
Tight Bounds for Machine Unlearning via Differential
Privacy (Supplementary)

Anonymous Author(s)
Affiliation
Address
email

1 Proof of Theorem 3.1 (Lower Bound)1

Theorem 1.1 (Deletion capacity from unlearning via DP, Lower Bound (Theorem 3.1 in Submission)).2

Suppose W ⊆ Rd, and fix any Lipschitz convex loss function. Then there exists a lazy (ε, δ)-unlearning3

algorithm (Ā, A), where Ā has the form Ā(U,A(S), T (S)) := A(S) (and thus, in particular, takes4

no side information) with deletion capacity5

mA,Ā
ε,δ (α) ≥ Ω

(
εnα√

d log (1/δ)

)
where the constant in the Ω(·) only depends on the properties of the loss function.6

We first restate some useful results before diving into the proof, starting with some results on7

Concentrated DP (zCDP).8

Proposition 1.2 (k-distance group privacy of ρ-zCDP [Bun and Steinke, 2016, Proposition 1.9]). Let9

M : Xn → Y satisfy ρ-zCDP. Then, M is (k2ρ)-zCDP for every X,X ′ ∈ Xn that differs in at most10

k entries.11

Lemma 1.3 (zCDP mini-batch noisy SGD Feldman et al. [2020]). Fix any L-Lipschitz convex loss12

function over a convex subset B of Rd of diameter D. Then there exists an algorithm A which satisfies13

(ρ2/2)-zCDP with excess population loss:14

E
[
F (θ)−min

θ∈B
F (θ)

]
≤ O

(
DL ·

(
1√
n
+

√
d

ρn

))
where the expectation is taken over the randomness of A.15

Proof of Theorem 1.1. The proof follows the same setting as in Sekhari et al. [2021]. The main16

change is that we apply group privacy bounds in terms of zCDP instead of the standard DP guarantee17

provided by [Bassily et al., 2019, Theorem 3.2].18

We first establish a tighter bound for algorithm that achieves m-entries group privacy via Lemma 1.3.19

Feldman et al. [2020] provides a zCDP version of [Bassily et al., 2019, Theorem 3.2] with ρ2/2-zCDP,20

hence by group privacy, we yield m2ρ2

2 -zCDP by Proposition 1.2 for neighboring datasets differing21

in m entries. Then, translating m2ρ2

2 -zCDP to (ε, δ)-DP yields ε = O
(
mρ
√
log (1/δ)

)
.22

By the above discussion, using this zCDP-private learning algorithm with ρ = Θ

(
ε

m
√

ln (1/δ)

)
, we23

get an excess population loss bounded by24

O

(
DL

(
1√
n
+

m
√

d ln (1/δ)

εn

))
(1)

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

It only remains to show how the claimed deletion capacity bound follows from this excess population25

risk guarantee. Construct, as discussed earlier, an unlearning algorithm Ā that returns the input26

without making any changes (and in particular does not require any additional statistics T (S), and27

satisfies the laziness assumption). Since A is (ε, δ)-DP, for any set U ⊆ S, |U | = m, and W ⊆ W ,28

Pr[A(S) ∈ W] ≤ eε Pr[A(S′) ∈ W] + δ

Pr[A(S′) ∈ W] ≤ eε Pr[A(S) ∈ W] + δ

. But since Ā(U,A(S)) = A(S), this readily yields, letting S′ := S \ U :29

Pr
[
Ā(U,A(S)) ∈ W

]
≤ eε Pr

[
Ā(∅, A(S′)) ∈ W

]
+ δ

Pr
[
Ā(∅, A(S′)) ∈ W

]
≤ eε Pr

[
Ā(U,A(S)) ∈ W

]
+ δ

which implies that (A, Ā) is indeed (ε, δ)-unlearning for U of size (up to) m.30

Recalling the definition of deletion capacity, we finally deduce from (1) the deletion capacity with31

excess population risk less than α:32

mA,Ā
ε,δ (α) ≥ m = Ω

(
εnα√

d ln (1/δ)

)
where the O(·) hides constant factors depending only on the loss function (namely, the Lipschitz33

function L, and the diameter D).34

2 Proof of Theorem 3.3 (Upper Bound)35

Theorem 2.1 (Deletion capacity from unlearning via DP, Upper Bound (Theorem 3.3 in Submission)).36

There exists a Lipschitz convex loss function (indeed, linear) for which any ε, δ)-unlearning algorithm37

(Ā, A) which takes no side information must have deletion capacity38

mA,Ā
ε,δ (α) ≤ O

(
εnα√

d log (1/δ)

)
.

