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ABSTRACT

Large-scale generative models have achieved remarkable success in a number of
domains. However, for sequential decision-making problems, such as robotics,
action-labelled data is often scarce and therefore scaling-up foundation models
for decision-making remains a challenge. A potential solution lies in leverag-
ing widely-available unlabelled videos to train world models that simulate the
consequences of actions. If the world model is accurate, it can be used to opti-
mize decision-making in downstream tasks. Image-to-video diffusion models are
already capable of generating highly realistic synthetic videos. However, these
models are not action-conditioned, and the most powerful models are closed-
source which means they cannot be finetuned. In this work, we propose to adapt
pretrained video diffusion models to action-conditioned world models, without
access to the parameters of the pretrained model. Our approach, AVID, trains an
adapter on a small domain-specific dataset of action-labelled videos. AVID uses
a learned mask to modify the intermediate outputs of the pretrained model and
generate accurate action-conditioned videos. We evaluate AVID on video game
and real-world robotics data, and show that it outperforms existing baselines for
diffusion model adaptation. Our results demonstrate that if utilized correctly, pre-
trained video models have the potential to be powerful tools for embodied AI.

1 INTRODUCTION

Large generative models trained on web-scale data have driven rapid improvement in natural lan-
guage processing (Brown, 2020; Touvron et al., 2023; Achiam et al., 2023), image generation (Rom-
bach et al., 2022), and video generation (OpenAI, 2024). The potential for scaling to unlock progress
in sequential-decision making domains, such as robotics, gaming, and virtual agents, has invoked a
surge of interest in foundation models for decision-making agents (Reed et al., 2022), particularly
for robotics (Brohan et al., 2022; 2023). However, the quantity of action-labelled data in these do-
mains remains a significant bottleneck (Padalkar et al., 2023). This raises the question of to how
to utilize widely-available unlabelled videos to bootstrap learning (Baker et al., 2022; Bruce et al.,
2024). One promising approach is to use video data to learn a world model (Ha & Schmidhuber,
2018), a model the predicts the consequences of actions and acts as a learned simulator. Such a
model can be used to optimize decision-making for downstream tasks (Hafner et al., 2021).

Current image and video diffusion models are highly adept at generating text-conditioned syn-
thetic data (Podell et al., 2023; Zhang et al., 2023b; Blattmann et al., 2023). If actions can be ex-
pressed as natural language, these models have the potential to be used out-of-the-box for decision-
making (Kapelyukh et al., 2023; Zhu et al., 2024b). However, in many real-world domains the core
challenge is optimizing low-level actions, such as joint angles in robotics, and therefore using natu-
ral language as the only interface is insufficient. To overcome this limitation, one option is to fine-
tune a pre-trained model to condition on low-level actions for a domain-specific dataset (Seo et al.,
2022). Another possibility is to apply existing adapter architectures such as ControlNet (Zhang
et al., 2023a), to add action-conditioning by modifying the activations inside the original model.
However, the parameters for state-of-the-art video diffusion models are usually not available pub-
licly (LumaAI, 2024; OpenAI, 2024; RunwayML, 2024), which rules out these approaches.

In this work we address the problem of exploiting a pretrained video diffusion model to generate
action-conditioned predictions without access to the parameters of the pretrained model. Inspired
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by the recent work from Yang et al. (2024b), we instead assume that we only have access to the
noise predictions of the pretrained diffusion model. We propose AVID, a domain-specific adapter
that conditions on actions and modifies the noise predictions of the pretrained model to generate
accurate action-conditioned predictions. To train the adapter, we assume that we have access to a
domain-specific dataset of action-labelled videos. The core contributions of our work are:

• Proposing to adapt pretrained video diffusion models to action-conditioned world models, without
access to the parameters of the pretrained model.

• Analyzing the limitations of the adaptation approach proposed by Yang et al. (2024b).
• AVID, a novel approach to adding conditioning to pretrained diffusion models. AVID applies a

learned mask to the outputs of of a pretrained model, and combines them with conditional outputs
learned by a domain-specific adapter.

We evaluate AVID on video game data, as well as real-world robotics data where we use a 1.4B
parameter model trained on internet-scale data as the pretrained model (Xing et al., 2023). Our
results show that our approach outperforms existing baselines, and demonstrates that AVID obtains
a considerable benefit from using the pretrained model, even with limited access to the model.
We advocate for providers of closed-source video models to provide access to intermediate model
outputs in their APIs to facilitate the use of adaptation approaches such as AVID.

