Todyformer: Towards Holistic Dynamic Graph Transformers with Structure-Aware Tokenization

Anonymous Author(s) Affiliation Address email

1 **1** Supplementary Material

2 1.1 Dataset Statistics

In this section, we provide an overview of the statistics pertaining to two distinct sets of datasets
utilized for the tasks of Future Link Prediction (FLP) and Dynamic Node Classification (DNC). The
initial set, detailed in Table 1, presents information regarding the number of nodes, edges, and unique
edges across seven datasets featured in Table ?? and Table ??. For these three datasets, namely Reddit,
Wikipedia, and MOOC, all edge features have been incorporated, where applicable. Furthermore,
within this table, the last column represents the percentage of Repetitive Edges, which signifies the
proportion of edges that occur more than once within the dynamic graph.

Dataset	# Nodes	# Edges	# Unique Edges	Edge Features	Node Labels	Bipartite	% Repetitive Edges
Reddit	11,000	672,447	78,516	\checkmark	\checkmark	\checkmark	54%
Wikipedia	9,227	157,474	18,257	\checkmark	\checkmark	\checkmark	48%
MOOC	7,144	411,749	178,443	\checkmark	\checkmark	\checkmark	53%
LastFM	1980	1,293,103	154,993			\checkmark	68%
UCI	1899	59,835	13838			\checkmark	62%
Enron	184	125,235	2215				92%
SocialEvolution	74	2,099,519	2506				97%

Table 1: Dynamic Graph Datasets. % **Repetitive Edges**: % of edges which appear more than once in the dynamic graph.

10 **1.1.1 TGB dataset**

In this section, we present the characteristics of datasets as proposed by the Dynamic Graph Encoder Leaderboard Huang et al. [2023]. Similar to previous benchmark datasets, we have conducted comparisons regarding the number of nodes, edges, and type of graphs. Additionally, we report the Number of Steps and the Surprise Index, as defined in Poursafaei et al. [2022], which illustrates the ratio of test edges that were not observed during the training phase.

Dataset	# Nodes	# Edges	# Steps	Edge Features	Bipartite	Surprise Index Poursafaei et al. [2022]
Wiki	9,227	157,474	152,757	✓		0.108
Review	352,637	4,873,540	6,865	\checkmark	\checkmark	0.987
Coin	638,486	22,809,486	1,295,720	\checkmark		0.120
Comment	994,790	44,314,507	30,998,030	\checkmark		0.823
Flight	18143	67,169,570	1,385	\checkmark		0.024

Table 2: Statistics of TGBL Dynamic Graph Datasets

Submitted to Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans. Do not distribute.

16 1.2 Implementation details

17 In this section, we elucidate the intricacies of our implementation, providing a comprehensive

18 overview of the specific parameters our model accommodates during hyperparameter optimization.

¹⁹ Subsequently, we delve into a discussion of the optimal configurations and setups that yield the best

20 performance for our proposed architecture.

²¹ Furthermore, in addition to an in-depth discussion of the baselines incorporated into our paper, we also

- offer a comprehensive overview of the respective hyperparameter configurations in this section. We are confident that with the open-sourcing of our code upon acceptance and the thorough descriptions
- of our model and baseline methodologies presented in the paper, our work is fully reproducible.

25 **1.2.1 Evaluation Protocol**

Transductive Setup: Under the transductive setting, a dataset is split normally by time, i.e., the model is trained on the first 70% of links, validated on %15 and tested on the rest.

Inductive Setup: In the inductive setting, we strive to test the model's prediction performance on edges with unseen nodes. Therefore, following [Wang et al., 2021], we randomly assign 10% of the nodes to the validation and test sets and remove any interactions involving them in the training set. Additionally, to ensure an inductive setting, we remove any interactions not involving these nodes from the test set.

