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Abstract

Meal prescription interventions are essential for
managing patients’ dietary needs, yet existing
approaches either require manual meal plan-
ning or rely on generic apps that lack cultural
customization. We introduce HumbleNutri,
a meal prescription plan recommender system
that generates personalized, culturally tailored
meal plans for patients with specific dietary
needs under the guidance of a Registered Dieti-
tian Nutritionist (RDN). HumbleNutri begins
with a semi-supervised learning step to catego-
rize recipes by meal type and cuisine, enabling
culturally informed Medical Nutrition Therapy
(MNT) recommendations. The system employs
a modular framework that combines collabora-
tive filtering-based recommenders with a bundle
optimization model with constraints, suggest-
ing meals that are aligned with patient prefer-
ences and MNT guidelines while ensuring that
meal combinations satisfy patient-specific nutri-
tional requirements based on their clinical pro-
files. Meals are organized into daily bundles
(breakfast, lunch, dinner) and sequenced into
weekly plans that support practical preparation
and adherence to MNT targets. HumbleNutri
translates clinical diet guidelines into culturally
relevant meal plans, offering an equitable plat-
form to deliver precision nutrition with an open-
source toolkit and web application.

Keywords: Precision Nutrition, Expert-
Guided Recommender Systems, Linear Pro-
gramming, Semi-Supervised Learning

Data and Code Availability This work uses a
publicly available dataset, HUMMUS (Bölz et al.,
2023), to recommend recipes for clinical nutrition.
Code for our methods and experiments is accessible
at our shared code repository1, together with a work-
ing web application2.

Institutional Review Board (IRB) This work
does not require IRB approval.

1. Introduction

Meal prescriptions are an emerging form of dietary
intervention for precision nutrition that provides pa-
tients with tailored meals aligned with clinical guide-
lines (Rodgers and Collins, 2020). They are in-
creasingly integrated into clinical care and preventive
medicine, particularly for patients managing chronic
conditions such as type 2 diabetes or recovering from
organ transplantation (Zeltzer et al., 2015). By offer-
ing concrete recommendations on what foods to eat
and when, meal prescriptions translate dietary goals
into actionable plans, supporting adherence, and en-
abling patients to meet clinical nutrition goals. Re-
cent clinical trials show that these interventions out-
perform traditional single-nutrient interventions in
improving diet quality and treating diet-related dis-
eases (Chen et al., 2022; Cyrino et al., 2021).

1. https://github.com/HumbleNutri/HumbleNutri
2. https://humblenutri.streamlit.app
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However, practical implementation in clinical set-
tings remains a bottleneck. Current approaches ei-
ther rely on Registered Dietitian Nutritionist (RDN)
manually designing meal plans (a burdensome and
unscalable approach), or employing off-the-shelf meal
planning applications, which fail to support cultural
dietary diversity. While these apps are generally able
to account for dietary constraints, they often center
on Western-normative diets, and their approaches do
not offer customization to other sociocultural dietary
patterns. This represents a major gap, given that
the populations typically targeted in meal prescrip-
tion interventions are of racial/ethnic minorities (Joo
and Liu, 2021), limiting dietary adherence in the pop-
ulations most at risk. This is especially concerning
given the evidence that dietary changes are sustain-
ably maintained and lead to nutritional benefits, only
if the intervention works around individuals’ existing
diets (Jinnette et al., 2021; Chapman, 2010).
In this paper, we introduce a culturally-

tailored meal prescription plan recommender system,
HUMBLE-NUTRI: Healthy and cUlturally-tailored
Meal BundLE recommendation with NUTRItionist
guidance, designed for nutritionists planning an in-
dividualized meal prescription program. Designed
together with an RDN, the system build structured
daily meal bundle recommendations of 3 meals a day
that meet a specific set of nutritional guidelines for
an individual patient based on their clinical profile.
The major contribution of this work is the introduc-
tion of an integrated modular framework that gen-
erates meal prescriptions that jointly address clinical
nutritional requirements, culturally relevant dietary
practices, and patient food preferences in real-world
settings.

2. Related Work

Prior work on food recommender systems is typically
not designed to meet explicit nutritional guidelines,
but has prioritized rating prediction or preference
matching (Freyne and Berkovsky, 2010). Meanwhile,
a few studies used optimization methods to develop
meal plans that meet nutritional targets established
by dietary guidelines or personalized nutritional pro-
files, without integrating patient preference informa-
tion (Masset et al., 2009; Miow et al., 2025).
Culturally-matched recommendations remain un-

derexplored in this space as well. Recent work
in cultural matching models has focused primarily
on general domains such as music or news (Casillo

et al., 2023), with limited application in food sys-
tems. Some recent dietary recommendation frame-
works account for user taste preferences or dietary
restrictions (Yang et al., 2017), but do not explicitly
model or incorporate sociocultural dietary patterns,
which are crucial for real-world adaptation in diverse
clinical populations.