2 PRELIMINARIES

Denoising Diffusion Probabilistic Models (DDPM) Diffusion models (Ho et al., 2020; Sohl-
Dickstein et al., 2015) are a class of generative models. Consider a sequence of positive noise
scales, 0 < β1, β2, . . . , βN < 1. In the forward process, for each training data point x0 ∼ pdata(x),
a Markov chain x0,x1, . . . ,xN is constructed such that p(xi | xi−1) = N (xi;

√
1− βixi−1, βiI).

Therefore, pαi(xi | x0) = N (xi;
√
αix0, (1− αi)I), where αi := Πi

j=1(1 − βj). We denote the
perturbed data distribution as pαi(xi) :=

∫
pdata(x)pαi(xi | x)dx. The noise scales are chosen such

that xN is distributed according to N (0, I). Define s(xi, i) to be the score function of the perturbed
data distribution: s(xi, i) := ∇xi log pαi(xi), for all i. Samples can be generated from a diffusion
model via Langevin dynamics by starting from xN ∼ N (0, I) and following the recursion:

xi−1 =
1√

1− βi

(xi + βisθ(xi, i)) +
√

βiz, (1)

where sθ is a learned approximation to the true score function s, and z is a sample from the stan-
dard normal distribution. If we reparameterize the sampling of the noisy data points according to:
xi =

√
αix0 +

√
1− αiϵ, where ϵ ∼ N (0, I), we observe that ∇xi log pαi(xi| x0) = − ϵ√

1−αi
.

Therefore, we can define the estimated score function in terms of a function ϵθ that predicts the noise
ϵ used to generate each sample

sθ(xi, i) := − ϵθ(xi, i)√
1− αi

. (2)

The noise prediction model ϵθ is trained to optimize the objective
θ∗ = argmin

θ
Ex0∼pdata(x),ϵ∼N (0,I),i∼U({1,2,...,N})

[
||ϵ− ϵθ(

√
αix0 +

√
1− αiϵ, i)||2

]
. (3)

To add a conditioning signal to the diffusion model, the denoising can be trained with an additional
conditioning signal ϵθ(xi, i, c), where c is the desired conditioning signal.

Probabilistic Adaptation of Diffusion Models Yang et al. (2024b) proposes to model the problem
of diffusion model adaptation via a product of experts. Given a pretrained model ppre(x) and a small
domain specific video model padapt(x), the final adapted model is defined as the following product
of expert (PoE) distribution:

pPoE :=
ppre(x)padapt(x)

Z
,

which generates samples that are likely under both of the original models, with the aim of main-
taining strong video quality from ppre(x) and the desired domain-specific quality from padapt(x). In
practice, pPoE is intractable. To sample from the PoE, the authors propose to compose their scores:

ϵPoE(xi, i, c) := ϵpre(xi, i, c) + ϵadapt(xi, i, c),

and pass the combined score to a DDPM sampler.
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3 ADAPTING VIDEO DIFFUSION MODELS TO WORLD MODELS (AVID)

3.1 PROBLEM SETTING

In the context of video diffusion models each datapoint is a video, x = [x0, x1, . . . , xT−1], where
xτ indicates a video frame. Note that we use superscript indices, xτ , to indicate steps in time, and
subscript indices, xi, to indicate steps in a diffusion process. We assume that we have access to a
pretrained image-to-video diffusion model ϵpre, that is trained on web-scale data. Given an initial
image, x0, the image-to-video model ϵpre generates a synthetic video x̂ = [x0, x̂1, . . . , x̂T−1].

We consider each video to be a sequence of observations generated by a partially observable
Markov decision process (POMDP) (Kaelbling et al., 1998), with corresponding action sequence
a = [a0, a1, . . . , aT−1]. For each domain, we assume access to a dataset of action-labelled videos,
D = {(x,a), . . .}. Given a new initial image, x0, and action sequence a, the goal is to generate a
synthetic video x̂ that accurately depicts the ground-truth realization of the actions.

To utilize the pretrained model ϵpre, we need to add action-conditioning to the model as accurate
videos cannot be generated without the actions. Adding a new conditioning signal to a pretrained
diffusion model is well-explored in previous works (Zhang et al., 2023a; Mou et al., 2024; Mokady
et al., 2023). However, most existing works assume access to the parameters of the pretrained model.
In this work, we assume that we do not have access to the parameters of the pretrained model.

