Supplementary Materials

A Hessian Vector Implementation

In this section, we provide an algorithm (see Algorithm 3) for computing the hypergradient estimator
in eq. (4) in MRBO by Hessian vectors rather than Hessians, in order to reduce the memory and
computational cost.

Algorithm 3 Hessian Vector Implementation for Computing Hypergradient Estimator in eq. (4)

1: Input: Hessian Estimation Number ), Samples B,,, Hyperparameter 7,

2: Compute V,F(z,y; Br), ro = V,F(z,y; Br), V,G(z,y; Bg)

3: forq=0,1,...,Q — 1do

4 G = (y —nVyG(z,y; Bo—g))rq

5: rqy1 = 0(Ggq1)/0y note: &(Ggy1)/0y =rq —nV2G(x,y; Bo_q)rq
6: end for o

7. Mg = nzqzo Tq

8: Return V,F(x,y; Bp) — 0(V,G(z,y; Ba)Mg)/0x

As shown in line 5 of Algorithm 3, instead of updating r¢41 = 74 — nV%G(m,y; Bgo—q)rq by
directly computing Hessian V;G (x,y; Bg—q), we choose to compute the Hessian-vector product
via 741 = 0(Gg¢4+1)/0y. A similar implementation is applied to compute the Jacobian vector
O(VyG(z,y; Ba)Mg)/dz in line 8. Note that both lines 5 and 8 can apply automatic differentiation
function forch.grad() for easy implementation. In this way, we compute the hypergradient estimator
in eq. (4) recursively (see lines 3-6 in Algorithm 3) via Hessian-vector products without computing
Hessian explicitly.

B Specifications of Experiments

We compare our proposed algorithms MRBO and VRBO with other benchmarks including
stocBiO [20], reverse [6], AID-FP [10], BSA [8], MSTSA [22], STABLE [2] and SUSTAIN [23] on
the hyper-cleaning problem [34] with MNIST dataset [25]. The formulation of data hyper-cleaning is
given below:
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where Lo g denotes the cross-entropy loss, S7 and Sy, denote the training data and the validation
data, respectively, A = {\;}ies, and C are the regularization parameters, and o(-) denotes the
sigmoid function. In experiment, we set C' = 0.001 and fix the size of the training data Sy, and
validation data S as 20000 and 5000, respectively. Furthermore, we use 10000 images for testing,
which follows the setting in [20]. We use the Hessian-vector based algorithm (Algorithm 3) for
computing the hypergradient estimator, where we set Q = 3 and n = 0.5. For stochastic algorithms
including MRBO, VRBO, stocBiO, we set the batchsize to be 1000 for both training and validation
procedures. For VRBO, we set the inner batchsize to be 500 and the period g to be 3. For the
double-loop algorithms, we fine tune the number of inner-loop steps and set it to be 200 for the
stocBiO, AID-FP, BSA and reverse algorithms for the best performance, and set it to be 20 for VRBO
for the best performance. To set the outer-loop and inner-loop stepsizes, we use the training loss as
the metric and apply the standard grid search with the stepsizes A, v, « and 3 all chosen from the
interval [1e-3,1]. We then select those that yield the best convergence performance. Thus, we set
0.1 as the stepsize for all algorithms except SUSTAIN and STABLE. For SUSTAIN, the inner-loop
stepsize is set to be 0.03 and outer-loop stepsize is set to be 0.1, and for STABLE, inner-loop and
outer-loop stepsizes are set to be 0.01 and 1e-10, respectively, because these algorithms are not stable
with larger stepsizes. Our experimental implementations are based on the implementation of stocBiO
in [20], which is under MIT License. Futhermore, all results are repeated with 5 random seeds and

14



we use iMac with 3.8GHz Quad-Core Intel Core i5 CPU and 32 GB 2400 MHz DDR4 for training
without the requirement of GPU. However, our code supports GPU cluster training.

B.1 Additional Experiments of Hyper-cleaning

In this subsection, we include extra experiments to further validate our theoretical results and
understand the VRBO algorithm.
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Figure 2: training loss v.s. running time.

In Figure 2, we compare our algorithms MRBO and VRBO with three momentum-based algorithms,
i.e., MSTAS, STABLE, and SUSTAIN, under the noise rate p = 0.15, which is a scenario in addition
to the experiment provided in Figure 1 (c) of the main part under the noise rate p = 0.1. It is clear
that our algorithms MRBO and VRBO achieve the lowest training loss and converge fastest among
all momentum-based algorithms.
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Figure 3: training loss v.s. running time.

The next experiment focuses on the double-loop algorithm VRBO and studies how the number m
of inner-loop steps affects its performance. In Figure 3 (a) and (b), we compare VRBO among five
choices of m € {1, 10, 20, 50,100}, where VRBO-m in the legend indicates that the inner-loop of
VRBO takes m steps. It can be observed that as m increases from 1, VRBO becomes more stable and
achieves lower training loss until m = 20. Beyond this point, as m further increases, the performance
of VRBO becomes worse with higher final training loss and lower stability. This can be explained by
two reasons: (i) the accuracy of the inner-loop output and (ii) the accuracy of the variance-reduced
gradient estimator. By the formulation of bilevel optimization, at each outer-loop step k, it is desirable
that the inner loop obtains yy, as close as possible to the optimal point y*(z) = arg min,, g(x,y).
Hence, taking more inner-loop steps (i.e., as m increases) helps to obtain more accurate yy. Further,
increasing m allows the large-batch gradient estimator to benefit more steps of gradient estimators in
the inner loop via variance reduction, and hence improves the computational efficiency. Both reasons
explain that the overall performance of VRBO gets better as m increases from m = 1 to m = 20. On
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the other hand, when m is large enough (i.e., m = 20 in our plots), the inner-loop can already provide
a sufficiently accurate y. Then further increasing m will cause unnecessary inner-loop iterations
and hurt the computational efficiency. Moreover, larger m causes the variance-reduced gradient
estimators in the later stage of the inner loop becomes less accurate. Thus, the overall convergence of
VRBO becomes slower and less stable.
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Figure 4: training loss v.s. number of samples.

In Figure 4, we further compare our algorithms with other batch-sample based algorithms in terms
of the training performance versus the number of samples required. It can be seen that MRBO
and VRBO are much more sample efficient in training compared with stocBiO and the GD-based
algorithms reverse and AID-FP.