Our work bridges these gaps by integrating cultural
matching recommendations for each patient, struc-
tured meal planning with nutritional optimization,
and human expert guidance. Unlike prior systems,
HumbleNutri is the first end-to-end system, to our
knowledge, that generates culturally relevant weekly
meal bundles tailored to individual dietary prefer-
ences and clinical needs, integrating personalization
and nutritionist guidance in a unified pipeline.

3. Methods

Overview. HumbleNutri is a multimodule system
that generates culturally tailored and clinically per-
sonalized meal recommendations for patients, guided
by clinical nutrition principles and cultural relevance.
The system works through the integration of four
modules: (1) a semi-supervised learning method to
infer cuisine and meal type labels at scale to identify
culturally relevant recipes; (2) collaborative filtering
to generate candidate recipes via meal type-specific
recommenders, (3) a “recipe alignment” step to re-
flect nutritionist-specified constraints on ingredients
and preparation methods, and (4) a structured opti-
mization framework to generate personalized weekly
meal bundles. Figure 1 illustrates an overview of the
HumbleNutri system with the recommended weekly
meal bundle structure. Following the guidance of the
RDN, these modules are integrated to produce weekly
plans consisting of daily meal bundles structured into
breakfast, lunch with a main dish and 1 side dish
(vegetables), and dinner with a main dish and 2 side
dishes (vegetables and whole grains).

We build on the HUMMUS dataset (Bölz et al.,
2023), a recently released large-scale recipe dataset
with user ratings and nutrient information curated for
food recommendation tasks. Although this dataset
provides a rich foundation for recommender systems,
it lacks structured labels essential for downstream
meal planning, such as meal type (e.g., breakfast,
lunch, dinner) and cuisine type (e.g., Latin Ameri-
can). Hence, we extend the HUMMUS dataset by
generating synthetic semantic labels using a semi-
supervised learning approach.
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Figure 1: Illustration of the overview of Hum-
bleNutri.

Labeling Module. We utilize the subset of the
HUMMUS dataset, ∼45% of which includes human-
labeled tags such as meal type, ingredients, and cui-
sine (e.g., ‘breakfast’, ‘wheat’, ‘ethiopian’). These
551 different tags are noisy and sparse, where many
recipes are missing relevant tags even when the
recipes clearly align with certain categories. We aim
to expand this partial and incomplete labeling to
full coverage for structuring personalized meal plans.
Thus, we treat the subset of tagged recipes as a
seed set of ground-truth examples and apply an iter-
ative self-training framework inspired by prior work
in semi-supervised learning and adaptive self-training
to pseudo-label the unlabeled portion of the dataset
(Yarowsky, 1995; Wang et al., 2021).

We train a fully-connected neural network classifier
composed of a FastText-based (Marin et al., 2019)
food-tailored language model called RecipeFT (Seo
et al., 2023), and feed-forward layers. We create
pseudo-labels for training by iteratively predicting
class probabilities over a batch of unlabeled data and
incorporates only the high-confidence predictions into
the training set for subsequent rounds. We define pre-
diction confidence based on class probability, retain-
ing the top 90% most confident predictions (among
those with probability > 0.5) and returning the rest
to the unlabeled test dataset. We then retrain the

classifier on the expanded dataset, fine-tuning both
model weights and hyperparameters using a hyper-
band tuner (Li et al., 2018) to adapt to the evolving
label distribution. This iterative self-labeling proce-
dure allows us to propagate semantic labels, including
meal type and cuisine, throughout the data set.

In this paper, we test the application for Latin
American and Hispanic patients, the primary sub-
population that our RDN collaborator works with.
Additional information about the classifier settings
can be found in Appendix A.1.