3.2 LIMITATIONS OF NAIVE ADAPTATION OF YANG ET AL. (2024B)

Yang et al. (2024b) propose to adapt a pretrained diffusion model to a specific use-case without
access it its weights by composing (omitting the prior strength λ):

ϵPoE(xi, i, c) := ϵpre(xi, i, c) + ϵadapt(xi, i, c) (4)

However, this method has a fundamental limitation that it will produce biased samples. To see this,
consider the following forward diffusion process

dx = −1

2
β(t)xdt+

√
β(t)dW,

where t indicates continuous time. Assume the intial target distribution at t = 0 is p0(x) := pPoE =
ppre(x)padapt(x)

Z . Notice that the transition kernel can be written as (Särkkä & Solin, 2019):

p(xt|x0) = N (xt;x0e
− 1

2

∫ t
0
β(s)ds, I − Ie−

∫ t
0
β(s)ds)

Therefore, for ∀t > 0, the resulting distribution is the convolution pt(xt) = p0(x0) ∗ N (xt −
x0e

− 1
2

∫ t
0
β(s)ds; 0, I − Ie−

∫ t
0
β(s)ds). Due to the fact that convolution does not distribute over mul-

tiplication, the resulting score s(xt, t) cannot be expressed as a sum of the two individual score
functions:

s(xt, t) =∇xt
log

[
p0(x0) ∗ N (xt − x0e

− 1
2

∫ t
0
β(s)ds; 0, I − Ie−

∫ t
0
β(s)ds)

]
̸=∇xt

log
[
p0,pre(x0) ∗ N (xt − x0e

− 1
2

∫ t
0
β(s)ds; 0, I − Ie−

∫ t
0
β(s)ds)

]
+∇xt

log
[
p0,adapt(x0) ∗ N (xt − x0e

− 1
2

∫ t
0
β(s)ds; 0, I − Ie−

∫ t
0
β(s)ds)

]
As a result, the true noise prediction of the target distribution also cannot be expressed as a sum:
ϵPoE(xt, t, c) ̸= ϵpre(xt, t, c) + ϵadapt(xt, t, c). Therefore, the composition in Equation (4) does not
hold and will result in biased samples Du et al. (2023). In the following section, we propose AVID
to overcome this limitation. Rather than attempting to compose two independently trained mod-
els, AVID uses the outputs of the pretrained model to train an adapter that directly optimizes the
denoising loss.

3.3 ADAPTING VIDEO DIFFUSION MODELS TO WORLD MODELS (AVID)

AVID is a new approach for diffusion model adaptation that does not require access to the pretrained
model. The motivation for AVID is that while pretrained image-to-video models can generate realis-
tic videos, they cannot generate videos that are accurate with respect to a given sequence of actions.

3
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Figure 1: Overview of AVID world model adapter architecture.

To achieve accuracy, the pretrained model must be guided towards the correct generation for the
action sequence. However, as our experiments show, techniques such as classifier(-free) guidance
do not perform well in this setting. AVID addresses this by training a lightweight adapter to adjust
the output of the pretrained model to achieve accurate action-conditioned video predictions.

AVID trains an adapter that takes the output of the pretrained model as an input. AVID learns to
generate a mask, and uses this mask to combine the outputs of the pretrained model with those of
the adapter. The final combined output is used to compute the standard denoising loss, and the
adapter parameters are trained to optimize this loss. We train the AVID adapter using samples (x,a)
from the action-labelled dataset. For the pretrained image-to-video model ϵpre we assume that we
do not have to access to it’s parameters, θpre, but we can run inference using the model to obtain
it’s noise predictions. To do this, we input a noisy video, xi ∈ RT×h×w×c, initial image, x0 ∈
Rh×w×c, and diffusion step, i, to the pretrained image-to-video model to obtain its noise prediction,
ϵpre(xi, i, x0) ∈ RT×h×w×c. The parameters of the pretrained model ϵpre are not modified.

The adapter that we train is a 3D UNet (Ho et al., 2022c; Ronneberger et al., 2015) consisting of a
sequence of spatio-temporal blocks with residual connections. Each spatio-temporal block consists
of a 3D convolution, spatial attention, and temporal attention (Ho et al., 2022c). The UNet takes
as input a tensor of shape RT×h×w×3c. The input consists of the noisy video, xi, the output of the
pretrained model, ϵpre(xi, i, x0), and the initial image x0 repeated T times across the time dimension.
These three inputs are concatenated channel-wise to create the input tensor.