Proof of Theorem 2.1. We will consider the following linear (and therefore convex and Lipschitz)39

loss function L(θ, S):40

L(θ, S) := −⟨θ,
n∑

i=1

xi⟩ (2)

for dataset S of n points x1, . . . , xn ∈ {− 1√
d
, 1√

d
}d. We also define the 1-way marginal query, i.e.41

average, as:42

q(S) :=
1

n

n∑
i=1

xi . (3)

To establish our deletion capacity lower bound with respect to this loss function, we will proceed43

in three stages: the first, relatively standard, is to relate population loss (what we are interested in)44

to empirical loss – which allows us to focus on the existence of a “hard dataset.” The second step45

is then to establish a sample complexity lower bound on the empirical risk (for this loss function)46

of any (ε, δ)-DP algorithm, via a reduction to differentially private computing of 1-marginals. This47

step is similar to the one underlying the (weaker) lower bound of Sekhari et al. [2021] (itself relying48

on an argument of [Bassily et al., 2019]), although a more careful choice of building blocks for the49

reduction already allows us to obtain an improvement by logarithmic factors.50

Third, lift this DP lower bound to a stronger lower bound for DP with respect to edit distance m.51

This step is quite novel, as it morally corresponds to establishing the converse of the grouposition52

property of differential privacy (for our specific setting), a converse which does not hold in general.53

Our argument, relatively simple, will crucially rely on the linearity of our loss function.54

We omit the details of the first step (reduction from population to empirical loss) in this detailed55

outline, as it is quite standard. For the second step, our starting point is the following lower bound of56

Steinke and Ullman:57

2

Theorem 2.2 (Lower bound for one-way marginals [Steinke and Ullman, 2016, Main Theorem]). For58

every ε ∈ (0, 1), every function δ = δ(n) such that δ ≥ 2−o(n) and δ ≤ 1/n1+Ω(1), and for every59

α ≤ 1/10, if A : {±1}n×d → [±1]d is (ε, δ)-differentially private and E[∥A(S)− q(S)∥1] ≤ αd60

(i.e., with average-case accuracy α) for all S ∈ {±1}n×d, then we must have61

n ≥ Ω

(√
d ln (1/δ)

εα

)
.

Using this lower bound as a blackbox, we then can adapt the argument of [Bassily et al., 2014,62

Lemma 5.1, Part 2] to obtain the following stronger result:63

Lemma 2.3 (Lower bound for Privately Computing 1-way Marginals). Let n, d ∈ N, ε > 0, 2−on ≤64

δ(n) ≤ 1/n1+Ω(1). For all α ≤ 1/10, if A is (ε, δ)-differentially private. Then, for S ⊆ {± 1√
d
}n×d,65

one must have66

E[∥A(S)− q(S)∥2] = min

(
α,Ω

(√
d ln (1/δ)

nε

))
,

where q(S) = 1
n

∑n
i=1 xi as before. Moreover, this still holds under the assumption that ∥q(S)∥2 ∈67

[M−1
n , M+1

n], where M = Ω(min(nα,

√
d ln (1/δ)

ε)).68

Proof of Lemma 2.3. Our proof follows the same outline as in Bassily et al. [2014], but using the69

result of Theorem 2.2 as a black-box instead of the packing argument of Bassily et al. [2014]. Before70

doing so, we have to translate the result from Theorem 2.2 into our setting, and handle the slightly71

different choice of parameterization ({±1}d instead of {±1/
√
d}d).72

Let nα := C ·
√

d ln (1/δ)