25 225
2 175
o BNT——— = MRBO @ 150 j «= MRBO
815 \ — MSTSA & o \ — MSTSA
<\ BSA c 125 \ BSA
‘© \ MRBO/SUSTAIN ® 100 MRBO/SUSTAIN
10 =
- = \/RBO ~ == \RBO
75
5 5.0
\___
25
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Samples Number of Samples
(a) Noise rate p = 0.1 (b) Noise rate p = 0.15

Figure 5: training loss v.s. number of samples.

We also compare our algorithms with other single-sample based algorithms w.r.t. the number of
samples in Figure 5. It can be seen that single-sample based algorithms are more sample efficient
than MRBO and VRBO. This is because single-sample based algorithms update each parameter using
a single sample, whereas batch-sample based algorithms update each parameter using a batch of
samples. As a result, single-sample based algorithms enable a larger parameter update per sample, and
hence achieve a higher sample efficiency. It is worthy to mention that our MRBO can be implemented
in a single-sample fashion, which then becomes the same algorithm as the concurrently proposed
algorithm SUSTAIN. However, compared to the sample efficiency, we believe that the execution time
(under the same computing resource) is a more reasonable measure of the computational efficiency
of bilevel algorithms. This is because the minibatch computation are more preferred and efficient
than the single-sample computation in existing deep learning platforms such as PyTorch. Thus, as
demonstrated in our Figure 1, batch-sample based algorithms converge much faster than single-sample
based algorithms w.r.t. running time.
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B.2 Experiments of Logistic Regression

We further conduct the experiment on the logistic regression problem over the 20 Newsgroup
dataset [10]. The objective function is given by:
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Figure 6: test accuracy or test loss v.s. running time (Batchsize=100)

3.0

o
3

0.6 gty MRBO 25
<. 0.
8 e MRBO(D) 2 —— MRBO
3 VRBO Q20 MRBO(D)
<™ —— stocBiO g VRBO
§ 03 SUSTAIN s —— stocBiO
0.2 — MSTSA
1 'P‘
o MNNJVJ\’ANV 10
0 50 100 150 200 250 300 0 50 100 150 200 250 300
running time /s running time /s
(a) Test Accuracy v.s. Running Time (b) Test Loss v.s. Running Time

Figure 7: test accuracy or test loss v.s. running time (Batchsize=1000)
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where Lo denotes the cross-entropy loss, S and Sy denote the training and validation datasets,
respectively. In the experiment, we follow the setting for stocBiO in [20] and set = 0.5 and
@ = 10 for the hypergradient estimation. Besides, we apply the standard grid search for the inner-
and outer-loop stepsizes for all algorithms. Thus, we set inner- and outer-loop stepsizes as 100 for
stocBiO, inner- and outer-loop stepsizes as 30 for MRBO, VRBO, SUSTAIN and MSTSA. Following
the setting in stocBiO, we set inner-loop steps as 10 for stocBiO. For VRBO, we set the period ¢ as 2
and inner-loop steps as 3 for the best performance. We also conduct MRBO in a double loop fashion
and call it as MRBO(D), where we apply the inner update procedure 10 times per epoch.

In Figure 6, we set the batchsize of all stochastic algorithms to 100. It can be seen that although
stocBiO achieves the fastest initial convergence rate, both MRBO and VRBO reach a higher accuracy
than stocBiO due to more accurate hypergradient estimation. It can be also seen that our double-loop
MRBO(D) achieves the highest accuracy, whereas single-loop SUSTAIN and MSTSA algorithms do
not converge well. This demonstrates the advantage of double-loop updates over single-loop updates.
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In Figure 7, we choose a larger batchsize of 1000 for all algorithms. We note that double-loop
algorithms stocBiO and MRBO(D) still outperform other single-loop algorithms significantly, and
stocBiO achieves the best test accuracy due to a more accurate gradient estimation.

C Proof of Theorem 1

C.1 Proof of Supporting Lemmas (Propositions 1 and 2 Correspond to Lemmas 4 and 8)

For notation simplification, we define the following:

=03 [ U=0ViG(ar yk;B;)VyF(xx, yr; Br). (13)

G=—135=Q—q
Firstly, we characterize the variance of V(yy, in the following lemma.
Lemma 1. Suppose Assumptions 2, 3 hold. Let n < % Then, we have

2P M*(Q+1)*  M*(Q+2)(Q+1)*n*0?
E||[Vor — E[Voi]||* < S + 55 ,

where Vg, is defined in eq. (13).

Proof. Based on the form of Vg, we have
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(2P M*(Q+1)?  M*Q+2)(Q+1)*y'0?
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where (4) follows from the fact that E[Vy] =1 Zq o=V 2g(xr, yr)) 'V y f 2k, yx). (i4) follows
from Assumption 2 and the fact that || — nVyg(wk, yr)|| < 1, (4i7) follows from the facts that

Tk, Yk} <1lan Tk, Y )| < 1, and (2v) follows from Assumptions
IT = nVyG(xy, yx; By)|| < 1and [T —nVig(xy, yx)| <1, and (iv) follows from Assumptions 2
and 3. Then, the proof is complete. O

Futhermore, we characterize the Lipschitz property of Vi, in the following lemma.
Lemma 2. Suppose Assumption 2 holds. Let n < l Then, we have

22 2 4 2
Var = Vou-n lI* < <M QU@+ )™

2
where Vg, is defined in eq. (13).

+ 20 L3(Q + 1)2> lze — ze—1)?,  (14)

Proof. Based on the form of Vg, we have
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where (i) follows from the definition of Vi, (i¢) follows from Assumption 2 and the fact that
(IT — nViG(:ck,yk;Bj)H < 1, (44) follows from Jensen’s inequality and (iv) follows because
[T —nV2G(2k, yr; B;)|| < 1 and from Assumption 2. Then, the proof is complete. O

Then, we characterize the Lipschtiz property of @@(mk; B,) defined in eq. (4) in the following
lemma.
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Lemma 3. Suppose Assumptions 2 holds. Let ) < % and z = (z,y). Then, for §<P(xk; B..) defined
in eq. (4), we have

VP (x5 By) — V(13 Ba) |2 < L2 — 2z ||, (15)
where L) = 217 + 47°1> M?(Q +1)* + 8L*'n*(Q + 1)* + 2L*n* M?p*Q*(Q + 1)*.

