
Appendix001

A Limitations002

Despite our efforts to develop a robust experimental003

design, a few limitations should still be considered004

when drawing conclusions from our results. First,005

the experiential model we used—while showed to006

reflect brain-relevant information—relies on pre-007

defined dimensions that are, to some extent, ab-008

stract and high-level. In this sense, it may fail to009

capture low-level perceptual information relevant010

for modelling human word representations and, per-011

haps, learnt by computational models.012

Another limitation is that our study focuses on013

single words as opposed to longer text passages.014

To some extent, our experiments suggest that this015

may affect machine language processing, as we016

found representations by computational models to017

be more aligned with brain responses when words018

are passed within sentence templates vs. in iso-019

lation (see also Appendix C.1). Similarly, the020

isolated-word setup is likely to play a role human021

language processing—as insightfully observed by022

Zwaan (2014), context is crucial in determining the023

mental simulations people engage during language024

comprehension and the amount of perceptual detail025

they contain.026

Lastly, two additional limitations are related to027

the models included in our study. The first is that,028

while SimCSE, MCSE and CLAP are compara-029

ble in their learning objectives and architecture,030

they still differ in the amount of fine-tuning data.031

While, in principle, this could be problematic, we032

observed that SimCSE—despite being fine-tuned033

on less sentences than MCSE—still proves to be034

more EXP48- and brain-aligned. As for CLAP, we035

acknowledge that the smaller amount of fine-tuning036

audio-caption pairs, together with the fact that it037

did not optimise a SimCSE-like objective jointly038

with the CLIP-like one, may have played a role in039

its poor performance.040

The second limitation related to our model se-041

lection is that we only considered architectures042

fine-tuned contrastively, which are known to re-043

flect high-level correspondences between objects044

present in images and captions, while failing to cap-045

ture more fine-grained relations between modalities046

(Hendricks and Nematzadeh, 2021; Parcalabescu047

et al., 2022; Thrush et al., 2022; Liu et al., 2023;048

Chen et al., 2023; Bavaresco et al., 2024). There-049

fore, it could be that different trends would emerge050

if repeating the experiments with computational051

models trained with different objectives. 052

B Sentence Templates 053

The neutral sentence templates where the word 054

stimuli were embedded in order to obtain contex- 055

tualised representations from the computational 056

models were the following: 057

058

Someone mentioned the <word>. 059

The post was about the <word>. 060

Everyone was talking about the <word>. 061

They were all interested in the <word>. 062

People know about the <word>. 063

064

In one of our additional experiments (see 065

Section 5.1), we used caption-like sentences to 066

check whether they were more in-distribution for 067

vision-language models and, therefore, yielded 068

more EXP48- and brain-aligned representations. 069

Below, we report the caption-like templates used 070

for each word sub-category. 071

072

Templates used for the sub-category food: 073

074

There is a <word> on a table in a 075

restaurant. 076

A <word> is on a kitchen table. 077

A woman is eating a <word>. 078

A <word> with a few glasses around. 079

A close-up of a <word>. 080

081

Templates used for the sub-category vehicle: 082

083

There is one man in a <word>. 084

A <word> is surrounded by a few people. 085

A woman is posing next to a <word>. 086

A <word> with a young man next to it. 087

A close-up of a <word>. 088

089

Templates used for the sub-category tool: 090

091

There is a man holding a <word>. 092

A <word> is lying on the ground. 093

A woman is using a <word>. 094

A <word> with some people in the 095

background. 096

A close-up of a <word>. 097

098

Templates used for the sub-category animal: 099

100

There is a <word> eating voraciously. 101

1



A man is feeding a <word>.102

A woman next to a <word>.103

A <word> with a little girl staring at104

it.105

A close-up of a <word>.106

107

Templates used for the sub-category negative event:108

109

There is a crowd looking scared because110

of a <word>.111

Many people are trying to shelter from a112

<word>.113

A <word> happening in a big city.114

A <word> with many people involved.115

A picture of a <word>.116

117

Templates used for the sub-category social event:118

119

There is a small crowd attending a120

<word>.121

A few people are gathered for a <word>.122

A <word> attended by a large group of123

people.124

A <word> with many people involved.125

A picture of a <word>.126

127

Templates used for the sub-category communica-128

tion:129

130

There is a small crowd at a <word>.131

A few people are participating in a132

<word>.133

A <word> in a crowded room.134

A <word> with many people involved.135

A picture of a <word>.136

137

Templates used for the sub-category sound:138

139

There is a man hearing a <word>.140

A few people seem to hear a <word>.141

A <word> is heard by a few people.142

A <word> with a few people listening to143

it.144

A picture of a <word>.145

146

C Additional RSA Results147

C.1 Single-word vs. contextualised148

representations149

Our choice to derive word representations by in-150

cluding them in sentences was guided by the intu-151

Model ρ EXP48 ρ Brain

SimCSE 0.52 0.22
MCSE 0.45 0.19
CLAP 0.03 0.00
BERT 0.53 0.23
VisualBERT 0.27 0.12
CLIP 0.41 0.14
GloVe 0.45 0.14
Word2vec 0.42 0.125

Table 1: Spearman correlations quantifying the align-
ment of models’ representational spaces with EXP48
and brain responses.

ition that single words could have been an out-of- 152

distribution input for computational models trained 153

to output contextualised word representations. We 154

empirically verified that representations obtained 155

by embedding words within templates yield higher 156

alignment than those obtained by passing single 157

words to the models. We show the EXP48 and 158

brain alignment obtained with both embedding- 159

extraction procedures in Figure 1. 160

C.2 Layer-wise RSA results 161

In the main paper, we reported RSA results calcu- 162

lated from model representations averaged across 163

the three layers yielding the highest alignment in- 164

dividually. Here, we provide a layer-wise visualisa- 165

tion of RSA results, which allows observing how 166

EXP48 vs. brain alignment changes throughout 167

model layers. Specifically, layer-wise Spearman 168

correlations against EXP48 are displayed in Fig- 169

ure 2, while those against fMRI responses are in 170

Figure 3. 171

C.3 RSA with additional baselines 172

For completeness, in Table 1 we report RSA results 173

including three additional models: CLIP (Radford 174

et al., 2021), a vision-language model pretrained 175

contrastively on 400M image-caption pairs, and 176

the distributional models GloVE (Pennington et al., 177

2014) and Word2vec (Mikolov et al., 2013). The 178

distributional models were originally included in 179

Fernandino et al. (2022); note that the brain cor- 180

relations we report differ from the ones from Fer- 181

nandino et al. (2022), as they computed an average 182

across participant-wise brain correlations, while 183

we averaged brain RDMs across participants be- 184

fore computing correlations. 185
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Figure 1: Spearman correlations observed from model representations obtained by passing single words vs. words
embedded in templates. The left-hand panel shows the alignment with EXP48 and the right-hand one with brain
responses.

Figure 2: Spearman correlations indicating how rep-
resentational similarity between model representations
and EXP48 representations changes along model layers.

Figure 3: Spearman correlations indicating how rep-
resentational similarity between model representations
and brain responses changes along model layers.
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