εα , where C > 0 is (strictly smaller than) the constant hidden in the Ω(·)73

of Theorem 2.2. By contradiction, suppose that, for some n ≤ nα, we have an (ε, δ)-differentially74

private algorithm A that takes in a dataset S ⊆ {± 1√
d
}n×d and outputs an estimate A(S) of q(S)75

with expected L2 error α. Rescaling, we get that the algorithm A′ which, on input S′ ⊆ {±1}n×d,76

computes S := S′/
√
d ⊆ {± 1√

d
}n×d and outputs

√
d · A(S) is (1) (ε, δ)-DP by post-processing,77

and (2) since q is linear, has error related to that of A by78

E[∥A′(S′)− q(S′)∥2] =
√
d · E[∥A(S)− q(S)∥2] ≤

√
d · α (4)

However, by Theorem 2.2, A′ must have expected L1 error at least αd since n ≤ nα. By Cauchy–79

Schwarz,80

αd < E[∥A′(S′)− q(S′)∥1]
CS
≤

√
d · E[∥A′(S′)− q(S′)∥2]

(4)
≤

√
d · (α

√
d) = αd

leading to a contradiction. So for n ≤ nα, any (ε, δ)-DP algorithm to estimate q must have expected81

L2 error at least α, i.e., E[∥A(S)− q(S)∥2] ≥ α. Further, one can see by inspection of the proof82

of Theorem 2.2 that ∥q(S)∥2 satisfies the assumption in the "Moreover."83

Now, for n ≥ nα (assume, for simplicity and without loss of generality, that n− nα is even), we use84

a padding argument to establish the other part of the bound. Let A be any (ε, δ)-differentially private85

algorithm for answering q on datasets of size n. Suppose for the sake of contradiction, that A satisfies86

E[∥A(S)− q(S)∥2] <
nα

n
· α (5)

for every dataset S of size n.87

Fix an arbitrary point c ∈ {±1/
√
d}d. Given any dataset S = (x(1), . . . , x(nα)) ∈ {±1}d×nα of88

size nα, we construct Ŝ of size n as follows. Its first nα entries are x(1), . . . , x(nα); then for the89

remaining n− nα, we have (1) the first ⌈n−nα

2 ⌉ (i.e. the first half) of those entries are all copies of c,90

and (2) the remaining ⌊n−nα

2 ⌋ are copies of −c.91

Note that we have92

q(Ŝ) =
nα

n
q(S)

3

for every S, and in particular ∥q(Ŝ)∥2 satisfies the assumption in the "Moreover."93

Now, we define an algorithm Â for approximating q on datasets of size nα as follows. On input94

S ∈ {±1}d×nα , Â:95

1. Computes Ŝ ∈ {±1}d×n as above96

2. Outputs n
nα

A(Ŝ)97

Since A is already differentially private, Â is also (ε, δ)-DP due to the post-processing property of98

differential privacy. Moreover,99

E
[
∥Â(S)− q(S)∥2

]
= E

[∥∥∥∥ n

nα
A(Ŝ)− n

nα
q(Ŝ)

∥∥∥∥
2

]
=

n

nα
E
[∥∥∥A(Ŝ)− q(Ŝ)

∥∥∥
2

] (5)
<

n

nα
·nα

n
α = α

and so Â achieves expected error strictly smaller than α on datasets of size nα; which contradicts100

the first part of the lower bound we already established. So for n > nα, any (ε, δ)-DP algorithm to101

estimate q must have expected L2 error at least nα

n · α = C ·
√

d ln(1/δ)

nε .102

Finally, we we have shown that for every n and every ε > 0, there is a constant C > 0 such that every103

(ε, δ)-differentially private algorithm A answering the linear query q must have, on some dataset S of104

size n, expected L2 error at least105

E[∥A(S)− q(S)∥2] = min

(
α,C ·

√
d ln(1/δ)

nε

)
.

proving the lemma.106

Combining the above with the argument strategy of [Bassily et al., 2014, Theorem 5.3] finally yields107

the main lemma for the second step of our proof for Theorem 1.1:108

Lemma 2.4 (Lower bound on empirical loss of (ε, δ)-DP algorithms). Let n, d ∈ N, ε > 0, and109

δ = o(1/n). For every (ε, δ)-differentially private algorithm with output θpriv, there is a dataset110