Proof. Based on the form of @fb(xk; B..), we have
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where () and (4¢) follow from Assumption 2, (i7¢) follows from the fact || V|| < nM(Q + 1), and
(iv) follows from Lemma 1. Then, the proof is complete. O

Lemma 4 (Restatement of Proposition 1). Suppose Assumptions 1, 2 and 3 hold. Let n < % Then,
we have

E(|V®(zy; By) — V@(mk)HQ < G2 (16)

where G = % + 12M2L22~2(Q+1)2 4 L (Q+2)(Q+1) 6@(3316;330) is defined in eq. (4)
and vQ)(xQ is defined in eq. (3). Further, for the lteratlve update of line 8 in Algorithm 1, we let
€ = vg — V@ (z). Then, we have
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where Lé is defined in Lemma 3.

Proof. We first prove eq. (16). Based on the forms of %‘b(wk; B,) and V®(x},), we have
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where (i) follows from the definitions of V®(x4; B,) and V®(zy), (i) and (i) follow from
Assumption 2, and (iv) follows from Lemma 1 and the bound that
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Then, we present the proof of eq. (17). Based on the forms of vj, and vtb(a:k), we have
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where (i) follows from the definition of vy, (i) follows because V@ (xy; B, ) and VO (zy; By) —
V®(zy_1;B,) are unbiased estimator of V®(x,) and V®(xy) — V®(x)_1), respectively, (iii)

follows from Lemma 4, (iv) follows from Lemma 3, and (v) follows from the fact that z;, = (zx, yx ).
Then, the proof is complete.

Lemma 5. Suppose Assumptions 1, 2 and 3 hold. Let n < % Then, we have
E(Vyg(xr, yr) — url® <ER2BFG? +2(1 — ) L2 (|lar — zr—1|* + llyr — ye—11)

+ (1= Br)*IVyg(h-1, yo—1) — ur—1l*],
where G is defined in Lemma 4.

Proof. This proof follow from the steps similar to the proof of eq. (17) in Lemma 4. O

Then, we characterize how the variance of the hypergradient and the inner-loop gradient change
between iterations.

Lemma 6. Suppose Assumptions 1, 2 and 3 hold. Let n < % cl > % + gf\T",CQ > % +
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where L'* = max{(L + %2 + % + %)2, LZ}. Then, we have
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where L is defined in Lemma 3, G and €, are defined in Lemma 4. Further, we characterize the
relationship of the variance of the inner-loop gradient between iterations in the following inequality.
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Proof. We first prove the eq. (19). Based on the forms of €;,, we have
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where () follows from eq. (17), (i) follows because a1 = c1mi < e1ng < 1, and (ii7) follows
from ¢; > 3d3 + 9’\”

Then, we present the proof of eq. (20). In particular, we have

1 1
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where (i) follows from Lemma 5 and because (541 = can < cond < 1, and (i4) follows because
co2 > 3(213 + 75L °2 . Then, the proof is complete. 0

Next, we characterize the approximation bound Cg on the Hessian inverse.

Lemma 7. Suppose Assumptions 1, 2 and 3 hold. Let n < % Then, we have
IV® (k) — V()| < Co,

where %‘I)(l'k) is defined in eq. (11), V®(xy) is defined in eq. (3), and Cg = w.

Proof. Following from the proof of Proposition 3 in [20], we have |E[Vqoi] —
[V29(@r, ya)] " Vi f (@r, yr) || < w Then, we obtain
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where (7) follows from Assumption 2. Then, the proof is complete. O

Lemma 8 (Restatement of Proposition 2). Suppose Assumptions 1, 2 and 3 hold. Let n < % and
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21k
where Cq is defined in Lemma 7 and L' is defined in Proposition 2.

22



Proof. Based on the Lipschitz property of ®(zy), we have

(@) L
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where (i) follows from the smoothness of the function ® () proved by Lemma 2 in [20], and (i)
follows because 7, (Tr+1 — Tx) = Tk4+1 — Tk, Where Ty1 is defined in Lemma 6.

2 which yields

Based on Lemma 25 in [15], we have (vg, Tpr1 — x) < *%kaﬂ — Tk
<V<I>(J)k) — Vg, 5]€+1 — J,‘k>
:<V(I)(l‘k) — V(D(Z‘k) + V(I)(Ik) - ﬁ@(xk) +§q)(l‘k) — Uk7%k+1 — Ik>
<IVD (k) — (g [Fnsr — 24l + I9B(r) — T(an)|1Fns1 — ol
+ [IVO (k) — vl Th41 — 2l

@) 2 ‘ 1 - _
<2yL"" |y — y* (@) |? + a\\fﬂkﬂ — p||? 4 Col|Trs1 — zil| + 29|V (2r) — vi|?
RN 2
S I TE+1 — Tk
&y
(@) 2 * 2 1.~ 2 2 1. 2
<29L |y — v (@) 1P + o= 1Tk — 2xll” + 2905 + —— |Th1 — 24|
8y 8y
__ 1 _
+ 29||VO(zr) — vi|* + QH%H — %,

where (i) follows from [20, Lemma 7], Lemma 7 and Young’s inequality, and (¢7) follows from
Young’s inequality.

Combining the above inequalities and applying v < we have

1
4Lenk’

E[®(2x41)] <E[@ ()] + 2y L[|y — v (@) |* + 2me7[1exl|* + 207 C2 — ;%kaﬂ -z

% _ 1
=E[®(x)] + 2mvL*[lyx — v (@) |? + 2npyl|el|* + 2y CE — T [EEE
Then, the proof is complete. O
Lemma 9. Suppose Assumptions 1, 2 and 3 hold. Let ny, < 1 and 0 < \ < 6%. Then, we have
. kPN . 30k |\~
s = 9" nen)l® < (1= 222 = @0l = 22 s =
25m5\ 5 25L%m ~ 2
+ anyg(xmyk) —ug|®+ 613\ |zk — Tt [”

Proof. Based on Lemma 18 in [15] first version, we obtain

. MTA . 3t~
[Ye+1 =y (@) |7 <(1 - t4 Mye =y (@o)l|” - Tt||yt+1 — il
25m A 25k2n, _
+ =5, IVuf(eye) = wyl|* + 67’73\ e — Zea ]2,
where r, = Ly /7. The proof is finished by replacing f(x¢, y.) with —g(xx, yx ). O
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C.2 Proof of Theorem 1

Based on the above lemmas, we develop the proof of Theorem 1 in the following.

Theorem 3 (Restatement of Theorem 1). Apply MRBO to solve the problem in eq (D). Sup-
pose Assumptions 1, 2, and 3 hold. Let the hyperparameters ¢1 > 3 d3 + 9)‘“ > 3% +

755;;2>\’m > max{degv(Cld)sv(CQd)g}ayl = y*(x1),n < %,0 < A < 6%’0 < v <
Ap

: 1
min
{4Lq>m< " \/150L72L2 /248 u (LG +L?)

