concept 33 11,300 144
Concept-concept 13 3763 35

Factor
Graph

Concept Variable 10 112 22
Category Variable 12 200 16

Logical Factor 46 15,063 179

Figure 9: Category labels and concept labels for Synthetic-MNIST.

synthetic dataset can encompass the entire knowledge required for the downstream tasks. Therefore,
we randomly omit a subset of these rules to simulate the incompleteness of explicit knowledge2.

CUB. The CUB (Caltech-UCSD Birds-200-2011) dataset comprises 11,788 images of birds dis-
tributed across 200 categories. Each image is annotated with 312 high-level semantic labels, such
as wing color and beak shape, in addition to a single category label. We have retained 112 cru-
cial semantic labels as concepts following a denoising process. Furthermore, potential associations
between concepts and categories are manually labeled by the bird experts and quantified as an asso-
ciation score in the interval [0, 100]. Association scores approaching 100 or 0 signify a significant
degree of coexistence or exclusion, respectively, between the concept and the category. Conver-
gence towards 50 indicates the absence of any discernible association. We formulate the logical rule
set based on the association scores. Association scores near 100 are regarded as category-concept
rules representing coexistence constraints, while association scores approaching 0 are identified as
category-concept rules indicating exclusion constraints. To construct concept-concept rules, we cre-
ate a score vector that includes association scores corresponding to a concept under each category.
We calculate the Pearson correlation coefficient (PCC) between each score vector, an elevated PCC
between score vectors suggests a greater similarity between the two concepts. As illustrated in Fig-
ure 8, we visualized the association scores of 6 sets of exclusive concepts and 6 sets of coexisting
concepts across 200 categories, respectively. We observe that for concept groups with PCCs >0.8,
their association scores are positively linearly correlated. While concept groups with the PCC <-0.5
showed negative linear correlation. Therefore, we construct coexistence rules for groups of concepts
with PCCs > 0.8 and exclusion rules for groups of concepts with PCCs < -0.53.

MIMIC-III EWS. The MIMIC-III EWS dataset is a medical dataset for an early warning
score (EWS) prediction task, comprising electronic health records from 17,289 patients. The EWS
is the patient’s vital sign score, ranging from 0 to 15. Deviation from normal vital signs results in
an increase in EWS. We utilize 15 input attributes of patients to predict 16 labeled categories (each
integer value of EWS as a category). Additionally, we predefine 22 concepts related to vital signs
(such as body temperature, mean blood pressure, etc.) based on the Hard AR (Havasi et al., 2022)
recommendations for generating explanations. We directly establish category-concept rules based
on the existing probability analysis results from Hard AR and formulate concept-concept rules using
cosine similarity4.

The statistics of the rules and factor graphs constructed on the aforementioned dataset are presented
in Table 6, illustrating the number of each type of logical rules and each type of nodes in G.

2http://yann.lecun.com/exdb/mnist/
3http://www.vision.caltech.edu/visipedia/CUB-200.html
4https://physionet.org/content/mimiciii/1.4/
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C.2 CONCEPT-LEVEL INTERPRETABLE MODEL BASELINES

To evaluate the comprehensibility of the explanations, we compared AGAIN with 8 popular concept-
level interpretable model baselines. The baseline models are listed as follows:

• CBM (Koh et al., 2020a) is a classical interpretable neural network implemented with the
concept bottleneck structure.

• Hard AR (Havasi et al., 2022) expands the concept set with side-channels, and predicts
categories with binary concept vectors.

• ICBM (Chauhan et al., 2023) introduces interactive policy learning with cooperative pre-
diction to filter important concepts.

• PCBM (Yuksekgonul et al., 2023) introduces a concept-level self-interpretation module
that automatically captures concepts through multimodal models.

• ProbCBM (Kim et al., 2023) uses probabilistic concept embedding to model uncertainty
in concept predictions and explains predictions in terms of the likelihood that the concept
exists.

• Label-free CBM (Oikarinen et al., 2023) introduces a multimodal model to generate a
predefined concept set for the inputs and learns the mapping between input features and the
concept set.

• ProtoCBM (Huang et al., 2024) utilizes cross-layer alignment and cross-image alignment
to learn the mapping of different parts of the feature map to concept predictions, thereby
promoting the model to capture trustworthy concept prototypes.

• ECBMs (Xu et al., 2024) utilizes conditional probabilities to quantify predictions, concept
corrections, and conditional dependencies to capture higher-order nonlinear interactions
between concepts for improving the reliability of concept activations.

