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A APPENDIX

All necessary material like experimental, supplementary illustration, and code is located in https:
//www.dropbox.com/sh/khyk8oxmswrikr6/AADAG6NOIRYmM—nXNNGVI jzJINya?dl=
0, anonymously.

A.1 NOTATION SUMMARIZATION
The notation and symbols used in the paper are summarized in Table

Table 4: Table of Notation

| Symbol | Definition and Description

G temporal graph set {(Go, ¥0), (G1,91)s- - (GnsYn)}

g; j-th temporal graph with snapshots {S J(-ts) }tj;f:o

S ](tS) t, timestamped snapshot of the j-th temporal graph G;

te, ts edge timestamp, snapshot timestamp

T; ~ P(T) | graph metric learning tasks sampled from distribution P(7)

0; all learnable parameters of task 7;

) meta-learner over all graph metric learning tasks during meta-training
g;‘;;g,,t set of support temporal graphs in meta-training

ggg;ﬂ;j set of query temporal graphs in meta-training
gg;,tpm set of support temporal graphs in meta-testing

Gt set of query temporal graphs in meta-testing

A.2 DATA PREPROCESSING OF BIOLOGICAL DATA

As shown in Table[T] there naturally exists one kind timestamp at the edge level. Therefore, we adopt
it as t. in our streaming-snapshot model. To generate ¢,, we set a time window as a snapshot for each
te as [te — A, t. + A] for the snapshot reconstruction to further capture the episodic evolution pattern.
In the experiment, we set A as one unit of ¢.. For each temporal graph, 36 edge timestamps together
describe three consecutive metabolic cycles. In each graph, we take a subgraph by extracting a interval
of 5 edge timestamps every 3 edge timestamps. The subgraph shares the same class label with its
original entire graph. Therefore, we have 11 temporal subgraphs per class. And our task is to classify
these temporal subgraphs using our METATAG model comparing with selected baseline algorithms.
Moreover, for static graph kernel and graph representation learning algorithms, we use Reduced
Graph Representation (Oettershagen et al.,[2020) to map temporal graphs into dynamics-preserving
static graphs, such that static algorithms could take them as input.

The dataset mentioned in the paper is publicly available. The four cross-validation groups are listed
as follows.

1. G'rein = {Babu, Breitkreutz, Gavin, Hazbun, Ho, Ito, Krogan-LCMS, Krogan-MALDI},
G'est = {Lambert, Tarassov, Uetz, Yu}

2. Gtrain — {Breitkreutz, Ho, Krogan-MALDI, Tarassov, Yu, Gavin, Ito, Babu,},
G'est = {Krogan-LCMS, Hazbun, Lambert, Uetz}

3. G'r" = {Babu, Breitkreutz, Ho, Hazbun, Krogan-MALDI, Lambert, Tarassov, Uetz,},
G'est = {Yu, Gavin, Ito, Krogan-LCMS}

4. Gtrain = {Babu, Hazbun, Lambert, Tarassov, Yu, Gavin, Uetz, Krogan-LCMS},
G'est = {Breitkreutz, Ho, Krogan-MALDI, Ito}

For the graph kernel methods, we insert the graph kernel into the SVM classifier, and the implementa-
tion can be found here|| For the graph metric learning and graph representation learning algorithms,

https://ysig.github.io/GraKeL/0.1la8/documentation/introduction.html
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we set the dimension of graph representation vectors as 64, and the implementation can be found
here In our METATAG method, we set the learning rate o and g as 0.001, and the weight for the
snapshot reconstruction loss v = 0.7. The experiments are performed on a Linux machine with and a
single NVIDIA Tesla V100 32GB GPU.

A.3 CONVERGENCE OF METATAG DURING META-TESTING

Following the same experimental setting mentioned above, we vary the number of shots and number
of ways during the meta-training El, to investigate the convergence of our METATAG model in the

meta-testing phase. We report the loss of © on ggfg;pm and the accuracy of ; on Giest by every

query

update of © on Qﬁj‘;;wt. As shown in Figure 4l we observe that our METATAG could fast converge
to the unseen tasks with only a few updates (e.g. 3 or 4 times) of the meta-learner. Interestingly, the
ideal case occurs that the meta-training and meta-testing tasks share the global knowledge, © could

perform well even without parameters update.
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Figure 4: Convergence of METATAG with Different Number of Updates.

A.4 ABLATION STUDY

In our METATAG model, we design the multi-scale time attention mechanism to encode the temporal
graph evolution pattern into the representation vector, which has three components: node-level time
attention, intra-snapshot time attention, and inter-snapshot time attention. In the ablation study, we
aim to remove them individually to investigate the effectiveness of each part.