K 2 _
50 (Bl ) — wll® + el +

}. Then, we have

+ o — ol?) < Em+ K3, @2)

* 2.1, 2\ 2 2
where L'? is defined in Proposition 2, and M’ = 2z)=2" <2G (e te)d” | QCnQd ) log(m

vd A
2G2
K) + 55

Proof. Firstly, we define a Lyapunov function,

1 1
O = ®(xx) + - ( 9L |lye — " (xx) > + &l + ——IVyg(@r, ur) — Uk||2) -
H -1 Nk—1

Then, we have

Ok+1 — O
9Ly . .
=0(xp41) — O(21) + i lyrgr — y* (@)l? = llye — y* (zr)]1?)

(1, 2
+ o= =Nl -
L (Sl -

1
- rHva(fEk, Yr) — uk||2)

B 1
llell* + nkavyg(ka,ka) — ug |

@ 2 _
< - %kaﬂ — a1 + 20y L Nlye — v (@) [I” + 2nel|€x]1? + 20y C

9Ly ( Nk A 25m A

6

+

3Nk |\~
lyk — y* (@e)1® — == NTke1 — well® + IVyg(2k, yi) — il
Al 4
25,%5%

~ ¥ 9)\m)k ~ ~
P gy - fﬂk+1||2> 5 (= A+ 28T = P + e — )

. 2a§+1a2) +’y< 75L°\

Ml Vyg (@, ) — well® + 2L (| Zes1 — 2

Mk A 2p
B 262 G2
+ [T — well?) + ’“)
Nk
(i) Ly 2 VM gz Tk~ 2, 2000,GPy | 2B7,GPy
< = Tyt @) = well? = S lel® = 1@k — 2l + +
1 lly™ (k) | [l €] 47\\ + I Mg o

where (i) follows from Lemmas 6 and 9, (ii) follows because L' > Lg and 0 < v <

Ap R . . . . .
rranging the terms in in li in
N RIS v earranging the terms in above inequality, we obta

L/znk 2, Nk 2, Mk 5 Ok — Oky1 2(ai+1 + 6£+1)G2
* _ i — ~ _ <
4 ”y (CEk:) ka 4 ||6k|| 74’}/2”(Ek+1 xk” < 5 + )\’unk
+2n,.C3. (23)

Note that we set y; = y*(x1) and obtain

1 1
1= @) + 52 (91— @) + el + 1T yg(en) — wl?).
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Then, telescoping eq. (23) over k from 1 to K yields

L/2 2 L. 2 1 ~ 2
KZ ol n) =l + P+ 5 T — o

@ 1 2vG? 1 & (203,,G% 267, ,GP
< ) — P* ' 2, C2
_an( (mHS}\uno )+K77kz< * M Q>

AR AR,
(i) 1 2G? (2c3G? + 2¢2G?)d?
< ——(®(z1) — OF) + log(m + K
Knm( (1) ) KnSAumo KniAu Bl )
203 d°
+ 22 log(m + K)
Kn3,
O(z1) — ®* (m + K)/3 N 2G% (m+ K)'/3
= K dSuno K
(22G? +263G?)d?  2C3d*\ (m + K)'/3
1 K
+ ( o + o) e og(m + K)

where (7) follows from eq. (23), (i7) follows because Zk < f1 < d3log(m + K).

m+k
We further apply ||Zx+1 — x| = n||xx+1 — 2k ]| to the above inequality and obtain

K 2
r , 1,1 ,\ s
; <|y o) — yrll® + Z||€k|| + m”ﬂﬁkﬂ —zil]” | < f(m+K) .29

’ _ 2 clae 2 42 .
where M = q)(mlv)d LA S)\Zl?dﬁo + (QGQ( E\: L Qi%d ) log(m + K). Then, the proof is

complete.
O

C.3 Proof of Corollary 1

Corollary 3 (Restatement of Corollary 1). Under the same conditions of Theorem 1 and choosing
K =0(e7'?),Q = O(log()), MRBO in Algorithm 1 finds an e-stationary point with the gradient

complexity of O(e~1%) and the (Jacobian-) Hessian-vector complexity of O(e~15).

Proof. We choose @ = O(log(1)), K = O( ~1%)and S = O(1), and then have O(Cg) = O(e™ 1),

M’ = O(1),andm = O(1). Hence, O(2& [(m4K)1/3) < O(M m/2 +Kj\f/,3) = O(a75) = O(e),

which guarantees the target accuracy. The gradient complexity and Jacobian-vector complexity are
given by KS = O(e~1%), and the Hessian-vector complexity is given by KSQ = O(e~*?). O

D Proof of Theorem 2

D.1 Proofs of Supporting Lemmas (Propositions 3 and 4 Correspond to Lemmas 18 and 20)

For notation simplification, we define the following:

Voe =1 Z H (I = V3G (@h, yu: ) Vy F(r, yai €),

g=—1j=Q—q

which is a single-sample form of Vi defined in eq. (13). We note that | E[V¢]||? = |[E[Voi || <
n?M?(Q + 1)2, where the inequality follows from eq. (18).

Firstly, we characterize the variance of the hypergradients between different iterations.
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Lemma 10. Consider Algorithm 2. Suppose Assumptions 2 and 3 hold. Then, we have

2

~ i~ 2 ~ ENZ Vs 2 LQ ~ . 2
Elllow.e = VO@k I <E[0h,-1 = VO@re-)IT] + g BllIT0s = Tra1ll

+ 1Tkt = Tree—1]%], (25)

where V®(Zy, 1) is defined in eq. (3) and L, is defined in Lemma 3.

Proof. In Algorithm 2, the hypergradient estimator vy, ; updates as the following form:
Tt = VO(Thty Ut; S2) — VO (Tt 1, Uho—1; S2) + Dot
Note that
E[V® @k, Uit S2) = VO(@rt1, Trot—15 S2)|Tk.0:t, Ui 0] = B[Vt — D]
Based on Lemma 1 in [4],
B[kt = Tk-1 — (Y@t Trts S2) = VO(@kt—1, U i—13 S2)||”

1 ~ - E -
SEE[H(V@(«Tk,ta Urt3 &) — VO (Th i1, Urt—1; ) I7]-

Furthermore, since @@(mk, Yr; €) is L- Lipschitz continuous which is proved in Lemma 3, we have
_ _ 13
Bk — V@) ] Bl 1 — T (@ )]+ 2El|Fe — T
2
+ 1[Gkt = Tre—1l]-
Then, the proof is complete. O
Lemma 11. Suppose Assumptions 2 and 3 hold. Let Ay, = E||V®(z) — v ||> + E||Vyg(zk, yr) —
ug||?, and Ayy = E|VO(Tg 1) — Oill® + E|Vyg(Zkts Urt) — Uk,il|> Then, we have
2

- 212 )
Ago < Ap+ 572E(||30k+1 —zi%),

where L is defined in Lemma 7.