C.3 EVALUATION METRIC

• P-ACC. P-ACC measures the validity of concept-level explanations by reapplying rectified
explanations to the category predictor and examining the outcomes of category predictions.

• E-ACC. E-ACC measures the similarity between a concept-level explanation and the
ground-truth explanatory concept set, which is computed as follows:

E-ACC = E
[∑

m∈M I [ĉre,m = cm]

M

]
, (20)

where ĉre,m represents the binary transformation result for the m-th concept activation,
and cm denotes the ground-truth label of the m-th concept.

• LSM. Since the comprehensibility of explanations is based on prior human logics, the
extent to which an explanation adheres to logical rules can be utilized as a criterion for
evaluating its comprehensibility. In this experiment, we formulated LSM to quantify the
extent to which an explanation adheres to the prior human logics rules. This metric is
employed to evaluate the comprehensibility of the explanation. A higher LSM indicates a
higher comprehensibility of the explanation. In particular, we calculate the LSM by consid-
ering the weighted sum of potential functions within the factor graph. For an explanation
a, the definition of LSM is as follows:

LSM = E

[
exp

(∑
i∈N wiψi

)∏
i∈N wie

]
. (21)

The maximum value for LSM is 1, signifying that the explanation adheres to all the logical
rules encoded in G.

• IR and SR. In this experiment, IR and SR are devised to evaluate the capacity of the factor
graph for recognizing perturbations. IR quantifies the rate at which perturbed instances are
identified by the factor graph, computed as E [P (Vc |Vy ) > ∂ · ∨P (Vc |Vy ) |x+ δ], while
SR measures the rate at which benign instances are allowed to pass through the factor
graph, computed as E [P (Vc |Vy ) > ∂ · ∨P (Vc |Vy ) |x].
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Remarkably, only CBM, ProtoCBM, ECBMs, and ProbCBM baselines are suitable to Synthetic-
MNIST dataset, as the concepts in this dataset is synthetic and cannot be automatically captured by
other baselines.

C.4 IMPLEMENTATION DETAILS

AGAIN is implemented in PyTorch 1.1.0 based on Python 3.7.13. We construct G by instantiating
the G as a Markov logic network in Pracmln 1.2.4. Within the AGAIN, a fully connected layer is
utilized as the category predictor. InceptionV3 (Koh et al., 2020a), a popular convolutional neural
network structure, is employed as the concept predictor trained on real-world datasets. We use
a convolutional neural network with two convolutional layers and normalization operations as the
concept predictor trained on Synthetic-MNIST. We train the concept predictor (real-world datasets)
for 500 epochs, the concept predictor (Synthetic-MNIST) for 30 epochs, and the category predictor
for 15 epochs. We leverage the sgd optimizer with a learning rate of 0.01 to optimize the model. We
to mitigate the overfitting, weight decay of 0.00004 was configured. In the experiment, ∂ is set to
0.9. All experiments were repeated 4 times and the average of the results is reported.

C.5 ESTIMATION OF WEIGHTS

Due to the differences in the datasets, we use two methods to set rule weights in the factor graphs:
prior setting and likelihood estimation. For the CUB dataset, we use the prior-based weighting
method, as it provides predefined confidence for the mapping relations between concepts and cate-
gories. Therefore, we treat the weights as hyperparameters and directly convert the confidence into
corresponding weights.

For the MIMIC-III EWS and Synthetic-MNIST datasets, we use likelihood estimation to learn the
weights, as these datasets do not contain confidence information. Specifically, we directly apply
standard maximum likelihood estimation Yang et al. (2022) to learn the weights of each factor.
We assume that the samples in the training set should satisfy all logical rules when there is no
perturbation. Therefore, after assigning the concept activations of the samples to the factor graph,
the weights of the factors should maximize the conditional probability P (Vc |Vy ). In summary, we
minimize the negative log-likelihood function:

w = argmin
w

{
−
∑
N

log (P (Vc |Vy,w ))

}
, (22)

where N denotes the number of samples in the training set, and w denotes the weight vector formed
by concatenating the weights of all factors in the factor graph.

