Appendix
A Limitations

Despite our efforts to develop a robust experimental
design, a few limitations should still be considered
when drawing conclusions from our results. First,
the experiential model we used—while showed to
reflect brain-relevant information—relies on pre-
defined dimensions that are, to some extent, ab-
stract and high-level. In this sense, it may fail to
capture low-level perceptual information relevant
for modelling human word representations and, per-
haps, learnt by computational models.

Another limitation is that our study focuses on
single words as opposed to longer text passages.
To some extent, our experiments suggest that this
may affect machine language processing, as we
found representations by computational models to
be more aligned with brain responses when words
are passed within sentence templates vs. in iso-
lation (see also Appendix C.1). Similarly, the
isolated-word setup is likely to play a role human
language processing—as insightfully observed by
Zwaan (2014), context is crucial in determining the
mental simulations people engage during language
comprehension and the amount of perceptual detail
they contain.

Lastly, two additional limitations are related to
the models included in our study. The first is that,
while SimCSE, MCSE and CLAP are compara-
ble in their learning objectives and architecture,
they still differ in the amount of fine-tuning data.
While, in principle, this could be problematic, we
observed that SimCSE—despite being fine-tuned
on less sentences than MCSE—still proves to be
more EXP48- and brain-aligned. As for CLAP, we
acknowledge that the smaller amount of fine-tuning
audio-caption pairs, together with the fact that it
did not optimise a SImCSE-like objective jointly
with the CLIP-like one, may have played a role in
its poor performance.

The second limitation related to our model se-
lection is that we only considered architectures
fine-tuned contrastively, which are known to re-
flect high-level correspondences between objects
present in images and captions, while failing to cap-
ture more fine-grained relations between modalities
(Hendricks and Nematzadeh, 2021; Parcalabescu
et al., 2022; Thrush et al., 2022; Liu et al., 2023;
Chen et al., 2023; Bavaresco et al., 2024). There-
fore, it could be that different trends would emerge
if repeating the experiments with computational

models trained with different objectives.

B Sentence Templates

The neutral sentence templates where the word
stimuli were embedded in order to obtain contex-
tualised representations from the computational
models were the following:

Someone mentioned the <word>.
The post was about the <word>.
Everyone was talking about the <word>.
They were all interested in the <word>.
People know about the <word>.

In one of our additional experiments (see
Section 5.1), we used caption-like sentences to
check whether they were more in-distribution for
vision-language models and, therefore, yielded
more EXP48- and brain-aligned representations.
Below, we report the caption-like templates used
for each word sub-category.

Templates used for the sub-category food:
There is a <word> on a table in a
restaurant.

A <word> is on a kitchen table.

A woman is eating a <word>.

A <word> with a few glasses around.
A close-up of a <word>.

Templates used for the sub-category vehicle:

There is one man in a <word>.

A <word> is surrounded by a few people.
A woman is posing next to a <word>.

A <word> with a young man next to it.
A close-up of a <word>.

Templates used for the sub-category fool:

There is a man holding a <word>.

A <word> is lying on the ground.

A woman is using a <word>.

A <word> with some people in
background.

A close-up of a <word>.

the

Templates used for the sub-category animal:

There is a <word> eating voraciously.



A man is feeding a <word>.

A woman next to a <word>.

A <word> with a little girl staring at
it.

A close-up of a <word>.

Templates used for the sub-category negative event:

There is a crowd looking scared because
of a <word>.

Many people are trying to shelter from a
<word>.

A <word> happening in a big city.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category social event:

There is a small crowd
<word>.

A few people are gathered for a <word>.
A <word> attended by a large group of
people.

A <word> with many people involved.

A picture of a <word>.

attending a

Templates used for the sub-category communica-
tion:

There is a small crowd at a <word>.

A few people are participating in a
<word>.

A <word> in a crowded room.

A <word> with many people involved.

A picture of a <word>.

Templates used for the sub-category sound:

There is a man hearing a <word>.

A few people seem to hear a <word>.

A <word> is heard by a few people.

A <word> with a few people listening to
it.

A picture of a <word>.

C Additional RSA Results

C.1 Single-word vs. contextualised
representations

Our choice to derive word representations by in-
cluding them in sentences was guided by the intu-

Model p EXP48  p Brain
SimCSE 0.52 0.22
MCSE 0.45 0.19
CLAP 0.03 0.00
BERT 0.53 0.23
Visual BERT 0.27 0.12
CLIP 0.41 0.14
GloVe 0.45 0.14
Word2vec 0.42 0.125

Table 1: Spearman correlations quantifying the align-
ment of models’ representational spaces with EXp48
and brain responses.

ition that single words could have been an out-of-
distribution input for computational models trained
to output contextualised word representations. We
empirically verified that representations obtained
by embedding words within templates yield higher
alignment than those obtained by passing single
words to the models. We show the ExP48 and
brain alignment obtained with both embedding-
extraction procedures in Figure 1.

C.2 Layer-wise RSA results

In the main paper, we reported RSA results calcu-
lated from model representations averaged across
the three layers yielding the highest alignment in-
dividually. Here, we provide a layer-wise visualisa-
tion of RSA results, which allows observing how
ExXP48 vs. brain alignment changes throughout
model layers. Specifically, layer-wise Spearman
correlations against ExP48 are displayed in Fig-
ure 2, while those against fMRI responses are in
Figure 3.

C.3 RSA with additional baselines

For completeness, in Table 1 we report RSA results
including three additional models: CLIP (Radford
et al., 2021), a vision-language model pretrained
contrastively on 400M image-caption pairs, and
the distributional models GloVE (Pennington et al.,
2014) and Word2vec (Mikolov et al., 2013). The
distributional models were originally included in
Fernandino et al. (2022); note that the brain cor-
relations we report differ from the ones from Fer-
nandino et al. (2022), as they computed an average
across participant-wise brain correlations, while
we averaged brain RDMs across participants be-
Sfore computing correlations.
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Figure 1: Spearman correlations observed from model representations obtained by passing single words vs. words
embedded in templates. The left-hand panel shows the alignment with EXP48 and the right-hand one with brain

responses.
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Figure 2: Spearman correlations indicating how rep-
resentational similarity between model representations
and ExpP48 representations changes along model layers.
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Figure 3: Spearman correlations indicating how rep-
resentational similarity between model representations
and brain responses changes along model layers.
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