Proof. Based on the form of ﬁk’o, we have

Aro =E(|Te0 — VO (@0, U.0)lI* + [Tk0 — V@0, Tr0)l|%)
(0 _ , 2, 2LG 2 2
< E(lJvk — VO (@k, yo)lI” + lur — Vyg(r, yi)||I” + E(|Zk,0 — z&lI” + [|9k.0 — v )

S2
(i4) 2L2
= Ag+ 5 PE(lowsr — 2l + llgs = wil)
2L2
=Ap+ TQE(HM»H — @],
2

where (7) follows from Lemma 10, (i¢) follows because y o = yx. Then, the proof is complete. [

Lemma 12. Suppose Assumptions 2 and 3 hold. Then, we have
~ 2L2 m
Q p2 ~ 2
A <Ap_10+ 5,725 Z |Tr—1.]%,
t=0
where Zk_l,o, Ay, are defined in Lemma 11 and L, is defined in Lemma 7.
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Proof. Based on the forms of Ay, we have
Ap =E(|lvx, = VO(2i, y) 1> + llur — Vyg(@e, yi) 1)

i)~
:Akfl,qul

(i)

<E(|[k—1,0 — V(Zk-1,05 Us—1,0)|* + [|Tk—1,0 — Vy9(Tk—1,05 Ur—1,0/|*)

2L?Q e
Z 1Zk 1,041 = Tr1,e] + [Gr—1,601 = Gr—1,][%)

DR 10+7522HU1¢ el

where (7) follows because uy, = Ug—1,m+1, and Vg = Vg1, m+1. (49) follows from Lemma 10, and
(47) follows from the fact that Ty_1 141 = Zr_1,. Then, the proof is complete. O

Furtheremore, we characterize the relationship between uy, ; in different iterations.

Lemma 13. Suppose Assumptions 1, 2 and 3 hold. We let 3 = 13L , and Sy > 2(% + 1)LB. Then,
we have

Ellltk || Frt] < alltin 1], (26)

where a = (1 — /’?T‘L), ﬂkyt is defined in Algorithm 2, and F}, ; denotes all information of{@w‘ };:0

T
~ 1
and {ix,;};_,
Proof. Based on the definition of wy, +, we have

E|[g,e 1| Fr.e]
=tk 1* + 2B[(@n 11, Vy Gk ,t) = VyG(Gr,i—1)) | F ]
+E[IVyG(Grt) = VyG(@e—1) 11 Fr.i]

~ B~ ~ ~ ~
=lke-1ll* = SELGrs = Tt Vog @) = Vg (@i-1))]

+IVyG@rt) = VyGGra-1) 1| Fis]

(@) 2/ ul 1 N _
<kl — 3 (AH-L”yk’t — Ure—1l® + mIIVyg(yk,t - Vyg(yk,t1)||2)

+ E[HV G(yk,t) - vyG@k,tfl)Hﬂfk,t]

280l | 2 ~ ~
< (1= 20 Wneal? - (5 —2) 190000 — VasGis) I

+ QE[HvyG(yk,t) - vyG@k,t—l) - [vyg@k,t) - vyg@k,t—l)”m]:k,t}

(i1) 28uL _ _ _
< (1= 20 ka4 2B, 60) = 6 eo1) = (Vy0() ~ Vo))

(#i1) 25 L 2L ~
< (1 " )n o1 +—||ykt T2

268ul,  2L2B%2\ _
(1 5” T 5)”%“”2

p+ L Sa
(i) BuL 2
< | 1———|||ug—
< (1= 222 ol

where (i) follows from Assumptions 2 and 3, (ii) follows from the fact that 8 < 5\, (iié) follows
from Lemma 10, and (iv) follows because Sy > 2(5 1) LB. Then, the proof is complete. O

Furthermore, we characterize the relationship among ug, d; and A.
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Lemma 14. Suppose Assumptions 2 and 3 hold. Let &, = E||V,g(xk,yx)||% B = ﬁ, and
Sy > 2(% + 1)LB. Then, we have

2L 5°

A, < A
S Qg 1’0+Sg(1—a)

E|[tr—1,0ll?,

where Ek—l,o and Ay, are defined in Lemma 11, and a is defined in Lemma 13, and
Elltg. ol < 3(&@0 + E|Vyg(@rt1, Ux) — Vyg(@r, yi)lI* + 0k).-

Proof. Based on eq.(23) and eq.(24) in [27] first version, we obtain:

~ 12)2
Ok < dk-10+ m”ﬂkﬂ,ow
and
Elakol? < 3Rk + EIVy f i1, ve) — Vol o,y |2 + 64).
The proof is finished by replacing [ with L¢ and replacing f(z,y) with g(z, y). O

Next, we characterize the recursive updates of d; and Ay, respectively.

Lemma 15. Suppose Assumptions 1, 2 and 3 hold. Let § = ﬁ, and Sy > 2(% + 1)Lg. Then, we
have

L _ ~
Opy1 < (EIVyg(@rr1,yr) — Vyg(zr ye)|* + k) + iEHUk,OHQ + Ago-

pp(m+1) 2-Lp

where 0y, is defined in Lemma 14 and Ek,o is defined in Lemma 11.