D MORE EXPERIMENTAL RESULTS

D.1 ABLATION ANALYSIS OF FACTOR GRAPHS

To validate the necessity of using factor graphs, we conducted a set of ablation studies comparing
the impact on LSM with and without factor graphs across three datasets. The altered model without
factor graphs is denoted as “w/o Factor Graph,” which only uses a predefined set of logic rules,
and the model with factor graphs is denoted as “w/ Factor Graph,” which encodes the logic rules
using a factor graph. The experimental results, shown in Table 7, indicate that the model using
factor graphs consistently yields better LSMs across all three datasets compared to the model that
uses only the logic rule set. This improvement is attributed to the uncertainty reasoning capability
of factor graphs, which can estimate the confidence levels of different rules and assign appropriate
weights accordingly. Notably, on the Synthetic-MNIST dataset, the LSMs achieved with just the
logic rule set are comparable to those with factor graphs. This is because most logic rules in the
Synthetic-MNIST dataset are synthesized and deterministic by nature. Purely deterministic logic
rules are often less applicable in real-world scenarios. Therefore, factor graphs offer an irreplaceable
advantage in detecting erroneous explanations in real-world scenarios.

21



Published as a conference paper at ICLR 2025

Table 7: Comparison of LSM with and without the factor graph.

Dataset Methods
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CUB
w/o Factor Graph 89.0(5.2) 87.6(6.7) 87.1(7.1) 86.1(6.2) 89.0(5.2) 87.6(6.7) 87.1(7.1) 86.1(6.2)
w/ Factor Graph 92.4(1.2) 93.1(2.3) 93.8(1.9) 91.5(1.7) 94.5(1.6) 93.3(1.7) 93.8(1.4) 92.1(2.1)

MIMIC
-III EWS

w/o Factor Graph 89.9(4.1) 89.8(7.2) 88.9(7.6) 87.4(6.9) 89.9(4.1) 89.8(7.2) 88.9(7.6) 87.4(6.9)
w/ Factor Graph 96.1(0.7) 94.2(1.4) 96.1(1.2) 94.2(1.2) 94.0(2.7) 94.1(6.3) 94.2(2.4) 92.3(4.7)

Synthetic
-MNIST

w/o Factor Graph 98.1(0.8) 97.3(1.5) 96.9(4.9) 94.9(3.8) 98.1(0.8) 97.3(1.5) 96.9(4.9) 94.9(3.8)
w/ Factor Graph 98.2(1.4) 97.9(1.3) 97.8(1.4) 95.6(1.2) 98.2(1.4) 97.9(1.3) 97.8(1.6) 97.8(2.0)

D.2 COMPUTATIONAL EFFICIENCY ANALYSIS

We assess the potential impact of increasing factor graph size on computational efficiency. Specif-
ically, we evaluate four factor graph sizes, containing 30, 60, 90, and 112 concepts, on the CUB
dataset, measuring their running time and LSM performance, respectively. To the best of our knowl-
edge, CUB is currently the dataset with the highest number of concepts (with 112 concept labels). In
addition, it is not necessary to discuss other datasets that have more concepts than CUB. Too many
concepts can lead to lengthy explanations, reducing comprehensibility. The evaluation is performed
under the unknown perturbation of ϵ=32.

We report the running time required to detect and correct erroneous explanations and the LSM of
the corrected explanations for all 4 scales of factor graphs (see Figure 10). According to the results,
the running time of the factor graph is inevitably higher than that of the other baselines due to the
extra steps of detection and correction required for the factor graph. However, this extra overhead
can be contained to the millisecond level. Furthermore, the running time is indeed proportional to
the size of the factor graph, but there is no exponential explosion, suggesting that AGAIN has good
scalability.

Figure 10: The computational efficiency analysis of factor graphs with different sizes.

D.3 ANALYSIS OF INTERVENTION STRATEGIES

We compare the computational overhead associated with different intervention strategies for cor-
recting concept activations. Specifically, we use the greedy strategy and the heuristic strategy as
baselines for comparison. For the heuristic strategy, we provide the indexes of incorrect concepts,
while for the concept intervention strategy, we supply the indexes of factors with a potential function
of 0. We evaluate the computational overhead of these three strategies on the CUB dataset under
a perturbation of ϵ=32. 5 samples are selected and randomly modified between 1 and 10 concepts
in each sample. Figure 11 illustrates the average number of interventions performed by different
strategies across these samples. The experimental results indicate that the number of interventions
increases for all three strategies as the number of incorrect concepts rises. When the number of
incorrect concepts is fewer than 10, the differences in the number of interventions among the three
strategies are minimal. Notably, the number of perturbed wrong concepts is typically small. For
instance, in the CUB dataset, the number of wrong concepts is typically only 1 to 10.