Recipe Recommender. We initiate our recom-
mendation module by filtering out nutritionally poor
recipes using a simplified NutriScore system (Julia
et al., 2017), as adopted in the HUMMUS dataset
for healthiness-aware recommendation (Bölz et al.,
2023). Specifically, we exclude all recipes with the
lowest NutriScore out of five scores. We then pro-
ceed with recipe-level predictions using a collabora-
tive filtering approach. We benchmark several estab-
lished recommendation models, including BPR (Ren-
dle et al., 2012), LightGCN (He et al., 2020), and Bi-
VAE (Truong et al., 2021), and select BiVAE as the
primary model based on its performance in offline
recommendation metrics (see Appendix Table 2). To
improve granularity and practical usability, we train
independent models for each of the three meal types
(from the labeling module): breakfast, side dish, and
main dish. For breakfast and side dishes, we use all
available recipes, whereas for main dishes, we restrict
the training set to Latin American recipes to ensure
cultural relevance for our target patient populations.

RDN Recipe Alignment. Next, we refine the
recommended item for each patient by incorporating
RDN-guided recipe alignment. Starting from individ-
ual recipes predicted from recipe recommenders, we
then filter and rank candidate recipes using RDN-
provided guidelines on ingredients and preparation
methods. Specifically, our RDN defines two keyword
sets: healthy (e.g., wholegrain) and unhealthy (e.g.,
fried), with the full set of words specified in the shared
repository1. We compute a composite alignment
score using TF-IDF vectorization (Salton and Buck-
ley, 1988) over the recipe text, including title, ingre-
dients and preparation steps, and measure cosine sim-
ilarity between each candidate recipe vector and the
RDN-defined healthy and unhealthy keyword vectors.
This score is detailed in Appendix A.2. While TF-
IDF does not fully capture semantic meaning, this
approach provides a transparent and interpretable
way to apply expert-defined dietary guidelines, and
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appears to successfully filter out many RDN-defined
unhealthy recipes. In addition, these RDN-curated
ingredient and preparation lists are fully customiz-
able by the nutritionist user, allowing the user to
fine-tune the alignment strategy based on individual
patient requirements, evolving dietary guidelines, or
their unique professional approach.

Bundle nutritional optimization. Finally, we
model daily meal bundle generation through an In-
teger Linear Programming (ILP) using the candidate
recipes. The objective maximizes the recipe recom-
mendation scores, subject to per-day patient-specific
nutritional requirements, along with structural and
practical constraints. We gather patient clinical in-
formation, full list detailed in Appendix A.3, to cal-
culate the Body mass index (BMI) and Ideal Body
Weight (IBW) (Devine, 1974; Peterson et al., 2016)
and compute Resting Metabolic Rate (RMR) using
the Mifflin-St. Jeor Equation (Mifflin et al., 1990)
that will define personalized nutritional constraints.
Additionally, we add structural and practical con-
straints to increase the usability in the real-world.
Each bundle includes breakfast, lunch, and dinner,
with three bundles per weekly plan, considering the
possible leftover meals. See Appendix A.3 for a de-
tailed formulation of this optimization module.

Together, these components form an end-to-end
system that combines collaborative filtering and clin-
ical nutrition modeling with domain expert guidance.

4. Results

In this section, we summarize our experiment results
for choosing a primary recommendation model and
an ablation study on HumbleNutri system modules.
Appendix Table 2 shows average offline recommenda-
tion metric scores across benchmarked collaborative
filtering models. Our model demonstrates compet-
itive performances, while not a direct 1:1 compari-
son, compared to the HUMMUS paper (Bölz et al.,
2023) reporting their best baseline to be BPR (Rendle
et al., 2012) with NDCG@10 = 0.0627. Moreover,
they identify a healthiness-accuracy trade-off when
attempting to achieve healthiness-aware recommen-
dation through similar thresholded data-processing
as ours, with NDCG@10 decreased by 32%. In con-
trast, our approach achieves a 71% improvement in
NutriScore as well as a 51% increase in NDCG@10,
without compromising predictive performance. This
highlights the benefit of our structured meal type-

specific recommender design and focus on a single
cuisine type for more targeted recommendations.

In Appendix Table 3, we present an ablation study
on the HumbleNutri system, where we incrementally
combine the system modules and evaluate their im-
pact using quantitative metrics. Specifically, we test
the advantages of the RDN-guided recipe aligning
module and the bundle optimization module in the
system. We compare the system with (WGA-RB)
and without guided recipe alignment and random
bundling (WOGA-RB) instead of bundle optimiza-
tion, with bundle optimization but without guided
recipe alignment (WOGA-BO), and the full Hum-
bleNutri (HN) system. We employ several metrics to
test the healthiness and personalization of the recom-
mended weekly plan. We use NutriScore (Julia et al.,
2017), a rating system similar to the World Health
Organization (WHO) score (Amine et al., 2003) that
is based on how much nutrients and essential food
groups (e.g., vegetables) are included in the food, and
RRR, a ratio of recommended to restricted nutrients
quantifying overall healthiness of the food (Scheidt
and Daniel, 2004). To assess personalization, we use
the average patient-specific nutrient deviation of each
bundle from the required daily intake by calculating
the Root Mean Squared Deviation (RMSD). The re-
quired daily intake for each patient is set as the me-
dian of its prescribed range, derived from patient clin-
ical information used in our experiments. This metric
measures how closely the generated meal plans adhere
to individual patients’ nutritional requirements, with
lower deviations indicating better personalization.

