
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DEFINITIONS

A.1.1 DIRICHLET ALLOCATION FOR SIMULATING DATA HETEROGENEITY

We used Dirichlet distribution, which is often used to simulate data heterogeneity across different
clients. We define Dirichlet distribution in the following way: Given a K-dimensional vector
α = (α1, α2, ..., αK) where each αi > 0, a random vector X = (X1, X2, ..., XK) follows a
Dirichlet distribution, denoted as X ∼ Dir(α), if its probability density function (PDF) is given by:

f(x;α) =
1

B(α)

K∏
i=1

xαi−1
i

subject to the conditions xi ≥ 0 for all i and
∑K

i=1 xi = 1. Here, B(α) is the multinomial beta
function, defined as:

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

)
where Γ(·) is the gamma function.

A.2 SUPPLEMENTARY DATASET DETAILS

A.2.1 WISDM

The WISDM dataset comprises raw accelerometer and gyroscope data collected from 51 subjects
performing 18 activities for three minutes each. Data were gathered at a 20Hz sampling rate from
both a smartphone (Google Nexus 5/5x or Samsung Galaxy S5) and a smartwatch (LG G Watch).
Data for each device and sensor type are stored in different directories, resulting in four directories
overall. Each directory contains 51 files, each corresponding to a subject. The data entry format is:
<subject-id, activity-code, timestamp, x, y, z>. Separate files for the gyroscope and accelerometer
readings are provided and are later combined by matching timestamps. Subject ID is given from
1600 to 1650 and the activity code is an alphabetical character between ‘A’ and ‘S’ excluding
‘N’. The timestamp is in Unix time. The code to read and partition the data into 10s segments is
provided by our benchmark. The input shape of the processed data is 200× 6. The original dataset
is available at https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+
and+smartwatch+activity+and+biometrics+dataset

A.2.2 UT-HAR

The UT-HAR dataset was collected using the Linux 802.11n Channel State Information (CSI) Tool for
the task of Human Activity Recognition (HAR). The original data consist of two file types: “input"
and “annotation". “input" files contain Wi-Fi CSI data. The first column indicates the timestamp in
Unix. Columns 2-91 represent amplitude data for 30 subcarriers across three antennas, and columns
92-181 contain the corresponding phase information. “annotation" files provide the corresponding
activity labels, serving as the ground truth for HAR. In our benchmark, only amplitude is used. The
final samples are created by taking a sliding window of size 250 where each sample consists of
amplitude information across three antennas and from 30 subcarriers and has shape 3× 30× 250.
The original dataset is available at https://github.com/ermongroup/Wifi_Activity_
Recognition/tree/master

A.2.3 WIDAR

The Widar dataset (Widar3.0) was collected with a system comprising one transmitter and three
receivers, all equipped with Intel 5300 wireless NICs. The system uses the Linux CSI Tool to record
the Wi-Fi data. Devices operate in monitor mode on channel 165 at 5.825 GHz. The transmitter

14

https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset
https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset
https://github.com/ermongroup/Wifi_Activity_Recognition/tree/master
https://github.com/ermongroup/Wifi_Activity_Recognition/tree/master


Under review as a conference paper at ICLR 2024

broadcasts 1, 000 Wi-Fi packets per second while receivers capture data using their three linearly
arranged antennas. In our benchmark, we use the processed body velocity profile (BVP) features
extracted from the dataset. The size of each data sample after processing is 22×20×20 consisting of
22 samples over time each having 20 BVP features each in both x and y directions. The raw dataset
is available for download at http://tns.thss.tsinghua.edu.cn/widar3.0/index.
html

A.2.4 VISDRONE

The VisDrone dataset was collected by the AISKYEYE team at Tianjin University, China. It
comprises 288 video clips with 261,908 frames and 10,209 static images captured by cameras
mounted on drones at 14 different cities in China in diverse environments, scenarios, weather, and
lighting conditions. The frames were manually annotated with over 2.6 million bounding boxes
of common targets like pedestrians, cars, and bicycles. Additional attributes like scene visibility,
object class, and occlusion are also provided for enhanced data utilization. The dataset is available at
https://github.com/VisDrone/VisDrone-Dataset