In addition, we theoretically analyze the computational complexity of the intervention strategy of
AGAIN. {∨,∧,¬} is proved to be sufficient to express all logical relations. Based on this, if two
concepts are randomly selected from a set of M concepts, there are at most M(M−1)

2 possible com-
binations. The maximum number of distinct logical rules between two concepts is 8, specifically:
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Figure 11: Comparison of intervention numbers for different intervention strategies.

Table 8: Comparisons of LSM for our AGAIN on the Synthetic-MNIST dataset.

Method clear
δk δu

ϵ=4 ϵ=8 ϵ=4 ϵ=8

CBM 97.8(0.6) 92.6(3.5) 86.8(4.6) 92.6(4.7) 86.3(5.4)
ProbCBM 98.6(1.1) 92.9(4.2) 87.3(3.4) 92.4(3.2) 86.7(3.1)
ProtoCBM 97.3(0.2) 94.5(0.8) 90.7(1.2) 94.7(2.7) 88.9(4.3)

ECBMs 97.5(0.7) 92.6(3.5) 88.3(2.8) 92.6(3.4) 88.7(2.7)

CBM-AT 93.5(0.8) 93.0(2.4) 90.4(3.1) 92.6(2.4) 86.3(1.3)
ProbCBM-AT 93.5(0.7) 92.9(2.7) 90.4(2.6) 92.4(3.4) 86.7(2.1)
ProtoCBM-AT 96.1(1.7) 92.1(1.9) 90.7(1.0) 87.5(1.4) 84.3(3.1)

ECBMs-AT 95.9(1.4) 90.4(4.2) 89.5(1.7) 88.0(1.2) 84.7(2.5)

LEN 98.6(0.3) 97.6(1.4) 95.5(2.9) 98.6(1.4) 95.5(2.9)
DKAA 98.4(1.0) 98.1(0.8) 96.7(1.8) 98.1(0.8) 96.7(1.8)

MORDAA 97.9(0.8) 98.5(0.9) 95.8(1.6) 98.5(0.9) 95.8(1.6)
DeepProblog 97.5(1.4) 97.6(3.5) 95.6(3.5) 98.6(3.5) 95.6(3.5)

MBM 98.7(0.1) 97.7(0.7) 95.1(1.2) 97.7(0.7) 95.1(1.2)
C-HMCNN 98.1(0.4) 96.8(1.2) 94.5(1.6) 96.8(1.2) 94.5(1.6)

AGAIN (Ours) 98.9(1.3) 97.8(1.4) 95.6(1.2) 97.8(1.6) 97.8(2.0)

A∧B; ¬A∧B;A∧ ¬B; ¬A∧ ¬B;A∨B; ¬A∨B;A∨ ¬B; ¬A∨ ¬B Thus, the maximum number
of factors is 4M(M − 1). With a maximum of 3 interventions per rule (intervene A, intervene B,
and both), the total number of interventions is 12M(M − 1), resulting in a complexity of O(M2).

D.4 EXPERIMENTAL RESULTS ON SYNTHETIC-MNIST

Comprehensibility of Explanations. Table 8 illustrates the LSM results of our proposed AGAIN
in comparison with 10 baselines on the Synthetic-MNIST dataset. The results indicate that the ex-
planations produced by AGAIN for the synthetic dataset are equally comprehensible, implying that
the performance of AGAIN exhibits generalizability. Specifically, when the unknown perturbation
magnitude is 8, the LSM of AGAIN exhibits an average increase of 41.83% compared to the baseline
with attributional training. Furthermore, in benign environments, the LSM of AGAIN outperforms
other baselines due to its ability to maintain optimal model parameters without adjusting them to
accommodate the effects of perturbations.

Rectification of Interactive Intervention Switch. Figure 7(c) illustrates the visual representa-
tions of the rectified explanations generated by AGAIN. The activated handwritten digit concepts
in the explanations align seamlessly with the semantics of synthetic images, confirming the logi-
cal completeness and semantic richness of the rectified explanations. This outcome validates the
continued effectiveness of interactive intervention switch strategy on the synthetic dataset.