The adapter is also conditioned on the diffusion step i and the sequence of actions a. For noisy video
xi we embed the diffusion timestep according to a learned embedding table to get the diffusion step
embedding ei. For each timestep τ of the noisy video xi we embed the corresponding action aτ

to compute the action embedding eτa using an embedding table for discrete actions or a linear layer
for continuous actions. In each block, these two embeddings are concatenated and processed by an
MLP to compute the scale and shift parameters, γτ and βτ , for the τ th frame. These parameters
scale and shift the feature maps of the τ th frame after each 3D convolution (Perez et al., 2018).

To inject the correct action-conditioning into the predictions made by the pretrained model, the
adapter needs to erase incorrect motions predicted by the pretrained model and add the correct
motion. To facilitate this, the adapter outputs a tensor of shape RT×h×w×(c+1) consisting of a mask,
m ∈ RT×h×w×1 which is bounded between 0 and 1 by a sigmoid layer, and the noise prediction
from the adapter ϵadapt. The mask is then used to combine the noise predictions from the pretrained
model and the adapter according to:

ϵfinal(xi,a, i, x0) = ϵpre ⊙m+ ϵadapt ⊙ (1−m), (5)

where ⊙ denotes the Hadamard product, and the mask is broadcast across all c channels. The pa-
rameters of the adapter model, θadapt, are optimized to minimise the standard unweighted denoising
loss using ϵfinal:

L(θadapt) = E(x,a)∼D,ϵ∼N (0,I),i∼U({1,2,...,N})∥ϵfinal(xi,a, i, x0)− ϵ∥2. (6)

In the case where ϵpre is a latent diffusion model, we assume that we can also run inference on the
corresponding encoder and decoder. For each training example, we first encode the video: z =

enc(x) where z ∈ RT×h′×w′×c′ , and add noise to this latent representation of the video to produce
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noisy latent zi. The rest of the pipeline proceeds in the same manner, except that the initial image
x0 is replaced by the latent corresponding to the first frame, z0, and the noisy video xi is replaced
by the noisy latent zi. The adapter loss in Equation 6 predicts the noise added to the latent sample,
and we decode the sampled latent to generate the final video.

4 EXPERIMENTS

We evaluate AVID in two different domains with different pretrained base models. Details about the
datasets are provided in Appendix B.1 and details about the pretrained models are in Appendix B.2.
As the focus of our work is on training lightweight adapters with limited compute, we compare
adapter models with limited parameters under a computational budget.

Procgen The pretrained model is a pixel-space image-to-video diffusion model (Ho et al., 2022c)
trained on videos sampled from 15 out of the 16 procedurally generated games of Procgen (Cobbe
et al., 2020), excluding the 16th game Coinrun. The adaptation approaches are trained using an
action-labelled dataset sampled from Coinrun. At each timestep, the discrete action is one of 15
possible keypad inputs, and the models are trained on sequences of 10 frames. Each adaptation
approach is limited to 3 days of training on a single A100 GPU. We test three dataset sizes, Coin-
run100k/500k/2.5M, evaluate the models on a held-out test set of initial frames and actions.

RT1 + DynamiCrafter In this benchmark, the pretrained model is DynamiCrafter (Xing et al.,
2023) which is currently one of the best performing image-to-video models in the VBench image-
to-video leaderboard (Huang et al., 2024). DynamiCrafter is a latent image-to-video diffusion model
that uses the autoencoder from Stable Diffusion (Rombach et al., 2022) and a 1.4B parameter 3D
UNet trained on web-scale video data. As DynamiCrafter is a latent diffusion model, we assume
that we can run inference on the encoder and decoder as described in Section 3.3. For the action-
labelled dataset we use the RT1 dataset (Brohan et al., 2022) which consists of real-world robotics
videos. The action at each step is a 7 dimensional continuous vector corresponding to the movement
and rotation of the end effector and opening or closing of the gripper. The models are trained on
trajectories of 16 frames. Each adaptation approach is limited to 7 days of training on 4× A100
GPUs, and is evaluated using a held-out test set of ground truth trajectories.

4.1 BASELINES

We compare AVID with several baselines, both with and without access to the parameters of the
pretrained model. Further details, including hyperparameter tuning, are in Appendix B.5.

Full access to pretrained model parameters:

• Action-Conditioned Finetuning – tunes all of the parameters of the pretrained model on the action-
conditioned dataset. To add action-conditioning, we first compute an action embedding according
to Section 3.3. For Procgen and RT1, we concatenate and add the action embeddings with the
time step embeddings respectively.