A.2.5 CASAS

The CASAS dataset is a collection of data generated in smart home environments, where intelligent
software uses sensors deployed at homes to monitor resident activities and conditions within the
space. The CASAS project considers environments as intelligent agents and employs custom IoT
hardware known as Smart Home in a Box (SHiB), which encompasses the necessary sensors, devices,
and software. The sensors in SHiB perceive the status of residents and their surroundings, and
through controllers, the system acts to enhance living conditions by optimizing comfort, safety, and
productivity. The CASAS dataset includes the date (in yyyy-mm-dd format), time (in hh:mm:ss.ms
format), sensor name, sensor readings, and an activity label in string format. The data were collected
in real-time as residents go about their daily activities. The code to extract categorical sensor readings
to create input sequences and labels is provided in our benchmark. The CASAS dataset can be
downloaded from https://casas.wsu.edu/datasets/.

A.2.6 AEP

The AEP dataset, collected over 4.5 months, comprises readings taken every 10 minutes from a
ZigBee wireless sensor network monitoring house temperature and humidity. Each wireless node
transmitted data around every 3.3 minutes, which were then averaged over 10-minute periods.
Additionally, energy data was logged every 10 minutes via m-bus energy meters. The dataset
includes attributes such as date and time (in year-month-day hour:minute:second format), the energy
usage of appliances and lights (in Wh), temperature and humidity in various rooms including the
kitchen (T1, RH1), living room (T2, RH2), laundry room (T3, RH3), office room (T4, RH4),
bathroom (T5, RH5), ironing room (T7, RH7), teenager room (T8, RH8), and parents room (T9,
RH9), and temperature and humidity outside the building (T6, RH6) - all with temperatures in
Celsius and humidity in percentages. Additionally, weather data from Chievres Airport, Belgium
was incorporated, consisting of outside temperature (To in Celsius), pressure (in mm Hg), humidity
(RHout in %), wind speed (in m/s), visibility (in km), and dew point (Tdewpoint in °C). The dataset
is available at https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction.

A.2.7 EPIC-SOUNDS

As an extension of the EPIC-KITCHENS-100 dataset, the EPIC-SOUNDS dataset focuses on
annotating distinct audio events in the videos of EPIC-KITCHENS-100. The annotations include
the time intervals during which each audio event occurs, along with a text description explaining the
nature of the sound. Given the variation in video lengths in the dataset, which range from 30 seconds
to 1.5 hours, the videos are segmented into clips of 3-4 minutes each to make the annotation process
more manageable. In order to ensure that annotators concentrate solely on the audio aspects, only the
audio stream is provided to them. This decision is taken to prevent bias that could be introduced by the
visual and contextual elements in the videos. Additionally, annotators are given access to the plotted
audio waveforms. These visual representations of the audio data help the annotators by guiding them
in pinpointing specific sound patterns, thus making the annotation process more efficient and targeted.

15

http://tns.thss.tsinghua.edu.cn/widar3.0/index.html
http://tns.thss.tsinghua.edu.cn/widar3.0/index.html
https://github.com/VisDrone/VisDrone-Dataset
https://casas.wsu.edu/datasets/
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction


Under review as a conference paper at ICLR 2024

The EPIC-SOUNDS dataset can be extracted from the EPIC-KITHENS-100 dataset with the GitHub
repo at https://github.com/epic-kitchens/epic-sounds-annotations. The extracted audio data in the
form of HDF5 file format can also be requested from uob-epic-kitchens@bristol.ac.uk.