D.5 E-ACC AND P-ACC ON EACC-MIMIC-IIIEWS AND SYNTHETIC-MNIST

We present the E-ACC of AGAIN on EACC-MIMIC-IIIEWS and Synthetic-MNIST in comparison
to all baseline methods, as shown in Tables 9, and 10, respectively. The experimental results show
that AGAIN is optimal for E-ACC on two datasets.
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Secondly, we report the P-ACC of AGAIN on the two datasets, as shown in Tables 11, and 12,
respectively. Notably, since perturbations do not impact the final predictions, the P-ACC remains
consistent across different levels of perturbation. Furthermore, the factor graph does not improve the
predictive accuracy of the categories, making the P-ACC of AGAIN comparable to that of the other
baselines. Notably, since the methods based on knowledge integration are not retrained. Therefore,
there is no difference between the effects of known and unknown perturbations on these methods.
Therefore, their results under known and unknown perturbations are the same.

Table 9: Comparisons of E-ACC between AGAIN and baselines on MIMIC-III EWS.

Method clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CBM-AT 97.1(1.2) 92.8(1.1) 90.3(1.3) 87.2(3.1) 85.4(1.7) 90.5(1.4) 87.7(1.1) 84.1(2.6) 76.8(2.1)
Hard AR-AT 97.7(0.4) 92.9(2.1) 89.9(1.2) 87.4(2.4) 84.3(1.4) 90.1(2.4) 84.1(0.6) 80.3(3.1) 78.8(6.7)

ICBM-AT 97.8(1.4) 91.9(1.4) 86.8(1.5) 84.5(2.7) 83.2(3.2) 89.6(1.6) 85.9(2.3) 82.7(2.1) 79.1(4.2)
PCBM-AT 96.9(1.7) 92.6(1.4) 86.3(2.1) 83.2(0.8) 83.0(2.1) 90.5(1.2) 84.6(2.7) 81.5(3.2) 77.4(3.9)

ProbCBM-AT 98.1(0.3) 92.1(1.2) 90.3(1.1) 87.4(1.3) 84.4(2.4) 90.0(2.2) 85.5(1.2) 84.2(1.0) 81.6(3.2)
Label-free CBM-AT 97.1(1.6) 93.1(2.1) 90.3(1.5) 87.5(3.2) 84.6(2.3) 91.0(2.5) 86.7(1.7) 83.7(2.2) 80.6(4.1)

ProtoCBM-AT 97.8(0.8) 93.4(1.3) 92.1(1.0) 86.7(1.4) 85.6(2.1) 92.1(0.6) 89.5(1.2) 85.8(0.9) 81.2(2.4)
ECBMs-AT 98.0(1.2) 93.6(1.7) 92.7(2.6) 88.3(1.7) 88.1(2.2) 90.4(1.8) 86.4(2.2) 83.4(1.8) 80.2(3.1)

LEN 97.7(0.2) 92.2(2.4) 91.6(1.2) 86.7(2.6) 83.2(0.9) 92.2(2.4) 91.6(1.2) 86.7(2.6) 83.2(0.9)
DKAA 96.5(1.3) 91.7(1.3) 92.9(0.8) 87.5(1.4) 85.1(3.2) 91.7(1.3) 92.9(0.8) 87.5(1.4) 85.1(3.2)

MORDAA 97.1(1.4) 91.5(3.7) 90.5(3.1) 84.3(1.4) 81.5(2.1) 91.5(3.7) 90.5(3.1) 84.3(1.4) 81.5(2.1)
DeepProblog 96.3(1.2) 90.7(1.0) 89.7(3.1) 85.2(1.3) 81.7(1.3) 90.7(1.0) 89.7(3.1) 85.2(1.3) 81.7(1.3)

MBM 97.9(1.0) 91.9(2.2) 90.1(0.6) 86.7(0.9) 82.6(1.3) 91.9(2.2) 90.1(0.6) 86.7(0.9) 82.6(1.3)
C-HMCNN 97.6(0.7) 93.4(1.1) 91.0(3.1) 87.4(2.4) 84.9(2.8) 93.4(1.1) 91.0(3.1) 87.4(2.4) 84.9(2.8)

AGAIN 97.5(0.1) 93.0(1.3) 93.2(1.3) 93.0(1.4) 93.0(1.2) 93.0(1.7) 93.6(1.6) 93.3(1.9) 93.2(1.2)

Table 10: Comparisons of E-ACC between AGAIN and baselines on Synthetic-MNIST.