1.2.2 Best Hyperparameters for Benchmark datasets.

Table 3 displays the hyperparameters that have been subjected to experimentation and tuning for each dataset. For each parameter, a range of values has been tested as follows:

- Window Size (W): This parameter signifies the window length chosen for selecting the input subgraph based on edge timestamps. It falls within the range of ∈ { 16384, 32768,65536, 262144 }.
- Number of Patches: This parameter indicates the count of equal and non-overlapping chunks for each input subgraph. It is the range of $\in \{8, 16, 32\}$.
- #Local Encoders: This parameter represents the number of local encoder layers within each block, and its value falls within the range of $\in \{1, 2\}$.
- Neighbor Sampling (NS) mode: ∈ {uniform, last}. In the case of a uniform Neighbor Sampler (NS), it uniformly selects samples from the 1-hop interactions of a given node.
 Conversely, in last mode, it samples from the most recent interactions.
- Anchor Node Mode: ∈ {GlobalTarget, LocalInput, LocalTarget} depending on the
 mechanism of neighbor sampling we can sample from nodes within all patches (LocalInput),
 nodes within the next patch (LocalTarget), or global target nodes (GlobalTarget).
- Batch Size: $\in \{8, 16, 32, 64\}$
- Positional Encoding: $\in \{SineCosine, Time2Vec, Identity, Linear\}$

Dataset	Window Size (W)	Number of Patches	#Local Encoders	NS Mode	Anchor Node Mode	Batch Size
Reddit	262144	32	2	uniform	GlobalTarget	8
Wikipedia	65536	8	2	uniform	GlobalTarget	8
MOOC	65536	8	2	uniform	GlobalTarget	8
LastFM	262144	32	2	uniform	GlobalTarget	8
UCI	65536	8	2	uniform	GlobalTarget	8
Enron	65536	8	2	uniform	GlobalTarget	8
SocialEvolution	65536	8	2	uniform	GlobalTarget	8

Table 3: Best Parameters of the model pipeline after Hyperparameter search

51 SineCosine is utilized as the Positional Encoding (PE) method following the experiments conducted 52 in Appendix 1.4.1.

53 Selecting Best Checkpoint: Throughout all experiments, the models undergo training for a duration

of 100 epochs, with the best checkpoints selected for testing based on their validation Average

55 Precision (AP) performance.

56 1.2.3 Best Hyperparameters for TGBL dataset

57 In this section, we present the optimal hyperparameters used in our architecture design for each TGBL

⁵⁸ dataset. We conducted hyperparameter tuning for all TGBL datasets; however, due to time constraints,

59 we explored a more limited set of parameters for the large-scale dataset. Despite Todyformer

outperforming its counterparts on these datasets, there remains potential for further improvement

61 through an extensive hyperparameter search.

Dataset	Window Size (W)	Number of Patches	First-hop NS size	NS Mode	Anchor Node Mode	Batch Size
TGBWiki	262144	32	256	uniform	GlobalTarget	32
TGBReview	262144	32	64	uniform	GlobalTarget	64
TGBComment	65536	8	64	uniform	GlobalTarget	256
TGBCOin	65536	8	64	uniform	GlobalTarget	96
TGBFlight	65536	8	64	uniform	GlobalTarget	128

Table 4: Optimal Window size W for downstream training.

62 **1.3 More Experimental Result**

⁶³ In this section, we present the additional experiments conducted and provide an analysis of the ⁶⁴ derived results and conclusions.

65 1.3.1 FLP result on Benchmark Datasets

⁶⁶ Table 5 is an extension of Table ??, now incorporating the Wikipedia and Reddit datasets. Notably,

67 for these two datasets, Todyformer attains the highest test Average Precision (AP) score in the

68 Transductive setup. However, it secures the second-best position in the Inductive setup for these same datasets.

Table 5: Future link Prediction Performance in AP (Mean \pm Std). Bold font and <u>ul</u> font represent first- and second-best performance respectively.

