Appendix for "Siformer: Feature-isolated Transformer for
Efficient Skeleton-based Sign Language Recognition”

1 Qualitative examples of kinematic
rectification

The qualitative examples provided in Figure 1 offer insights into
the efficacy of our kinematic rectification approach in refining the
skeletal representation of sign glosses. In column (a), we observe
the initial values of keypoint coordinates before any rectification
is applied. This raw data provides a baseline for comparison and
highlights the inherent variability and noise present in skeletal
representations. Column (b) visualises the skeletal representations
after abduction-adduction rectification (¢ = 0.4) is applied. This
step aims to mitigate errors associated with lateral movement of
the fingers, enhancing the alignment and precision of keypoint po-
sitions. Column (c) presents the skeletal representations after both
abduction-adduction and flexion-extension rectifications (« = 0.4)
are applied. By reducing both lateral and angular deviations in
movement, this rectification process yields refined keypoint co-
ordinates that more accurately reflect the intended gestures and
movements. While body pose keypoints exhibit relatively consis-
tent and precise estimation, hand keypoints demonstrate greater
variability and complexity due to the intricate nature of hand ges-
tures in SLR contexts. Recognising this disparity, our kinematic
rectification approach is designed to address the challenges associ-
ated with hand gestures.

2 Quantifying the performance of
input-adaptive inference mechanism

We quantify the number of input samples passing through fewer
layers than the defined layer number under the input-adaptive in-
ference mechanism. The experiments employ a patience value of
one, utilise the C1 configuration (detailed in the main paper for
Siformer), and incorporate non-trained internal classifiers. Vary-
ing numbers of randomly selected samples from one of the two
benchmark datasets are used for each test group. From Table 1,
we can observe that the number of input samples going through
fewer layers varies based on the number of inputs used in the
experiments. As demonstrated in our previous experiments, the
input-adaptive inference mechanism has proven effective in im-
proving performance, regardless of the choice of patience value.
We seek to gain deeper insight into the source of this improvement
through quantification. The best-case scenario for performance im-
provement occurs when the internal classifiers make all decisions
correctly. Taking the experiments conducted on 800 samples from
WLASLS800 as an example, the best-case accuracy improvement can
be calculated as the number of samples undergoing fewer layers
over the total number of samples, resulting in a 5.13% improve-
ment when expressed as a percentage. According to our previous
experiments, the actual improvement is 1.12% (refer to Table 2 and
Table 3 in the main paper), suggesting that 21.83% of the detected
samples can correctly exit earlier along the defined computational
path. This discrepancy is reasonable considering the randomness
of the testing samples for this experiment and the capacity of the

internal classifiers, which solely apply linear transformations to the
input data. To mitigate the potential drawbacks associated with the
non-trained internal classifiers, We conduct experiments on both
the trained internal classifiers and brand new internal classifiers,
revealing that the brand new internal classifiers provide slightly
better performance (see Table 2).

Table 1: Quantifying the effectiveness of input-adaptive in-
ference with a patience value of 1 and C1 configuration.

Dataset Total samples count Early exit cases count
800 41
WLASL100 2400 131
4000 195
640 5
LAS64 1920 17
3200 32

Table 2: Performance analysis with trained internal classi-
fiers and non-trained internal classifiers on the WLASL100
dataset.

Encoders Top-1 Accuracy (%)
(+) Non-trained new internal classifiers 86.60
(+) Trained internal classifiers 85.57

3 Detailed visualisation of Siformer

In the supplementary materials folder, we provide the saved Siformer
model. Figure 2 presents an example showing a detailed partial view
of the architecture. For a deep understanding of Siformer’s archi-
tecture, import the file named "Siformer.pth" into a visualisation
tool accessible at 1.

4 Effectiveness of positional encoding

In addition to the learnable frame-wise positional encoding (de-
tailed in the main paper), we conduct experiments with two alter-
native positional encoding methods: absolute positional encoding
with sinusoids [3] and learnable element-wise positional encoding.
These methods offer distinct approaches to embed positional in-
formation, each with unique characteristics and implications for
sequence modeling. The learnable element-wise positional encod-
ing method utilises the same equation as the frame-wise encoding,
as described by Equation 6 in the main paper. However, in the case
of element-wise, each skeletal data within a frame is assigned a
unique positional value (P;; # P; j), while skeletal data correspond-
ing to the same keypoint across different frames share identical
positional values (P;; = Pj,;). This approach ensures that positional
values vary within a frame but remain consistent across frames.