S = {x1, . . . , xn} ⊆ {− 1√
d
, 1√

d
}d such that111

E
[
L(θpriv, S)− L(θ∗, S)

]
= min

(
α2,Ω

(
d log(1/δ)

n2ε2

))
where θ∗ :=

∑n
i=1 xi

∥
∑n

i=1 xi∥2
is the minimizer of L(θ, S) := −⟨θ, 1

n

∑n
i=1 xi⟩ (which is linear and, as112

such, Lipschitz and convex).113

Proof of Lemma 2.4. This proof follows the same structure as that of [Bassily et al., 2014, Theo-114

rem 5.3] but adapt the bound in terms of expectation.115

First, observe that for any θ ∈ B and dataset S we have:116

L(θ, S)− L(θ∗, S) = 1

2
∥q(S)∥2∥θ − θ∗∥22,

since ∥θ − θ∗∥22 = ∥θ∗∥22 + ∥θ∥22 − 2⟨θ, θ∗⟩ = 2(1 − ⟨θ, θ∗⟩) using the fact that θ∗, θ ∈ B have117

∥θ∥2, ∥θ∗∥2 = 1.118

Suppose that there is an (ε, δ)-differentially private algorithm A that outputs θpriv such that, for119

every dataset S ⊆ {− 1√
d
, 1√

d
}d, we have:120

E
[
L(θpriv, S)− L(θ∗, S)

]
≤ ∆

for a sufficiently small constant C > 0, and some ∆ ≥ 0. We will prove a lower bound on ∆. To121

do so, recall q(S) = θ∗ · ∥q(S)∥2; and that the lower bound from Lemma 2.3 still holds when the122

dataset S is promised to be such that q(S) ∈ [(M ± 1)/n], for M = Θ(min(nα,
√

d log(1/δ)/ε).123

4

Consider the algorithm (private by post-processing) A which outputs A(S) = M
n θpriv. Then, for124

any dataset S such that ∥
∑n

i=1 xi∥2 ∈ [M − 1,M + 1],125

E[∥A(S)− q(S)∥2] ≤ E
[
∥A(S)− q(S)∥22

]1/2
= E

[
∥M
n
θpriv − q(S)∥22

]1/2
.

On the other hand,126

E
[
∥M
n
θpriv − q(S)∥22

]
≤ 2

(
E
[
∥q(S)∥22∥θpriv − θ∗∥22

]
+ E

[
∥M
n
θpriv − ∥q(S)∥2θpriv∥22

])
= 4∥q(S)∥2E

[
L(θpriv, S)− L(θ∗, S)

]
+ 2

(
M

n
− ∥q(S)∥2

)2

≤ 4(M + 1)

n
E
[
L(θpriv, S)− L(θ∗, S)

]
+

2

n2

(as n∥q(S)∥2 ∈ [M − 1,M + 1])

≤ 4(M + 1)∆

n
+

2

n2

By Lemma 2.3, we know that E[∥A(S)− q(S)∥2] = min

(
α,C ·

√
d ln(1/δ)

nε

)
, for some absolute127

constant C > 0, in the worst case. Hence, we must have128

∆ ·M
n

≥ min

(
α2,

d ln(1/δ)

n2ε2

)
;

recalling the setting of M , we get E
[
L(θpriv, S)− L(θ∗, S)

]
= min

(
α,Ω

(√
d ln(1/δ)

nε

))
.129

The above lemma establishes a lower bound on the empirical loss of any (ε, δ)-differentially private130

algorithm. To derive from this our claimed lower bound on unlearning algorithms, we need to131

introduce a dependence on m, the deletion capacity (i.e., number of points to unlearn). This is done132

in the last (third) step of our argument, via a reduction which establishes a (restricted) converse to the133

grouposition property of DP.134

Recall that an algorithm M : Xn → Y satisfies (ε, δ)-DP for edit distance m if for every pair of135

neighboring datasets X,X ′ that differ in up to m entries, and every S ⊆ Y:136

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ.