Our ablation study experiments show a clear and
consistent improvement across the metrics as we in-
crementally add modules, demonstrating the value
of each component. We specifically generate twelve
bundles (4 weeks) and measure the average value
of these three metrics. In particular, the RDN-
guided recipe aligning module improved NutriScore
by 51% on average compared to those without it,
and the bundle optimization model improving RRR
by 52% and reducing BundleRMSD by 77% on av-
erage compared to random bundles. The complete
HN system achieves the best performance in all met-
rics, indicating that these modules work synergis-
tically to produce healthier and more personalized
meal plans. This shows the advantage of integrat-
ing expert knowledge with optimization techniques
to address the challenge of personalized dietary rec-
ommendations for precision nutrition.
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5. Discussion

In this work, we present HumbleNutri, a novel, open
source recommendation system built for nutrition-
ists designing personalized meal prescriptions. This
synergistic modular system generates semantic la-
bels that allow culturally relevant recipe recommen-
dations, aligning recipes for target patients based
on clinical nutritional guidance, and constraint-based
optimization for creating weekly meal bundles. Our
experiments show the contribution of each module to
the generation of healthy, personalized meal plans.
Future work will incorporate dynamic feedback

loops to adapt recommendations to user preferences
and adherence, integrating nutritionist and patient
input on factors such as cooking skills and cost. We
also plan to develop an evaluation pipeline with qual-
itative studies alongside RDNs to assess clinical im-
pact, positioning HumbleNutri as a foundation for
adaptive precision nutrition systems. Moreover, our
work could be improved with further validation of our
pseudo-labels within the labeling module and explor-
ing other recipe alignment methods through context-
aware embeddings to better capture semantics of in-
gredients and preparation steps.
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Appendix A.

A.1. Labeling Module

HUMMUS dataset (Bölz et al., 2023) includes
507,335 recipes, 302,412 users, and 1,916,424 user-
item interactions sourced from Food.com, and
FoodKG (Haussmann et al., 2019). The self-
labeled HUMMUS dataset extension through a semi-
supervised, iterative self-training process is a con-
tribution of this work and can facilitate future re-
search and practical use for culturally-tailored and
structured meal recommendations beyond the appli-
cation of Latin American and Hispanic patients that
is showcased in this paper. Researchers and nutri-
tionists can readily extend HumbleNutri by leverag-
ing cuisine-specific tags (e.g., Asian, Mediterranean)
tailored to their applications or patient populations.

HumbleNutri employs two distinct classifiers,
a binary sigmoid classifier for breakfast recipes
and a multi-class softmax classifier for meal
types: appetizer, main-dish, dessert, drink, and
sauce/condiment. Each recipe is assigned two labels,
a breakfast indicator label and a primary meal type
label corresponding to its most likely category. Hum-
bleNutri specifically utilizes appetizer and main-dish
meal type label to use for side dishes and main dishes
included in the lunch and dinner in the daily meal
bundle.

Additionally, HumbleNutri train a cuisine type
classifier to facilitate culturally-tailored meal pre-
scriptions.We leverage available tags relevant to Latin
American cuisines and employ a binary sigmoid clas-
sifier to label all recipes. See Table 1 for the dataset
statistics after this labeling module for Latin Ameri-
can appliaction.

The complete list of utilized tags and the source
code for these trained classifiers are available at our
shared code repository1.

A.2. RDN-Guided Recipe Alignment Module

In the HumbleNutri system, RDN-guided recipe
alignment leverages a composite score derived from
TF-IDF vectorization (Salton and Buckley, 1988), as
detailed in the main text. The score is computed
as: Score = cos(r,h) − k · cos(r,u), where r is the
TF-IDF vector of the recipe text, h is the healthy
keyword vector, u is the unhealthy keyword vector,
and k is a constant penalty weight. We retain recipes
with Score > 0.