1https://netron.app/
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Figure 2: A partial view of Siformer in detail.

Both the input data X and the learnable positional embedding ma-
trix P share the same dimension. Initially, P contains random values

within the range of [0,1), and it is jointly updated as one of the
model parameters during the training process. On the other hand,
the absolute positional encoding aims to embed absolute positional
information without considering the sequential nature of the data.
This encoding scheme does not differentiate between frames but
assigns unique positional values to each skeletal data or element in
the input sequence. Experimental results illustrated in Table 3 re-
veal that the learnable frame-wise positional encoding achieved the
best performance among the three encoding methods. This finding
suggests that embedding sequence information at the frame level
plays a crucial role in enhancing the model performance compared
to encoding positional information at the element level or using
absolute positional encoding.

Table 3: Performance analysis with different positional en-
coding methods on the WLASL100 dataset.

Top-1 Accuracy (%)

Positional encoding

Learnable element-wised positional encoding 85.50
Learnable frame-wised positional encoding 86.50
Absolute positional encoding 80.00
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5 Effectiveness of pyramid distilling

As a natural consequence of the ProbSparse self-attention mech-
anism detailed in the main paper, the encoders’ feature map may
contain redundant combinations of values V. To manage this issue
and prioritise superior combinations with dominant features, the
author [4] of the ProbSparse self-attention mechanism employ a dis-
tilling operation. This operation aims to create a focused attention
feature map in the subsequent layer by selectively emphasising key
information. The distilling procedure, as described in [4], involves
forwarding from the j-th layer to the (j + 1)-th layer:

X]t-Jrl = MaxPool(ELU(Convld([X;]AB))) (1)

The attention block [-] 4 comprises ProbSparse self-attention mech-
anism along with essential operations designed to enhance feature
extraction and representation learning. Specifically, it incorporates
Conv1d(-), which applies 1-D convolutional filters with a kernel
width of 3, followed by the ELU activation function [2]. A max-
pooling layer is introduced with a stride of 2 to downsample the
input X Jt into its half slice after stacking a layer. To enhance the
robustness of the distilling operation, a strategy is implemented
to construct replicas of the main stack with halved inputs. This
involves progressively reducing the number of self-attention distill-
ing layers, akin to a pyramid structure, while ensuring alignment of
output dimensions. As a result, all stack outputs are concatenated
to form the final hidden representation of the encoder.

However, the results presented in Table 4 reveal that the ap-
proach to distal features does not yield any improvement in per-
formance. Instead, it leads to an increase in computational power
requirements for the distilling operation and a degradation in over-
all SLR performance. This outcome suggests that while the concept
of distilling information from distal features may hold theoretical
promise, its practical implementation may introduce complexities
and inefficiencies that outweigh any potential benefits. The in-
crease in computational power required for the distilling operation
indicates a significant overhead that may not be justified by the
marginal gains in performance, if any.

Table 4: Ablation study of the pyramid distilling on the
WLASL100 dataset.

Encoder Top-1 Accuracy (%)
(-) Pyramid distilling 86.50
(+) Pyramid distilling 84.43

6 Data augmentation and normalisation

We include data augmentation and normalisation methods from
[1]. These methods are directly applied to the extracted keypoint
coordinates. Among the four data augmentation methods (visually
illustrated at 3), one is randomly selected and applied to the train-
ing data; each training data has a 50% chance of being subjected
to the selected data augmentation method. Gaussian noise is ap-
plied differently; once it is applied, it affects each training data. The
normalisation process involves separating the space between the
hands and body for each training data based on the boundary boxes
of the hands and body. The part-based normalisation process is per-
formed before data augmentation, and it is more effective in terms
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Figure 3: Qualitative examples of individual augmentations
denoted by yellow skeletal representations.

Table 5: Ablation study of data augmentations and normali-
sation with Siformer under the WLASL100 dataset.

Normalisation ~Augmentations Top-1 Accuracy (%)

X X 81.75
v X 86.25
v Rotate 86.00
v Squeeze 86.25
v Prespective transformation 85.75
v Arm joint rotate 85.88
v All 86.25
v All + Gaussion noise 86.50

of performance improvement (see Table 5) compared to the data
augmentation methods. While these data augmentation methods
yield slight performance improvement based on the WLASL100
dataset, they equip our model with improved capacity to handle
variations and enhance robustness under non-ideal conditions.
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