Setting	Model	Wikipedia	Reddit	MOOC	LastFM	Enron	UCI	SocialEvol.
0	JODIE	0.956 ± 0.002	0.979 ± 0.001	0.797 ± 0.01	0.691 ± 0.010	0.785 ± 0.020	0.869 ± 0.010	0.847 ± 0.014
i ve	DyRep	0.955 ± 0.004	$0.981 \pm 1e - 4$	0.840 ± 0.004	0.683 ± 0.033	0.795 ± 0.042	0.524 ± 0.076	0.885 ± 0.004
nci	TGAT	0.968 ± 0.001	$0.986 \pm 3e - 4$	0.793 ± 0.006	0.633 ± 0.002	0.637 ± 0.002	0.835 ± 0.003	0.631 ± 0.001
psr	TGN	0.986 ± 0.001	0.985 ± 0.001	0.911 ± 0.010	0.743 ± 0.030	0.866 ± 0.006	0.843 ± 0.090	0.966 ± 0.001
rar	CaW	0.976 ± 0.007	$0.988 \pm 2e - 4$	0.940 ± 0.014	$0.903 \pm 1e - 4$	0.970 ± 0.001	0.939 ± 0.008	$0.947 \pm 1e - 4$
H	NAT	0.987 ± 0.001	0.991 ± 0.001	0.874 ± 0.004	$0.859 \pm 1e - 4$	0.924 ± 0.001	0.944 ± 0.002	0.944 ± 0.010
	GraphMixer	0.974 ± 0.001	0.975 ± 0.001	0.835 ± 0.001	0.862 ± 0.003	0.824 ± 0.001	0.932 ± 0.006	$0.935 \pm 3e{-4}$
	Dygformer	0.991 ± 0.0001	0.992 ± 0.0001	0.892 ± 0.005	0.901 ± 0.003	0.926 ± 0.001	0.959 ± 0.001	$0.952 \pm 2e - 4$
	DyG2Vec	0.995 ± 0.003	$0.996 \pm 2e - 4$	0.980 ± 0.002	$0.960 \pm 1e - 4$	0.991 ± 0.001	0.988 ± 0.007	$0.987 \pm 2e - 4$
	Todyformer	$\overline{0.996 \pm 2\mathrm{e}{-4}}$	$\overline{0.998\pm\mathbf{8e}{-5}}$	$\overline{0.992\pm\mathbf{7e}{-4}}$	$\overline{0.976\pm\mathbf{3e}{-4}}$	$\overline{0.995\pm \mathbf{6e}{-4}}$	$0.994 \pm 4e{-4}$	$\overline{0.992 \pm 1\mathrm{e}{-4}}$
	JODIE	0.891 ± 0.014	0.865 ± 0.021	0.707 ± 0.029	0.865 ± 0.03	0.747 ± 0.041	0.753 ± 0.011	0.791 ± 0.031
é	DyRep	0.890 ± 0.002	0.921 ± 0.003	0.723 ± 0.009	0.869 ± 0.015	0.666 ± 0.059	0.437 ± 0.021	$0.904 \pm 3e - 4$
cti	TGAT	0.954 ± 0.001	0.979 ± 0.001	0.805 ± 0.006	0.644 ± 0.002	0.693 ± 0.004	0.820 ± 0.005	0.632 ± 0.005
-np	TGN	0.974 ± 0.001	0.954 ± 0.002	0.855 ± 0.014	0.789 ± 0.050	0.746 ± 0.013	0.791 ± 0.057	0.904 ± 0.023
In	CaW	0.977 ± 0.006	$0.984 \pm 2e{-4}$	0.933 ± 0.014	0.890 ± 0.001	0.962 ± 0.001	0.931 ± 0.002	$0.950 \pm 1e - 4$
	NAT	0.986 ± 0.001	0.986 ± 0.002	$0.832 \pm 1e - 4$	0.878 ± 0.003	0.949 ± 0.010	0.926 ± 0.010	0.952 ± 0.006
	GraphMixer	$0.966 \pm 2e - 4$	$0.952 \pm 2e - 4$	0.814 ± 0.002	0.821 ± 0.004	0.758 ± 0.004	0.911 ± 0.004	$0.918 \pm 6e{-4}$
	Dygformer	$0.985 \pm 3e - 4$	$0.988 \pm 2e - 4$	0.869 ± 0.004	$0.942 \pm 9e{-4}$	0.897 ± 0.003	0.945 ± 0.001	$0.931 \pm 4e - 4$
	DyG2Vec	0.992 ± 0.001	0.991 ± 0.002	0.938 ± 0.010	0.979 ± 0.006	0.987 ± 0.004	0.976 ± 0.002	0.978 ± 0.010
	Todyformer	$0.989 \pm 6e - 4$	0.983 ± 0.002	0.948 ± 0.009	0.981 ± 0.005	$0.989 \pm 8\mathrm{e}{-4}$	0.983 ± 0.002	0.9821 ± 0.005

70 1.3.2 FLP validation result on TGBL dataset

As discussed in the paper, Todyformer has been compared to baseline methods using the TGBL
dataset. Table 6 represents an extension of Table ?? specifically for validation (MRR). The results
presented in both tables are in line with counterpart methods outlined in the paper by Huang et al.
[2023]. It is important to note that for the larger datasets, TCL, GraphMIxer, and EdgeBank were
found to be impractical due to memory constraints, as mentioned in the paper.