Proof. Following from Lemma 12 in [27], we have

9 2
<—=
pB(m + 1)
+ E||Vyg(zkt1, Ur0) — kol

Lp
2_Lj

ElVyg(@rt1, Uk 11l IVyg(@hs1. Gro)lI” + Etiko]*

o~ =~ _ _ 2
Since Pi,0 = Yks Tht1 = Zk,0, Yk,m+1 = Yk+1> Okt1 = E||Vyg(Trt1,Yr+1)||°, we have

2 Lg ~ -
Ok+1 SWHVW(MH,MNP oz LﬁE”uk’0”2 +EVyg(@ri1, yr) — Uk ol?

El[,0]*

2 L3
< gV ¢ v )
“uf(m+1) IVyg(@rs1, yr) v9( @k, Yi) + Vyg(@r, ye)l|© + 515

+ E|Vy9(Tk,0,Uk,0) — ol

4 L3 ~ ~
<—(E — 240 E 24 Aro.
S AT 1)( IVyg(@hr1, yr) = Vyg (@, ye)I° + 0k) + 5= 7 [tkoll® + Ako
Then, the proof is complete. O
Lemma 16. Suppose Assumptions 2 and 3 hold. Let = ﬁ, and Sy > 2(% + 1)Lp. Then, we
have
a?L? 12L2% 32 61232 6L% 32
Ap <—2 |2 @ P+ b
FSTS, < S0 —a) " S —a il g%

6L252
Q
+ <1+ S0 _a)> Ag-1,

where i1 is defined in Lemma 14, Ay, is defined in Lemma 11 and L, is defined in Lemma 3.
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Proof. Based on the bounds on Ay in Lemma 14, we have

ﬁ2
Ay <Ap_ 1,0+ 3, (1Q G)EHuk 10ll?
()~ 52 _ .
Ak 10+m(Ak 1.0 + IVy9(@r, yk—1) — Vyg(xr—1,yk—1)|* + dk—1)
(“) - /32
A Q L2 2 2 6
( ) k= 10+S(17 )( ”Uk 1” + Ok— 1)
(Z”) 2L2 a2 62
- L1 LT +6
( ) < k-1 S, vk 1|> S50 — )( [ve—1]* + Sk—1)
a

1202 32 61232 2 B
% <2+52< AT L 52<1—a>‘5’“>

612,32
Q
+ (1 + S0—a) a)> Ag_1,

where (4) follows from Lemma 14, (¢i) follows from Assumption 2, and (4i7) follows from Lemma 11.

Then, the proof is complete. O
Lemma 17. Suppose Assumptions 1, 2 and 3 hold. Let 3 = ﬁ, and Sy > 2(% + 1)LS. Then, we
have

41202 3L38a2 GLLQQQQ,@

2L2 2 E _ 2

6k_<#5(m+1)+ 513 2-I1p QO‘) l[vk—1]l
ZTAEEA, 5oL,
NER 1+<uﬁ(m+1)+2—m) k-l

where 0y, is defined in Lemma 14, Ay_1 is defined in Lemma 11 and Lg is defined in Lemma 3.

Proof. Based on the bounds of §; in Lemma 15, we have

4 ~
6 S——— (L% |Jog_1|® + k1) + Bl ol + As
k‘pﬁ(m+1)( llok—1]| k—1) 5 Lj lak—10]l k—1,0
(@) 4 308~ -
<———(L*®||lvp—1 ||* + 61 A, 202 loe 1112 + 60 ) &+ Ay
_Mﬂ(erl)( o [vr—1l” + 0p—1) + Lﬂ( k=10 + L7 [vp—1l|” + k—1) + Ap—10

_ 4 3Lp3 41202 3L25a2 ,
B </‘5(m+ ) Ta- Lﬁ) dot <uﬁ(m+ D2 —LB> ol

(i) 4 3L3 3L3 2030 )
< S 1 Aj_ _
(uﬁ(m+1)+2—L5> k1+<+2_L5)< k—1+ S, lok—1]|

n < 41202 n 3L3Boz2> ” 2
Vi —
pBm+1) " 2-18 ) "

41202 3L3Ba? 6LLLA%S
( + +—2
uBm+1)  2—-Lg 2—Lg

+ 2130 Bl

2+ 2Lp3 4 3L3
+72—L5 Ap_1+ (Mﬂ(erl) + 2L5)5k1,

where (7) follows from Lemma 14, and (%) follows from Lemma 11. Then, the proof is complete. [

Lemma 18 (Restatement of Proposition 3). Suppose Assumptions 1, 2 and 3 hold. Let n < %
Then, we have

E|[V®(xy, yp; &) — VO(zp)|? < 0%, 27)
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where 0'? = 2M? + 28(Q + 1)2L2M?n?, @fb(xk, Yk; &) is defined in eq. (5) with single sample &
and NV ®(zy,) is defined in eq. (3). Furthermore, let 3 = ﬁ, qg=(1-a)Sz andm = ;17?3 -1

Then, we have

K-1 K-2
4 ’2K
Ay < T 4 220°1% > Elloil® + 3 2 50, (28)
k=0 k=0

where d is defined in Lemma 14.

Proof. We first prove eq. (27). Based on the forms of @@(mh yr; &) and V@(zy,), we have

V(g yi; €) — V()|
<E||VoF(zk,yx:€) — Vaf (@r,yk) — (Vo VyG(@r, y; OVae — VaVyg(r, yi)E[Voe))|?

— (Vo Vy G2k, yr; OE[Vae)) |12

0)
<2M? 4+ 4R|| V.V, G2k, yr; ) Ve
— Vo Vyg(@r, yi)E[Voe)) |1

+4E[[(VoVy G2k, yr; OE[Ve))
(i)
<2M? + 4L°E||Vge — E[Voel|I? + 4IEVoel IPEIV e Vy G2k, vk €) — VaVyg(@e, i) |I”

(?)QMQ-FSLQEH??Z T (T = V26 (e, yas )V F (e, s €)
— S T2y (L = V2 G (@ yas ) Vi f (2 ) |2
+8L2E||772q—71 HJ "o q I =1V G (ks yk; )V f (Ths yk)
@ T oy (I = 1V2g(@, b))V f (ks ye) |2 + 4 M2 LA(Q + 1)?

(i)
<2M? 4+ 8003 (Q + 1)2M? + 16 L*n? M*(Q + 1)* + 4n* M2 L*(Q + 1)

=2M? +28(Q + 1)’ L*M*n* = 0”2,
where (i) and (m) follows from Assumption 2, (iii) follows because |E[Voe]||? = ||E[Vi]||* <
7 M?(Q + 1) in eq. (18), and (iv) follows because ||(I — nV2G(x, yx; )| < 1.