We apply this m-edit distance (ε, δ)-DP on Lemma 2.4 by a reduction that shows: for any differentially137

private algorithm with respect to edit distance at most m must incur an empirical loss given by138

Lemma 2.4.139

Lemma 2.5. Suppose there exists an m-edit distance (ε, δ)-DP algorithm M that takes in a dataset140

S of size n to approximate q(S) (as defined in (3)), with empirical loss γ. Then, we can construct a141

1-edit distance (i.e., standard) (ε, δ)-DP algorithm M′ that, on input a dataset S′ of N = n/m data142

points, approximates q(S′) to error γ.143

Proof of Lemma 2.5. The reduction is quite simple: given M, construct M′ as follows for N = n
m144

inputs:145

M′(x1, . . . , xN) = M(x1, . . . , x1,︸ ︷︷ ︸
m

x2, . . . , x2︸ ︷︷ ︸
m

, . . . , xN , . . . , xN︸ ︷︷ ︸
m

) .

We immediately have that M′ is (ε, δ)-DP for the usual 1-edit distance between datasets, since146

M is DP with respect to edit distance m. The sample complexity and error bound then follows147

direction from n = N × m, where n ≥ N,N ∈ N,m ≥ 1, and the fact that q(x1, . . . , xN) =148

q(x1, . . . , x1, x2, . . . , x2, . . . , xN , . . . , xN) due to the definition of q.149

Combining Lemma 2.5 with Lemma 2.4, we get that any m-edit distance (ε, δ)-DP algorithm M150

approximating q on datasets of size n = N ×m must have error γ at least151

min

(
α,Ω

(√
d log(1/δ)

Nε

))
= min

(
α,Ω

(
m
√
d log(1/δ)

nε

))

5

which, reorganising the terms and recalling the definition of deletion capacity, yields the claimed152

bound on mA,Ā
ε,δ , and hence completes the proof for Theorem 2.1.153

The proof of Theorem 1.2 (the strongly convex case), restated below, is analogous to those of154

Theorems 1.1 and 2.1, but using [Feldman et al., 2020, Theorem 5.1] for the upper bound (in-155

stead of Lemma 1.3) and [Steinke and Ullman, 2016, Theorem 5.2] for the lower bound (instead156

of Theorem 2.2).157

Theorem 2.6 (Unlearning For Strongly Convex Loss Functions (Theorem 1.2, restated)). Let f : W×158

X → R be a 1-Lipschitz strongly convex loss function. There exists an (ε, δ)-machine unlearning159

algorithm which, trained on a dataset S ⊆ Xn, does not store any side information about the training160

set besides the learned model, and can unlearn up to161

m = O

(
nε

√
α√

d log(1/δ)

)
datapoints without incurring excess population risk greater than α. Moreover, this is tight.162

3 Proof of (ε, δ)-unlearning properties163

The laziness assumption defined below is essential for the proof, and a natural requirement for164

practical applications.165

Assumption 3.1 (Unlearning Laziness (Assumption 1.3 in Submission)). An unlearning algorithm166

(Ā, A) is said to be lazy if, when provided with an empty set of deletion requests, the unlearning167

algorithm Ā does not update the model. That is, Ā(∅, A(X), T (X)) = A(X) for all datasets X .168

Theorem 3.2 (Post-processing of unlearning (Theorem 1.4 in Submission)). Let (Ā, A) be an169

(ε, δ)-unlearning algorithm taking no side information. Let f : W → W be an arbitrary (possibly170

randomized) function. Then (f ◦ Ā, A) is also an (ε, δ)-unlearning algorithm.171

Proof. The proof follows exactly same as post-processing property of differential privacy. We172

consider the case that f is a deterministic function here without loss of generality.173

Let T = {r ∈ Rd | f(r) ∈ Y} and Y ⊆ Rd. Consider for any Y ⊆ Rd:174

Pr
[
f(Ā(A(S), U)) ∈ Y

]
= Pr

[
Ā(A(S), U) ∈ T

]
≤ eε Pr

[
Ā(A(S), U) ∈ T

]
+ δ

= eε Pr
[
f(Ā(A(S), U)) ∈ Y

]
+ δ

175

Under our laziness assumption, we can establish bounds on applying unlearning algorithm repeatedly176

when the overall deletion requests is within the deletion capacity:177

Theorem 3.3 (Chaining of unlearning (Theorem 1.5 in Submission)). Let (Ā, A) be a lazy (ε, δ)-178

unlearning algorithm taking no side information, and able to handle up to m deletion requests. Then,179

the algorithm which uses (Ā, A) to sequentially unlearn k disjoint deletion requests U1, . . . , Uk ⊆ X180

such that | ∪i Ui| ≤ m, outputting181

Ā(Uk, . . . , Ā(U1, A(X)) . . .)