Method clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CBM-AT 98.4(0.1) 98.1(1.2) 96.1(1.4) 95.2(1.5) 90.3(1.6) 97.1(1.2) 96.5(2.1) 92.1(1.5) 89.4(2.1)
Hard AR-AT 97.9(0.1) 97.6(0.5) 96.2(0.2) 93.7(1.2) 91.4(1.1) 95.6(0.5) 93.1(1.2) 91.7(1.0) 87.9(2.1)

ICBM-AT 98.2(0.3) 98.2(0.2) 95.1(0.6) 92.1(1.5) 90.5(1.4) 95.1(1.1) 94.7(1.1) 92.1(1.5) 88.2(1.4)
PCBM-AT 97.9(0.2) 97.4(1.1) 96.1(0.4) 95.5(1.0) 92.3(1.3) 95.2(1.3) 94.1(1.2) 91.0(1.4) 90.1(1.2)

ProbCBM-AT 98.1(0.2) 97.9(0.2) 95.1(1.0) 93.1(1.4) 90.5(1.3) 94.3(1.1) 93.1(1.2) 91.0(0.8) 88.2(1.1)
Label-free CBM-AT 97.5(0.7) 97.7(0.6) 95.9(1.2) 92.5(1.3) 91.6(1.3) 95.1(1.8) 92.9(3.1) 90.2(4.2) 87.2(2.3)

ProtoCBM-AT 98.8(0.3) 98.5(1.2) 97.1(1.2) 95.6(2.1) 93.9(2.1) 94.1(1.0) 92.5(2.1) 90.2(3.2) 89.3(2.4)
ECBMs-AT 98.5(0.6) 98.1(0.6) 97.1(1.2) 95.3(1.3) 92.1(2.5) 95.2(1.1) 92.5(1.7) 90.1(1.3) 88.6(1.6)

LEN 98.4(1.1) 98.4(1.2) 96.9(1.4) 95.4(0.9) 92.8(1.2) 98.4(1.2) 96.9(1.4) 95.4(0.9) 92.8(1.2)
DKAA 98.6(0.7) 98.4(0.9) 97.2(1.4) 94.1(1.2) 92.5(2.1) 98.4(0.9) 97.2(1.4) 94.1(1.2) 92.5(2.1)

MORDAA 98.3(0.7) 97.9(1.2) 95.2(1.2) 92.1(1.4) 90.6(2.6) 97.9(1.2) 95.2(1.2) 92.1(1.4) 90.6(2.6)
DeepProblog 97.5(1.1) 97.3(2.1) 95.3(2.4) 92.7(2.1) 89.4(3.2) 97.3(2.1) 95.3(2.4) 92.7(2.1) 89.4(3.2)

MBM 98.7(1.3) 97.4(1.5) 96.4(1.3) 91.6(1.3) 89.4(2.2) 97.4(1.5) 96.4(1.3) 91.6(1.3) 89.4(2.2)
C-HMCNN 98.8(0.9) 96.7(2.1) 95.1(2.4) 93.2(2.5) 90.5(2.5) 96.7(2.1) 95.1(2.4) 93.2(2.5) 90.5(2.5)

AGAIN 98.1(0.5) 98.1(0.5) 97.3(1.3) 97.3(2.9) 97.2(2.1) 98.2(0.9) 97.4(1.0) 97.1(1.2) 96.8(1.4)

Table 11: Comparisons of P-ACC between AGAIN and baselines on MIMIC-III EWS.

Method clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CBM-AT 49.7(1.2) 49.6(1.2) 49.1(1.1) 49.2(1.4) 49.6(1.3) 49.7(1.2) 49.3(2.4) 49.8(1.1) 49.5(1.4)
Hard AR-AT 48.5(2.1) 49.1(1.5) 49.1(1.2) 49.5(1.1) 49.6(1.2) 49.1(1.5) 49.1(2.3) 48.9(1.1) 49.0(1.6)

ICBM-AT 49.1(1.6) 49.6(1.4) 49.1(1.4) 49.5(1.2) 49.4(1.1) 48.9(1.1) 49.4(1.4) 49.5(1.7) 49.9(1.4)
PCBM-AT 49.6(1.4) 49.9(1.3) 49.8(2.1) 50.1(1.3) 49.8(1.2) 49.7(1.2) 49.1(1.3) 49.3(1.4) 50.1(1.1)