A.3 HYPERPARAMETERS

Hyperparameters for Table 4. For WISDM-W, the learning rate for centralized training was 0.01
and we trained for 200 epochs with batch size 64. For FedAvg, in both low and high data heterogeneity
scenarios, we used a client learning rate of 0.01 and trained for 400 communication rounds with batch
size 32. For FedOPT, in both low and high data heterogeneity scenarios, we used a client learning
rate of 0.01 and a server learning rate of 0.01. We also trained for 400 communication rounds. For
WISDM-P, the learning rate for centralized training was 0.01 and we trained for 200 epochs with
batch size 128. For FedAvg, in both low and high data heterogeneity scenarios, we used a client
learning rate of 0.008 and trained for 400 communication rounds with batch size 32. For FedOPT, in
both low and high data heterogeneity scenarios, we used a client learning rate of 0.01 and a server
learning rate of 0.01. We also trained for 400 communication rounds. For UT-HAR and Widar,
the learning rate for centralized training was 0.001 and the number of epochs was 500 and 200 for
UT-HAR and Widar respectively with a batch size of 32. For both low and high data heterogeneity in
both FedAvg and FedOPT, the client learning rate was 0.01 and the server learning rate for FedAvg
and FedOPT was 1 and 0.01 respectively. The number of communication rounds was 1200 and 900
for UT-HAR and Widar respectively with a batch size of 32. For VisDrone, we used a cosine learning
rate scheduler with T0 = 10, Tmult = 2 and trained for 200 epochs with a learning rate of 0.1 and
batch size 12. For all the experiments on VisDrone, the client learning rate was also 0.1 and the batch
size was 12. For FedOPT, the server learning rate was 0.1. For CASAS, the centralized learning rate
was 0.1 with batch size 128. For the federated setting, the client learning rate was 0.005, and the
batch size was 32. We trained for 400 rounds. For FedOPT, the server learning rate was 0.01. For
AEP, the learning rate for centralized training was 0.001 and the batch size was 32 and it was trained
for 1200 epochs. For federated experiments, the client learning rate was 0.01, and the batch size was
32. For FedOPT, the server learning rate was 0.1. For EPIC-SOUNDS, for centralized training, the
learning rate was 0.1 with batch size 512. The number of epochs was 120. For federated settings, we
used a client learning rate of 0.1 and batch size 32. For FedOPT, the server learning rate was 0.01.

Hyperparameters for Table 5. The setup for all the datasets with 10% client sampling rate is
the same as that of Table 4 under high data heterogeneity. For the 30% client sampling rate, the
hyperparameters were kept the same as that of the 10% client sampling rate experiments, with the
exception of CASAS, where the learning rate was set to 0.15.

Hyperparameters for Table 6. The hyperparameters were the same as that of Table 4 with 10%
sampling rate under high data heterogeneity scenario.

Hyperparameters for Table 7. The hyperparameters were same as that of Table 4 with 10% client
sampling rate under high data heterogeneity scenario.

A.4 MODEL ARCHITECTURES

A.4.1 WISDM

For WISDM, we use a custom LSTM model that consists of an LSTM layer followed by a feed-
forward neural network. The LSTM layer has an input dimension of 6 and a hidden dimension of
6. After the LSTM layer, the output is flattened and passed through a dropout layer with a rate of
0.2 for regularization. It then goes through a fully connected linear layer with an input size of 1, 200
(6 hidden units * 200 timesteps) and an output size of 128, followed by a ReLU activation function.
Another dropout layer with a rate of 0.2 is applied before the final fully connected linear layer with
an input size of 128 and an output size of 12.

A.4.2 UT-HAR

For UT-HAR, we use a ResNet-18 model with custom architecture designed for the Wi-Fi based
Human Activity Recognition (HAR) task. The model consists of an initial convolutional layer that
reshapes the input into a 3-channel tensor followed by the main ResNet architecture with 18 layers.

16

https://github.com/epic-kitchens/epic-sounds-annotations
mailto:uob-epic-kitchens@bristol.ac.uk


Under review as a conference paper at ICLR 2024

This main architecture includes a series of convolutional blocks with residual connections, Group
Normalization layers, ReLU activations, and max-pooling. Finally, there is an adaptive average
pooling layer followed by a fully connected layer that outputs the class probabilities. The model
utilizes 64 output channels in the initial layer and doubles the number of channels as it goes deeper.
The last fully connected layer has 7 output units corresponding to the number of classes for the
UT-HAR task.