Table 1: Data statistics after pseudo-labeling meal
types and Latin American (Lat.Am.) cui-
sine.

Data Counts

Breakfast recipes 79,056 (15.6%)
Side-dish recipes 95,484 (18.8%)
Lat.Am. recipes 74,466 (14.7%)
Lat.Am. main-dish recipes 35,292 (7.0%)
Lat.Am. user-item interactions 252,794 (13.2%)

A full array of the ingredients and preparation con-
straint keywords provided by RDN are included in
our shared code repository1.

A.3. Bundle Optimization Module

The bundle optimization module employs an Inte-
ger Linear Programming (ILP) approach to inte-
grate the patient’s clinical profile, generating recipe
combinations that satisfy individualized nutritional
requirements and form a daily meal bundle com-
prising breakfast, lunch, and dinner. The clini-
cal information that we consider includes: ‘Gen-
der’, ‘Height’, ‘Weight’, ‘Age’, ‘Post surgery recov-
ery phase (T/F)’, ‘Activity level (sedentary, lightly-
active, moderately-active, active, very-active)’, ‘Pre-
diabetes (T/F)’, ‘High Cholesterol (T/F)’, and ‘Hy-
pertension (T/F)’, which we use to calculate the
Body mass index (BMI), Ideal Body Weight (IBW)
(Devine, 1974; Peterson et al., 2016), and Resting
Metabolic Rate (RMR) using the Mifflin-St. Jeor
Equation (Mifflin et al., 1990) that will define per-
sonalized nutritional constraints. These formulas are
detailed in this shared document3.

We formulate the optimization problem as follows:
Sets: M : meal types; Im: candidate recipes for m ∈
M ; C: nutritional constraint parameters.
Parameters: si,m: recommendation score for i ∈
Im; vi,m,c: nutrient value of i for c ∈ C; ti,m: prepara-
tion time of i; Tupper

m : preparation time upper bound
for m; N lower

c , Nupper
c : patient-specific bounds for c.

Decision Variables: xi,m ∈ {0, 1}: 1 if recipe i
selected for meal type m, 0 otherwise.

Maximize:
∑
m∈M

∑
i∈Im

si,m · xi,m (1)

3. https://shorturl.at/Uo5Qg

7

https://shorturl.at/Uo5Qg


HumbleNutri

We maximize our objective of recipe recommenda-
tion score with six types of constraints. First, con-
straint at (2) ensures that there is one recipe per
meal type. Constraint at (3) defines upper bound and
lower bound for a patient-specific daily nutrient value
requirements, namely ‘Calories’, ‘Carbohydrate’, ‘To-
tal fat’, ‘Saturated fat’, ‘Total sugar’, ‘Sodium’, ‘Pro-
tein’, and ‘Fiber’. Practical constraint at (4) lim-
its the preparation time for each meal to address
patients’ weekly routines, and structural constraints
at (5-7) prevent the repetition of recipes within and
across the bundles.

subject to:
∑
i∈Im

xi,m = 1, ∀m ∈ M (2)

N lower
c ≤

∑
m∈M

∑
i∈Im

vi,m,c · xi,m ≤ Nupper
c , ∀c ∈ C

(3)∑
i∈Im

ti,m · xi,m ≤ Tupper
m , ∀m ∈ M (4)

xk,LunMain+xk,DinMain ≤ 1, ∀k ∈ ILunMain∩IDinMain

(5)

xk,LunSide+xk,DinSide-VG ≤ 1, ∀k ∈ ILunSide∩IDinSide-VG

(6)

xi,m = 0, ∀ previously selected recipe i for meal type m
(7)
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Table 2: Recommender model comparison.

Avg. score: NDCG@10 ↑ MAP ↑ Recall@10 ↑
BPR (Rendle et al., 2012) 0.0960 0.0815 0.1297
LightGCN (He et al., 2020) 0.0404 0.0267 0.0730
BiVAE (Truong et al., 2021) 0.0989 0.0839 0.1305

Table 3: Ablation study (with ± standard deviation).

Modules NutriScore ↑ RRR ↑ BundleRMSD ↓
WOGA-RB 0.39 ± 0.27 1.54 ± 0.13 372.51 ± 24.50
WGA-RB 0.53 ± 0.26 2.55 ± 0.07 212.63 ± 26.29
WOGA-BO 0.37 ± 0.27 2.64 ± 0.11 71.09 ± 17.88
HN 0.61 ± 0.26 3.36 ± 0.09 54.96 ± 7.56
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