ProbCBM-AT 49.8(0.8) 49.8(1.0) 51.4(2.1) 50.2(1.3) 49.6(1.5) 50.2(1.1) 49.4(1.3) 49.6(1.1) 49.7(0.9)
Label-free CBM-AT 49.7(1.3) 49.7(1.2) 49.7(1.1) 49.6(1.4) 49.5(1.2) 49.6(1.1) 49.5(1.5) 49.6(1.2) 49.7(1.1)

ProtoCBM-AT 49.6(1.2) 49.5(1.1) 48.9(2.0) 49.1(1.4) 49.3(1.3) 49.3(1.2) 48.9(2.1) 49.0(1.3) 49.3(1.2)
ECBMs-AT 50.9(1.5) 50.2(1.3) 49.6(2.0) 49.8(1.3) 49.8(1.6) 49.5(0.7) 49.6(2.5) 49.3(1.2) 49.8(1.2)

LEN 49.6(1.6) 49.7(1.3) 49.4(1.4) 49.8(0.4) 49.5(1.6) 49.7(1.3) 49.4(1.4) 49.8(0.4) 49.5(1.6)
DKAA 49.4(1.1) 49.8(0.1) 50.5(0.2) 49.7(1.2) 49.8(1.2) 49.8(0.1) 50.5(0.2) 49.7(1.2) 49.8(1.2)

MORDAA 49.5(0.1) 49.8(1.2) 49.7(1.3) 50.1(1.4) 49.4(1.6) 49.8(1.2) 49.7(1.3) 50.1(1.4) 49.4(1.6)
DeepProblog 48.4(1.2) 48.7(1.3) 48.4(1.2) 48.5(1.1) 48.2(1.1) 48.7(1.3) 48.4(1.2) 48.5(1.1) 48.2(1.1)

MBM 49.4(1.3) 50.1(0.6) 49.3(1.7) 49.4(0.5) 49.3(1.7) 50.1(0.6) 49.3(1.7) 49.4(0.5) 49.3(1.7)
C-HMCNN 49.4(0.8) 49.5(1.1) 49.4(1.1) 49.2(1.5) 49.2(1.2) 49.5(1.1) 49.4(1.1) 49.2(1.5) 49.2(1.2)

AGAIN 55.1(2.9) 49.7(1.1) 49.1(2.2) 49.4(0.1) 49.3(2.7) 48.0(1.5) 48.3(1.2) 49.4(1.9) 52.5(0.9)

E IMPLEMENTATION DETAILS OF ADVERSARIAL ATTACKS

In this section, we provide implementation details of adversarial attacks against concept-level expla-
nations. Specifically, adversarial attacks against concept-level explanations can be categorized into
three types: erasure attacks, introduction attacks, and confounding attacks.
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Table 12: Comparisons of P-ACC between AGAIN and baselines on Synthetic-MNIST.

Method clear
δk δu

ϵ=4 ϵ=8 ϵ=16 ϵ=32 ϵ=4 ϵ=8 ϵ=16 ϵ=32

CBM-AT 98.2(0.1) 98.2(0.1) 98.1(0.4) 98.5(0.2) 98.1(0.5) 98.5(1.2) 98.5(0.6) 97.6(0.3) 98.2(0.5)
Hard AR-AT 98.4(0.3) 98.3(1.1) 98.4(0.2) 98.4(0.2) 98.2(0.1) 98.1(0.3) 98.8(0.5) 98.1(0.6) 98.2(0.5)

ICBM-AT 97.5(1.4) 98.3(0.1) 97.4(0.2) 98.4(0.8) 97.3(0.5) 98.2(1.1) 98.5(0.3) 97.1(0.1) 98.6(0.3)
PCBM-AT 98.2(0.7) 98.3(0.4) 97.4(2.1) 98.4(1.3) 98.4(0.1) 98.4(0.1) 97.5(0.2) 98.5(0.3) 97.4(0.8)

ProbCBM-AT 98.1(0.2) 98.4(0.2) 98.3(0.7) 98.2(0.1) 98.2(0.7) 98.4(0.8) 98.2(0.5) 98.1(0.5) 98.2(0.6)
Label-free CBM-AT 98.2(0.5) 98.1(0.3) 98.4(0.2) 98.4(0.6) 97.5(1.1) 97.5(0.2) 98.5(0.2) 98.8(0.6) 98.3(0.5)