76 **1.4 Ablation Studies and Sensitivity Analysis**

We conducted an evaluation of the model performance across various parameters and datasets to assess the sensitivity of the major hyperparameters. Figure 1 illustrates the sensitivity analysis regarding the window size and the number of patches, with one parameter remaining constant while the other changes. As highlighted in Xu et al. [2020], recent and frequent interactions display

Table 6: (Validation) Future Link Prediction performance in Validation MRR on TGB Leaderboard datasets.

Model	TGBWiki	TGBReview	TGBCoin	TGBComment	TGBFI	ight	Avg	. Rank \downarrow
Dyrep TGN CAWN TCL GraphMixer EdgeBank Todyformer	$ \begin{vmatrix} 0.411 \pm 0.015 \\ 0.737 \pm 0.004 \\ \textbf{0.794} \pm 0.014 \\ 0.734 \pm 0.007 \\ 0.707 \pm 0.014 \\ 0.641 \\ \underline{0.7821} \end{vmatrix} $	$ \begin{vmatrix} 0.356 \pm 0.016 \\ \textbf{0.465} \pm \textbf{0.010} \\ 0.201 \pm 0.002 \\ 0.194 \pm 0.012 \\ 0.411 \pm 0.025 \\ 0.0894 \\ \underline{0.4262} \end{vmatrix} $	$ \begin{vmatrix} 0.507 \pm 0.029 \\ 0.594 \pm 0.023 \\ \hline OOM \\ OOM \\ OOM \\ 0.1244 \\ 0.6898 \end{vmatrix} $		$\begin{array}{c} 0.528 \pm \\ 0.739 \pm \\ \hline 001 \\ 001 \\ 0001 \\ 0.49 \\ 0.792 \end{array}$	0.022 0.012 M M M V2 23		$\begin{array}{c} 4.2 \\ 2.2 \\ 3 \\ 5 \\ 4 \\ 4.6 \\ 1.4 \end{array}$
				Dataset	G. E.	P. E.	Alt. 3	AP
0.985 - 0.980 -		0.985 -		MOOC	×	× × ✓	× × ×	0.980 0.981 0.987 0.992
년 0.975 - 일 0.970 - 월 0.965 -		0.975 - 0.970 - 0.965 -	-	LastFM	× √ √	× × √	× × ✓	0.960 0.961 0.965 0.976
0.950 - 0.955 - 0.950 -		0.960 - 0.955 - 0.950 -	LastFM MOOC	UCI	× √ √	× × √	× × ×	0.981 0.983 0.987 0.993
Figure 1: Set	5 20 25 30 umber of Patches	50K 100 Input	K 150K 200K 250K Window Size	SocialEvoluti	on 🖌	× × ✓	× × ×	0.987 0.987 0.989 0.991

Figure 1: Sensitivity analysis on the number of patches and input window size values on MOOC and LastFM. The plot on the left has a fixed input window size of 262,144, while the one on the right has 32 patches.

Table 7: Ablation studies on three major components: global encoder (G. E.), Positional Encoding (P. E.), and number of alternating blocks (Alt. 3)

enhanced predictability of future interactions. This predictability is particularly advantageous for 81 datasets with extensive long-range dependencies, favoring the utilization of larger window size 82 values to capture recurrent patterns. Conversely, in datasets where recent critical interactions reflect 83 importance, excessive emphasis on irrelevant information becomes prominent when employing 84 larger window sizes. Our model, complemented by uniform neighbor sampling, achieves a balanced 85 equilibrium between these contrasting sides of the spectrum. As an example, the right plot in Figure 1 86 demonstrates that with a fixed number of patches (i.e., 32), an increase in window size leads to a 87 corresponding increase in the validation AP metric on the LastFM dataset. This trend is particularly 88 notable in LastFM, which exhibits pronounced long-range dependencies, in contrast to datasets like 89 MOOC and UCI with medium- to short-range dependencies. 90