A.4.3 WIDAR

For Widar, we also use a custom ResNet-18 model tailored for the Widar dataset. The model starts by
reshaping the 22-channel input to 3 channels using two convolutional transpose layers, followed by a
convolutional layer with 64 filters, Group Normalization, ReLU activation, and max-pooling. The
core of the model consists of four layers of residual blocks (similar to the standard ResNet18) with
64, 128, 256, and 512 filters. Each basic block within these layers contains two convolutional layers,
Group Normalization, and ReLU activations. Finally, an adaptive average pooling layer reduces
spatial dimensions to 1× 1, followed by a fully connected layer to output class scores.

A.4.4 VISDRONE

For VisDrone, we use the default YOLOv8n model from Ultralytics library. YOLOv8n is the smallest
YOLOv8 model variant with the three scale parameters: depth, width, and the maximum number of
channels set to 0.33, 0.25, and 1024 respectively.

A.4.5 CASAS

For CASAS, we use a BiLSTM neural network which is composed of an embedding layer, a
bidirectional LSTM, and a fully connected layer. The embedding layer takes input sequences
with dimensions equal to the input dimension and converts them to dense vectors of size 64. The
bidirectional LSTM layer has an input size equal to 64, the same number of hidden units, and
processes the embedded sequences in both forward and backward directions. The output of the LSTM
layer is connected to a fully connected layer with an input size of 128 (to account for the bidirectional
LSTM concatenation) and outputs the logits for 12 activities in the CASAS dataset.

A.4.6 AEP

For AEP, we use a custom multi-layer perceptron (MLP) neural network with an architecture
comprising five hidden layers and an output layer. The input layer accepts 18 features and passes
them through a linear transformation to the first hidden layer with 210 units. Each of the following
hidden layers progressively scales the number of units by factors of 2 and 4 and then scales down.
Specifically, the sizes of the hidden layers are 210, 420, 840, 420, and 210 units respectively. Each
hidden layer uses a ReLU activation function followed by a dropout layer with a dropout rate of 0.3
for regularization. The output layer has a single unit, and the output of the network is obtained by
passing the activations of the last hidden layer through a final linear transformation.

A.4.7 EPIC-SOUNDS

For EPIC-SOUNDS, we again use a custom ResNet-18 model which consists of a stack of convo-
lutional layers followed by batch normalization and ReLU activation. The architecture begins with
a 7 × 7 convolutional layer with stride 2, followed by a max pooling layer. Then, it contains four
blocks, each comprising a sequence of basic blocks with a residual connection; specifically, each
block contains two basic blocks, with output channel sizes of 64, 128, 256, and 512 respectively. Each
basic block comprises two sets of 3x3 convolutional layers, each followed by batch normalization
and ReLU activation. The first convolutional layer in the basic block has a stride of 2 in the second,
third, and fourth blocks. Finally, the model has an adaptive average pooling layer, which reduces the
spatial dimensions to 1x1, followed by a fully connected layer with an output size of 44 classes.

17

https://github.com/ultralytics/ultralytics


Under review as a conference paper at ICLR 2024

Table 8: Representative IoT devices for each dataset.

Application Dataset IoT Platform Representative Devices Hardware RAM Size

Activity Recognition
WISDM-W Smartwatch Apple Watch 8 512 MB to 1 GB
WISDM-P Smartphone iPhone 14 6 GB
UT-HAR Wi-Fi Router TP-Link AX1800 64 MB to 1 GB

Gesture Recognition Widar Wi-Fi Router TP-Link AX1800 64 MB to 1 GB

Independent Living CASAS Smart Home Raspberry Pi 4 1 GB to 8 GB

Energy Prediction AEP Smart Home Raspberry Pi 4 1 GB to 8 GB

Objective Detection VisDrone Drone Dji Mavic 3 + Raspberry Pi 4 1 GB to 8 GB

Augmented Reality EPIC-SOUNDS Head-mounted Device GoPro / AR Headset 1 GB to 8 GB

Table 9: Communication overheads under different quantization.

Communication cost per round
WISDM-W WISDM-P UT-HAR Widar VisDrone CASAS AEP EPIC-SOUNDS

FP32 595.9KB 595.9KB 42.67MB 42.69MB 11.349MB 750.9KB 3.391KB 42.95MB
FP16 297.95KB 297.95KB 21.335MB 21.345MB 5.6745MB 375.45KB 1.6955KB 21.475MB

18