ProtoCBM-AT 98.2(0.2) 97.9(0.8) 98.2(0.4) 98.6(0.7) 98.4(0.7) 98.4(0.4) 98.3(0.2) 98.4(0.1) 98.6(0.7)
ECBMs-AT 99.1(0.2) 98.5(0.4) 98.6(0.5) 98.3(0.7) 97.2(0.9) 98.3(0.7) 98.2(0.7) 98.5(0.8) 98.3(1.6)

LEN 98.2(0.4) 98.4(0.3) 98.2(0.1) 98.4(0.5) 98.3(0.2) 98.4(0.3) 98.2(0.1) 98.4(0.5) 98.3(0.2)
DKAA 98.4(0.1) 98.6(0.2) 97.9(0.1) 98.2(0.2) 98.3(0.1) 98.6(0.2) 97.9(0.1) 98.2(0.2) 98.3(0.1)

MORDAA 98.6(0.1) 98.3(0.2) 97.9(0.2) 98.5(0.7) 98.1(0.3) 98.3(0.2) 97.9(0.2) 98.5(0.7) 98.1(0.3)
DeepProblog 97.2(0.1) 97.2(0.4) 97.1(0.3) 97.5(0.1) 97.1(0.4) 97.2(0.4) 97.1(0.3) 97.5(0.1) 97.1(0.4)

MBM 98.2(0.1) 98.2(0.3) 98.1(0.2) 98.5(0.1) 98.1(0.4) 98.2(0.3) 98.1(0.2) 98.5(0.1) 98.1(0.4)
C-HMCNN 98.2(0.1) 98.2(0.2) 98.1(0.3) 98.5(0.6) 98.1(0.2) 98.2(0.2) 98.1(0.3) 98.5(0.6) 98.1(0.2)

AGAIN 98.3(0.5) 98.2(0.6) 98.1(0.7) 98.2(0.1) 98.2(0.6) 98.5(0.3) 98.7(0.4) 98.2(0.7) 98.3(1.1)

Erasure Attacks. Erasure attacks attempt to subtly remove a specific concept without changing
category prediction results. Gaps in perception and missing concepts are confusing for an analyst
and very difficult to detect. For CBMs, we typically have a pre-set threshold γ for determining
whether a concept is an activated concept. Specifically, for a sample x, We use h(m)

c (x) to denote
the activation value of the m-th concept output by the concept predictor hc(·). If h(m)

c (x)− γ > 0,
then them-th concept is an activated concept. Attackers learn adversarial perturbations for executing
erasure attacks by the following objective function:

MAX
∑

m∈ME

(
(I[γ − hc

(m)(x+ δ)]− I[γ − hc
(m)(x)]

)
s.t. argmax hy (hc (x+ δ)) = argmax hy (hc (x))

, (23)

where I(·) denotes the indicator function, hc(·) is the concept predictor, and hy(·) is the category
predictor (task predictor). δ is the learnable perturbation. ME denotes the concept set that the
attacker wishes to delete away.

Introduction Attacks. The purpose of introduction attacks is to manipulate the presence of irrel-
evant concepts without modifying the classification results. Such attacks hinder accurate analysis of
model explanations. Attackers attempt to introduce new irrelevant concepts that do not previously
exist in the concept set of the original sample. Unlike erasure attacks, introduction attacks require
to raise the activation value of irrelevant concepts above the threshold γ. Therefore, the objective
function of introduction attacks is represented as follows:

MAX
∑

m∈MI

(
(I[hc(m)(x+ δ)− γ]− I[hc(m)(x)− γ]

)
s.t. argmax hy (hc (x+ δ)) = argmax hy (hc (x)) ,

(24)

where MI denotes the set of concepts that the attacker wishes to introduce.

Confounding Attacks. Confounding attacks build on introduction attacks and erasure attacks.The
confounding attack simultaneously removes relevant concepts and introduces irrelevant concepts.
The confounding attack is a more powerful attack than the erasure attack and the introduction attack
as it allows arbitrary tampering with the concept set of the original sample. The objective function
of confounding attacks is as follows:

MAX
∑

m∈ME

(
(I[γ − hc

(m)(x+ δ)]− I[γ − hc
(m)(x)]

)
+

∑
m∈MI

(
(I[hc(m)(x+ δ)− γ]− I[hc(m)(x)− γ]

)
s.t. argmax hy (hc (x+ δ)) = argmax hy (hc (x)) .

(25)

In this paper, confounding attacks are utilized to disrupt AGAIN, which contributes to a more com-
plete evaluation on the comprehensibility of the explanations generated by AGAIN when concepts
are missing and confused.
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