Then, we present the proof of eq. (28). Based on the bound on Ay, in Lemma 16, we have

612 32 Q22 12026% 61282
Ap <1+ —" ) A Q2 Q _1)?
k_< +SQ(1fa) k—1+ S5 T T k-1l
6L2 ﬁ?
_RT s
+ So(1 — a) k—1
—k
022 126%(L2 4+ 13) | &= 6r2 \"
Q Q Q 2
< 2 1+ ——F— Ellvg—14r—
- SQ < + 1—a p:zk’ +SQ(1_G/) ”vK Lk p”

61232 K-l 612 32 p—k’ 612 32
Q Q Q
P P e— E 1+ —— OK— 1+ — JANY
Sa(1—a) Py Sa(1—a) K—1+k'—p S>(1—a) k

@3 302 L ﬂ(L2+ 68(L* + L3)
§§Ak1+ 5 (Mt g,lElvi -

9L K-l

where () follows from the followmg bound:
6L3 6%

2 52 \ PV 2 52 \ ¢
PO L R UL T P S 0 M
Si(1 —a) - Sa(l—a) | — 1— 6Léfg(q—)1)

Sz 1—a
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61337 3
_er 2
§1+1_ 555 <o
Sa(1—a)
where 3 = 1dL ,and ¢ = (1 — a)Ss. Then telescoping Ay over k from (n; — 1)g to K — 1, we
have

3aL? 662(L2 + L2) K-l &
Z Ap = S, ( ?GQ ST Ellvk-iw—pl?

k=(nr—1)q k=(nr—1)q p=k’
gt 3
m Z Z Ok—14k—pt+ 5 (K — (g — 1)(])A(nk—l)q-
k=(ny—1)q p=k’
Since
K-1 k K-2
> Y EBlokawl?<a D Elul?
k=(nx—1)q p=k’ k=(nx—1)q
and
K—1 k-1 K—2
S>> ki <a Y bk
k=(ni—1)q p=k’ k=(nx—1)q
we have

K-1 212 2(12 2 K-2
3 30’ Lq 66°(L* + L)
> Ak <K~ (e~ DA + g <1+Q > Ellul?

1—
k=(nr—1)q 52 “ k=(mr—1)g
2 02 K-2
+59L(f€ Z) S
2 k=(nr—1)q

Futhermore, we assume that ¢’ > ¢ and derive the following bound on the initial update in each
epoch:

(nrg—ngE+1)g—1 2 2712 2,712 2 (nk—nK+1)g—1
3 3oL 68“(L*+ L
o?%q 04 (1 B( Q)

Y ATl > Bl

k=(nk—nk)q k=(ng—nk)q

1—a

12 82%q (nx—nk+1)g—1

9
Q
e D DR

k=(nk—nk)q

Based on the above inequality, we telescope Ay, over k from 0 to K — 1, and obtain

K—-1 2172 2 2 2 2 K-2
302K  3a’Liyq 65 (L +1g) 0B%
AL < 1 Elvg||? + Q )
kzzo FSs T U Z lowll” + Z K
() 362K K2 152
< 602 L2 § El|vx || 7§ 5
= 25 + ba Q — Hvkll + 4 Z k>

where (i) follows because 5 = and ¢ = (1 — a)S,. We further derive the following bound on

519:

13L ’

+ 2Léa2> Ellvk_1]?

5 4L%a? N 3L3Ba?  6LL{H P
Pe\usm+1) T 2—Lp T 2-1Lp

2+ 2L 4 3L3
+72—L5 Ap_1 + (#5(m+1) +2Lﬂ> Ok—1
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(“’) 13 5
< *5}’@ 1+ — Lo Ellvg—1|* + *Ak—ly
2 4
where (i7) follows because 8 = 13LQ ,q=(1—a)Ss,and m = —ﬂ — 1. Then, we telescope 0, and
Ap over k =0to K — 1, and have

K-1 K—2
By < 20+ = L2 2ZE\\Uk||2 ZAk, (29)
k=0 k=0
and
K-1 K—2 K-3 K—
30”K 272 2 2 2 9, O
> A< 25, +60°L3 > Eljog* + 50+ L o Elv|| +§2Ak
k=0 k=0 k=0 o=
30_/2

+8a’L) ZE||vk||2+ —80+ = ZAk

Finally, we rearrange the terms in the above bound and obtain

K—1 K—2
40K
S A< T 220213 Y Eljus]? + 50,
Sh
k=0 k=0
Then, the proof is complete. O

Lemma 19. Suppose Assumptions 1, 2 and 3 hold. Let f = ﬁ, qg=(1—a)Sy, andm = % -1

Then, we have

K-1 —
1002 K 979 9
kZ:O(Sk < —g— + 600 +620°Lg Z:IEHka ,

where L is defined in Lemma 3 and ¢’ is defined in Lemma 18.

Proof. Based on the inequalities in eq. (29) and eq. (28), we have

K-2

K-1 K—2

100K 10 13

> o < ; +550°Lg > Ellvg|® + 5 00+ 200 + ?Léoﬂ > Elfvg|®
k=0 —

A

K-2
+ 680 +620°Lg) > El|ve]|.
k=0

106"? K

1

IN

Then, the proof is complete. O
Lemma 20 (Restatement of Proposition 4). Suppose Assumptions 1,2 and 3 hold. Then, we have

al? ~
E[®(zg41)] <E[®(zk)] + FEHVM(%,%)HQ + aE[|V®(zk) — vk |

« Oé2
— (= == Lo ) Efue?
<2 5 <1>) (vl (30)

where L' = L + %2 + % + Lévsz, and 6@(@@) is defined in eq. (11).
Proof. Based on the smoothness of the function ®(x), we have
(i) Lo 2
C(@p41) S®(zn) + (VO(2k), Thrr — 2k) + = [@rs1 — ]

2
o
<P(x) — a(VP(z1), vi) + 7L<I>||Uk||2
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2
a
<®(zp) — (VP(xk) — vk, vi) — af|vg||* + ?Lq>|\vk||2

[0 o Oéz
<@(ax) + 5 190(ax) P = (5 = G Lo ) Ioul?

2
- 2 — 2 a o 2
<®(xk) + [ VO(zk) = V(i) |I” + ol V(zk) —vkl|” = { 5 = Lo | [lvx]
() al” * 2 S 2
< @(xx) + 2 IVyg(@r, yr) — Vyg(r, y* (ze)|° + | VO (2x) — vl
« (0%
(5 -5La )
(i) a 2 < 2 a o 2
< @ar) + — 3 IVyg(an, ye)I° + alVe(zk) — okl = { 5 = 5 La ) llvell”,

where (7) follows from Assumptions 2 and 3, (i¢) follows from Lemma 7 in [20] and the p-strong
convexity of g(z,y) w.r.t. y, and (ii¢) follows because V,g(zx, y*(x)) = 0.