To ablate the node-level time attention, we remove Eq. E directly, such that each node could only
look for its previous neighbors but omit the corresponding interval time information. To ablate the
intra-snapshot time attention, we eliminate the snapshot reconstruction loss function (i.e., Eq.[5)
just by setting v = 0. Then, there will be no constraints on the intra-snapshot level. To remove
the inter-snapshot time attention, we replace Eq. [7] with the average pooling scheme, such that each
snapshot will contribute equally to form the temporal graph representation vector. After we remove
each component respectively, in Figure[5] we report the dynamic protein-protein interaction networks
classification accuracy in the 3-way 3-shot setting with same hyperparameters.

As shown in Figure[5] we learn that each proposed component plays its own role in improving the
metric learning ability to help the temporal graph classification problem. Interestingly, when we
ablate the intra-snapshot attention scheme, METATAG achieves the worst performance with larger
variances. It suggests that the snapshot reconstruction loss (i.e., capturing episodic patterns in the
streaming graph) is very important in identifying the property of temporal graphs for the accurate and
stable classification performance, which means adding the snapshot reconstruction loss ¢ is vital, but
to what extent should we pay attention to the snapshot reconstruction loss £ in the streaming graph is
not clear. Next, we design the parameter analysis in terms of different values of .

3https://qithub.com/benedekrozemberczki/ka]:ateclub and |https://github|
com/moranbel/tdGraphEmbed

“We randomly pick one class from G and add it to G**** for the 5-way 1-shot setting.
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Figure 5: Variants of METATAG for Temporal Graph Classifications in the 3 Way - 3 Shot Setting.

A.5 PARAMETER SENSITIVITY

Here, we change the weight of the snapshot reconstruction loss ¢ by changing the value of ~, to
investigate the effect of capturing episodic patterns in the streaming graph. We show the temporal
graph classification accuracy in the 3 way - 1 shot setting with different -y in Figure [6]
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Figure 6: Effectiveness of METATAG with Different -y in the 3 Way - 1 Shot Setting.

As shown in Figure[6, we learn that neither adjective nor dominant snapshot reconstruction loss
£ is ideal such like v = 0.3 or v = 1.5. When the proportion of loss ¢ is too small or too large,
the accuracy of METATAG is not that high and stable. Also, we can see that when the loss ¢ has
considerable attention weights like v = 0.7, METATAG could classify accurately and robustly.

A.6 TEMPORAL GRAPH CLASSIFICATION ON SOCIAL NETWORK DATA

Except for the dynamic protein-protein interaction networks study with our METATAG, we also
prepare extra datasets from the social network and human-contact perspectives. As shown in Table 2]
the amount of offline graph data is less than online data. In this study, we aim to investigate whether
sufficient online temporal graph data could provide transferable and shareable knowledge to help
the offline temporal graph classification. To this end, we select online networks (i.e., Facebook,
Tumblr, and DBLP) for G and offline networks (i.e., Infectious, HighSchool, and MIT) for G5t
Also, we select NetLSD and tdGraphEmbed algorithms (that achieve competitive performance in the
above experiments) along with other metric learning baselines (i.e., GL2Vec, TGAT, and CAW) to be
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Table 5: Temporal Graph Classification Accuracy on Social Temporal Graphs

\ Methods \ Few-Shot Setting \
3 way - 5 shot 3 way - 3 shot 3 way - 2 shot 3 way - 1 shot
GL2Vec + ProtoNet 0.6250 +0.0249 | 0.581040.0271 | 0.5633+0.0184 | 0.4887+£0.0206
NetLSD + ProtoNet 0.3296 £0.0307 | 0.332740.0179 | 0.3273+0.0068 | 0.3220+0.0297
TGAT + ProtoNet 0.3227 £0.0171 | 0.32934+0.0156 | 0.3243+-0.0110 | 0.3363+0.0010
CAW + ProtoNet 0.3340 £0.0113 | 0.33334+0.0229 | 0.3380+0.0155 | 0.3270+0.0189
tdGraphEmbed + ProtoNet | 0.5083 £0.0121 | 0.4523+0.0353 | 0.4670£0.0199 | 0.3973+£0.0164
MetaTag 0.6161 £0.0139 | 0.5931+0.0148 | 0.6074+-0.0164 | 0.5605+0.0201

responsible for the temporal graph classification. By comparing the performance shown in Table[3,
we can learn that our METATAGachieves the best performance frequently (i.e., three of four times).
Even in the second place, our METATAG only performs 1.42% less than the first place (i.e., GL2Vec)
in the 3 way - 5 shot setting. An intuitive explanation is that exploring online social network patterns
could help identify offline human-interact patterns. To be specific, the prototypical temporal graph
encoder and the meta-learner of our METATAG successfully finish the graph metric learning tasks.
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