In contrast, in Figure 1 on the left side, with a window size of 262k, we change the number of 91 patches. Specifically, for the MOOC dataset, performance exhibits an upward trajectory with an 92 increase in the number of patches from 8 to 16; however, it experiences a pronounced decline when 93 the number of patches reaches 32. This observation aligns with the inherent nature of MOOC datasets. 94 characterized by their relatively high density and reduced prevalence of long-range dependencies. 95 Conversely, when considering LastFM data, the model maintains consistently high performance even 96 at 32 patches. In essence, this phenomenon underscores the model's resilience on datasets featuring 97 extensive long-range dependencies, illustrating a trade-off between encoding local and contextual 98 features by tweaking the number of patches. 99

In table 7, we conduct ablation studies on the major design choices of the encoding network to assess 100 the roles of the three hyperparameters separately: a) Global encoder, b) Alternating mode c) Positional 101 Encoding. Across the four datasets, the alternating approach exhibits significant performance variation 102 compared to others, ensuring the mitigation of over-smoothing and the capturing of long-range 103 dependencies. The outcomes of the single-layer vanilla transformer as global encoder attain the 104 second-best position, affirming the efficacy of our global encoder in enhancing expressiveness. Finally, 105 the global encoder without PE closely resembles the model with only a local encoder (e.i. DyG2Vec 106 107 MPNN model).

Positional Encoding	Anchor_Node_Mode	Average Precision \uparrow
SineCosinePos	global target	0.9901
Time2VecPos	global target	0.989
IdentityPos	global target	0.99
LinearPos	global target	0.9886
SineCosinePos	local input	0.9448

Table 8: Ablation Study on Positional Encoding Options on MOOC Dataset: This table compares the validation performance at the same epoch across various setups.

TT 1 1 0 0 1/1 1/1	1 .	1 C	. 1	1	• 1	•
Table 9. Sensitivity	v analysis on	number of	natches an	id farget	window	\$17P
rable 7. Sensitivity	analysis on	number or	patenes an	iu iui zoi	wmuow	SILU

dataset	Input Window size	Number of Patches	Average Precision ↑
LastFM	262144	8	0.9772
LastFM	262144	16	0.9791
LastFM	262144	32	0.9758
MOOC	262144	8	0.9811
MOOC	262144	16	0.9864
MOOC	262144	32	0.9696
LastFM	16384	32	0.9476
LastFM	32768	32	0.9508
LastFM	65536	32	0.9591
LastFM	262144	32	0.9764
MOOC	16384	32	0.9798
MOOC	32768	32	0.9695
MOOC	65536	32	0.9685
MOOC	262144	32	0.9726

108 1.4.1 Complementary Sensitivity Analysis and Ablation Study

In this section, we have presented the specifics of sensitivity and ablation experiments, which, while 109 of lesser significance in our hyper-tuning mechanism, contribute valuable insights. In all tables, the 110 Average Precision scores reported in the table are extracted from the same epoch on the validation 111 set. Table 9 showcases the influence of varying input window sizes and patch sizes on two datasets. 112 Table 8 illustrates the effects of various PEs, including SineCosine, Time2VecKazemi et al. [2019], 113 Identity, Linear, and a configuration utilizing Local Input as the Anchor Node Mode. The table 114 presents a comparison of results for these different PEs. Notably, the architecture appears to be 115 relatively insensitive to the type of PE used, as the results all fall within a similar range. However, it 116 is worth mentioning that SineCosine PE slightly outperforms the others. Consequently, SineCosine 117 PE will be selected as the primary module for all subsequent experiments. 118

119 References

- Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure
 Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph benchmark for
- machine learning on temporal graphs. *arXiv preprint arXiv:2307.01026*, 2023.
- Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better evaluation for
 dynamic link prediction. *Advances in Neural Information Processing Systems*, 35:32928–32941, 2022.
- Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation learning in
 temporal networks via causal anonymous walks. In *Proc. Int. Conf. on Learning Representations*, 2021.
- Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representation
 learning on temporal graphs. *Proc. Int. Conf. on Representation Learning*, 2020.
- Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay Thakur, Stella
 Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a vector representation of
- time. *arXiv preprint arXiv:1907.05321*, 2019.