Taking the expectation on both sides, we obtain
al’? 9 ~ 9
E[®(z41)] <E[®(zx)] + —5-E[Vyg(zr, yr)|I” + aE[[VO(z) — v

Then, the proof is complete. O
Lemma 21. Suppose Assumptions 1, 2 and 3 hold, § = 13LQ, qg=(1—a)Sey, m=-=2—1, and
a= 20L3 where L., = max{Lg, Ly }. Then, we have
— 9L2adyL” 18L"2c"?KalL"
3 Blul? <2(@(e0) - #°) + 2700 :
= H w251
K-1
+2al” Z IV®(zr) — VO(x1)]|?,
k=0
here & = & — Loa® _ S20°LTLG 40312 o7 s defined in Lemma 18, VO(xy) is defined i
where v, = § — =5 — 2 —44a” Ly, o' is defined in Lemma 18, (zx) is defined in

eq. (11), V®(xy,) is defined in eq. (3), and L' is defined in Lemma 18.

Proof. Telescoping eq (30) over k from 0 to K — 1, we have

(5- Loo® ) Z Ellux

2 K— K-1 K-1 .
<®(z0) — E[®(z ) = V(zy)|?
k= k=0 k=0
(%) L/2 K-2
<d(z0) — E[d(zx)] + & < + 600 + 620° L3 Z E|vk|2>

40" K =
+2a< ) + 22a%L2 ZE||U;€H2—|— 60>+2a2||V<I) rg) — V()]

k=0 k=0
10L" 2K 6L72 8
S(I)(l'o) — E[q)(xK)] + (Mz + 8) g Sl a + ( /.LQ + 3> 0450

+

62a3L’2L2 K2 Kl _
( Q 4 44032 ) S Elvkl® 4200 > (IVO(xr) — V() |,
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where (4) follow from Lemmas 18 and 19.

2 620 L'? L2 L. ..
We let L// = (g - L‘I’f - = 2 @ 44043[%2), which is guaranteed to be positive due to the

parameter settings given in the lemma, reorganize the terms in the above inequality, and obtain

K-—1

1 10L"? c?Ka
— E 2<® —E[® 8

T l;:o [vl]* <®(x0) — E[ (xK)H( 2 + ) S

+ 6L'2+§ o +2 Kin%@( ) — Vo (z1)]?
’u2 3 0o (6% TK Tl .

k=0

Then, we have the bound on Z,f;(} E|lvg||? as

K-1

Y Ellun]® <L (®(zo) — %) +

k=0

9L2adyL" + 18L"20"? KaL"
G u2 S

K—-1
+2aL" > V() — V()|
k=0

Then, the proof is complete. O

D.2 Main Proof of Theorem 2

Theorem 4. (Formal Statement of Theorem 2) Apply VRBO fto solve the pmblem in eq. (1).

Suppose Assumptions 1, 2, 3 hold. Let o = —201L§”,,8 13L , Sy > 2( +1)LB,m=-=2—-1,q=
”fffz ,andn < +. Then, we have
K—1
56L"% ¢"?K  30L"%§ L 9L L
Y EIVe(z)]® < - + 34002 L3 (L”((I)( 0) — &%) 4 0
k=0 pro 5 2 @2 W
18L"?¢"? K aL"
— o +2aL/C{K | + 4KCE
25 TiallCoR ) akCg,
1 a Lga? 62a3L/2LQ 3712 an . . .
where ;; = § — =% — e — 44a”Lp), o' is defined in Lemma 18, Ly, is defined in

Lemma 21, %@(xk) is defined in eq. (11), V@(mk) is defined in eq. (3), and L' is defined in
Lemma 20.

Proof. Based on the form of V®(xy,) in eq. (2), we have

K—1
ZEHV@(%)HQ
k=

K—-1

=Y E[|VE(xx) - VO(zp) + VO(zk) — VO(ai) + V() — vp + vel|’]
k;o ) ) i

<4 (E|VP(ar) — VE(z0)|* + E[VE(xr) - VO(ar)|”

0
V(i) — vil]® + Efvk|?)

N+‘a|~

<4 (L’leyk =y (@)l + CG + AR + Ellve]*)

L
Il
>_.o

N

i)

IA

L/2
4 ( L Vg ey |2 + CB + A2 +E|vk||2)
k=0
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K-1

L/25k 9
<4y +C% + A} + E|lug
k=0

(i) 412 (100K ~ S
<— 2 + 600 + 620° L3 ZEHW”Z +4KCQ+4ZE”U’“H2
H k=0 k=0
407K 2o N
+4< < +220° L3 ZEHU}gH + 50
k=0
401" 2K  [24L? 16 22 L? 272 3 2
< 16 i ) 247a* L7, — + 88a“L 4 E
(82 ) (2 ) (i sy i
+4KC3
(#5612 o> K 30L"%4 L 9L adyL"”
< 3400° Ly —5 | L"(®(x0) — ©*) + ——5—
N Sl+u2+ u<((0) ) w
18?0 KalL"
8:2—56“ + QaL“CZ?K) +4KCY,
1

where (7) follows from Assumption 1, (i7) follows from Lemma 19, and (7i7) follows from Lemma 21.
Taking the expectation on both sides, we have

K-1

56L"2 o2 30L"%5, L? 9L2adyL"
E|V®(zp)|* < — 34002 L2 L"(® — )4 =
T 2 BVl <7 G+ S el (L) - 0+ 2
18L26"2 KalL" ) )
T + 2O£L//CQK> +4CQ.

Since Cgp = O(1 — nu)?, Lo = 0(Q?),8 = O(Q~2),0”* = O(Q?), we obtain the following
bound:

1K_1 4 6
- 2 & & 41 p)29 )
£ 2 EIveElt <o (S + & reta—m)

Then, the proof is complete. O

D.3 Proof of Corollary 2

Corollary 4 (Restatement of Corollary 2). Under the same conditions of Theorem 2, choose
S1=0(c1),8 = 0(e7°?),Q = O(log(=55)), K = O(e™'). Then, VRBO finds an e-stationary
point with the gradient complexity of O(e~1%) and Hessian-vector complexity of O(e~1).

Proof. Based on the setting in Corollary 4, we have (9(6274 + %f + Q*(1 — np)?@) = O(¢), which
guarantees the target e-accuracy. Note that the period ¢ = (1 — a)Sz = O(e~%?). Thus, the gradient
and Jacobian complexities are given by O(K S1/q + KSom) = O(e 1% + ¢ 1:5) = O(e~ 1), and

that Hessian-vector complexity is given by O(KQS1 /q+K SomQ) = O(e 15 +715) = O(e15).
Then the proof is complete. O
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