is an (ε′, δ′)-unlearning algorithm, with ε′ = kε and δ′ = δ · ekε−1
eε−1 = O(kδ) (for k = O(1/ε)).182

Proof. We proceed by induction on n ≥ 1. Given a pair of (ε, δ)-unlearning algorithm (Ā, A) and183

deletion requests D1, . . . , Dn ⊆ S ∈ Rn×d such that | ∪i Di| ≤ mĀ,A
ε,δ with Di ∩Dj =,∀i ̸= j for184

i, j ∈ [n].185

(1) For n = 1:186

Pr
[
Ā(A(S), D1) ∈ T

]
≤ enε Pr

[
Ā(A(S \D1), ∅)

]
+ δ

by the definition of (ε, δ)-unlearning. Hence the case n = 1 holds.187

6

(2) Assume n = k is true:188

Pr
[
Ā(. . . Ā(A(S), D1), . . . , Dk) ∈ T

]
≤ ekε Pr

[
Ā(A(S \ D̄k), ∅)

]
+

k−1∑
i=0

eiε · δ (6)

(3) Then for n = k + 1:189

Pr
[
Ā(. . . Ā(A(S), D1), . . . , Dk+1) ∈ T

] (6)

≤ ekε Pr
[
Ā(Ā(A(S \ D̄k), ∅), Dk+1)

]
+

k−1∑
i=0

eiε · δ

= ekε Pr
[
Ā(A(S \ D̄k), Dk+1)

]
+

k−1∑
i=0

eiε · δ

≤ e(k+1)ε Pr
[
Ā(A(S \ D̄k+1), ∅) ∈ T

]
+

(k+1)−1∑
i=0

eiε · δ

where the first and third inequality result from the definition of (ε, δ)-unlearning and the second190

equality is due to Laziness Assumption 3.1.191

Hence, by induction, the claim holds for all n ∈ N.192

Theorem 3.4 (Advanced composition of unlearning (Theorem 1.6 in Submission)). Let193

(Ā1, A), . . . , (Āk, A) be lazy (ε, δ)-unlearning (with common learning algorithm A) taking no194

side information, and define the composition of those unlearning algorithms, Ã as195

Ã(U,A(X)) = f
(
Ā1(U,A(X)), . . . , Āk(U,A(X))

)
.

where f : Wk → W is any (possibly randomized) function. Then, for every δ′ > 0, (Ã, A) is an196

(ε′, δ′)-unlearning taking no side information, where ε′ = k
2 ε

2 + ε
√

2k ln (1/δ′).197

Proof. The proof follows the same argument as in [Vadhan, 2017, Lemma 2.4]. We consider the case198

of δ > 0 only as the δ = 0 is same with the pure DP proof.199

Fix two datasets, S (original dataset) and S′ := S \ U (“forgotten dataset”) where U is the set of200

delete requests with |U | ≤ mĀ,A
ε,δ . Note that S, S′ differs in m entries.201

For an output y = (y1, . . . , yk) ∈ Y , define “memory” loss (which is just privacy loss in differential202

privacy) to be:203

LS→S′

A (y) = ln
Pr[A(A(S), U) = y]

Pr[A(A(S′), ∅) = y]

where |LS→S′

A (y)| ≤ ε.204

Then, by [Vadhan, 2017, Lemma 1.5] we know that Āi(A(S), U), Āi(A(S′), ∅) are (ε, δ)-205

indistinguishable, hence there are events E = E1 ∧ . . . ∧ Ek, E
′ = E′

1 ∧ . . . ∧ E′
k such that206

w.p. at least 1− kδ by, for all yi, i ∈ [k],207

E
[
LS→S′

A (y)
]
= E

[
ln

Pr[A(A(S), U) = y | E]

Pr[A(A(S′), ∅) = y | E′]

]
=

k∑
i=1

E

[
ln

(
Pr
[
Āi(A(S), U) = y

∣∣ Ei

]
Pr
[
Āi(A(S′), ∅) = y

∣∣ E′
i

])]

=

k∑
i=1

E
[
LS→S′

Āi
(y)
]

where we observe that the expectation of the loss is just KL-divergence between the distributions of208

Āi(A(S), U) and Āi(A(S′), ∅) conditioned on E and E′. Hence:209

E
[
LS→S′

A (y)
]
=

k∑
i=1

DKL(Āi(A(S), U)∥Āi(A(S′), ∅)) ≤ k

2
ε2

7

where the inequality is a result from [Bun and Steinke, 2016, Proposition 3.3] when α = 1. This210

proposition is applicable because the conditional distribution of Āi is (ε, δ)-indistinguishable, which211

shares the max-divergence definition.212

Then by Hoeffding’s inequality where the loss is bounded by [−ε, ε], with probability at least 1− δ′,213

we have:214

exp

(
− t2

2kε2

)
≥ Pr

[
LS→S′

A (y) > E
[
LS→S′

A (y)
]
+ t
]

≥ Pr

[
LS→S′

A (y) >
k

2
ε2 + t

]
= Pr

[
LS→S′

A (y) > ε′
]

Now for δ′ := exp (− t2

2kε2), we have t = ε
√

2k ln (1/δ′) and ε′ := k
2 ε

2 + ε
√

2k ln (1/δ′).215

Hence, for any set T ∈ Y:216

Pr[A(A(S), U) ∈ T] ≤ Pr
[
LS→S′

A (y) > ε′
]
+

∑
y∈T :LS→S′

A (y)≤ε′

Pr[A(A(S), U) = y]

≤ δ′ +
∑

y∈T :LS→S′
A (y)≤ε′

eε
′
Pr[A(A(S′), ∅) = y]

≤ δ′ + eε
′
Pr[A(A(S′), ∅) ∈ T]

where the second inequality is from the definition of unlearning. Thus, along with an application of217

[Vadhan, 2017, Lemma 1.5], this proves that A = (Ā1, . . . , Āk) is indeed (ε′, δ′ + kδ)-unlearning218

w.r.t. learning algorithm A.219

References220

Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient221

algorithms and tight error bounds. In 55th IEEE Annual Symposium on Foundations of Computer222

Science, FOCS, pages 464–473. IEEE Computer Society, 2014. doi: 10.1109/FOCS.2014.56.223

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic224

convex optimization with optimal rates. In Advances in Neural Information Processing Systems225

32: Annual Conference on Neural Information Processing Systems, pages 11279–11288, 2019.226

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and227

lower bounds. In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing,228

China, October 31 - November 3, 2016, Proceedings, Part I, volume 9985 of Lecture Notes in229

Computer Science, pages 635–658, 2016. doi: 10.1007/978-3-662-53641-4_24.230

Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: Optimal231

rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of232

Computing, STOC 2020, page 439–449, New York, NY, USA, 2020. Association for Computing233

Machinery. ISBN 9781450369794. doi: 10.1145/3357713.3384335.234

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what235

you want to forget: Algorithms for machine unlearning. In Advances in Neural Information236

Processing Systems, volume 34, pages 18075–18086. Curran Associates, Inc., 2021.237

Thomas Steinke and Jonathan R. Ullman. Between pure and approximate differential privacy. J. Priv.238

Confidentiality, 7(2), 2016. doi: 10.29012/jpc.v7i2.648.239

Salil P. Vadhan. The complexity of differential privacy. In Yehuda Lindell, editor, Tutorials on240

the Foundations of Cryptography, pages 347–450. Springer International Publishing, 2017. doi:241

10.1007/978-3-319-57048-8_7. URL https://doi.org/10.1007/978-3-319-57048-8_7.242

8

https://doi.org/10.1007/978-3-319-57048-8_7

	Proof of Theorem 3.1 (Lower Bound)
	Proof of Theorem 3.3 (Upper Bound)
	Proof of (,)-unlearning properties