• Language-Conditioned Finetuning – finetunes the pretrained model using a language description
of each video. The language is embedded using CLIP (Radford et al., 2021) and conditioned upon
using cross-attention following Xing et al. (2023).

• ControlNet (Zhang et al., 2023a) – freezes the parameters of the pretrained model and makes a
trainable copy of its UNet encoder. The trainable part of the model is conditioned on a new signal,
and connected to the decoder in the original model via convolutions which are initialised to zero.
In our work, we use ControlNet to add action-conditioning.

• ControlNet Small – ControlNet still has a large number of trainable parameters. ControlNet Small
freezes the pretrained model in the same way as ControlNet, but reduces the number of trainable
parameters to a similar amount to AVID by decreasing the number of channels in the layers of the
UNet encoder. A learned projection at each layer projects the activations of the smaller model to
match the number of channels in the pretrained base model.

No access to pretrained model parameters For a fair comparison to AVID, we evaluate the
following approaches which either do not leverage the pretrained model or, like AVID, assume
access to only noise predictions from the pretrained model:

5
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• Action-Conditioned Diffusion – We train an action-conditioned diffusion model ϵθ(xi,a, i, x0)
from scratch, with the same number of parameters and same UNet architecture as AVID.

• Classifier Guidance (Dhariwal & Nichol, 2021) – We train a classifier fϕ(a|xi) on noisy images
xi to predict actions. With weighting w, the classifier is used to steer the diffusion sampling
process towards samples consistent with the actions. The final noise prediction becomes:

ϵ̄final(xi,a, i, x0) = ϵpre(xi, i, x0)−
√
1− ᾱt w∇xi

log fϕ(a|xi).

• Product of Experts – Inspired by Yang et al. (2024b), we add action conditioning to a pretrained
video diffusion model by adding its score to an action-conditioned model. We train a small video
diffusion model on action conditioned data ϵadapt(xi,a, i, x0), and compute the final denoising
prediction as a weighted sum of predictions from the pretrained and action-conditioned models:

ϵ̄final(xi,a, i, x0) = λpϵadapt(xi,a, i, x0) + (1− λp)ϵpre(xi, i, x0),

where λp controls the strength of the pretrained prior during video generation.
• Action Classifier-Free Guidance (Ho & Salimans, 2021) – We train a small action-conditioned

diffusion model ϵadapt(xi,a, i, x0) while randomly removing the action conditioning (a = ∅)
during training with probability p = 0.2. We then compute the final denoising prediction as:

ϵ̄final(xi,a, i, x0) = ϵpre(xi, i, x0) + λa (ϵadapt(xi,a, i, x0)− ϵadapt(xi,a = ∅, i, x0)) .

Note that unlike standard classifier-free guidance this approach combines predictions from two
separate models, ϵpre and ϵadapt, which are trained on different data.

4.2 EVALUATION

For evaluation, we use a set of 1024 held-out test videos and their corresponding action sequences.
We generate 1024 synthetic videos by conditioning the models on each initial frame and action
sequence, and compare the generated videos against the ground truth using the following metrics:

• Action Error Ratio – To assess the consistency between the videos and the action sequences, we
train a model to predict actions from real videos. The Action Error Ratio is the ratio of errors
obtained by using this model on generated videos, divided by the error obtained on real videos.
More details are in Appendix B.3.

• FVD (Cobbe et al., 2019) – measures the similarity between feature distributions of generated and
real video sequences in the I3D network (Carreira & Zisserman, 2017), accounting for both spatial
quality and temporal coherence.

• FID (Heusel et al., 2017) – compares the feature distributions of all real and generated images in
the Inception-v3 network (Szegedy et al., 2015), measuring the quality and variety of the images.

• SSIM (Wang et al., 2004) – compares each ground truth and generated image, focusing on lumi-
nance, contrast, and structural information.

• PSNR (Hore & Ziou, 2010) – is computed using the mean squared error between each ground
truth and generated video, and thus computes the distance between the videos in pixel-space.

• LPIPS (Zhang et al., 2018) – compares the similarity between the features representations of each
ground truth and predicted image using the VGG network (Simonyan & Zisserman, 2015).

We bold results within 2% of the best performance in each model size category. We also compute
normalized metrics by normalizing each value between 0 and 1. Details are in Appendix B.4.

4.3 RESULTS

Qualitative Results Examples of generated videos are in Figures 2 and 3, with further examples in
Appendix A.5. We observe for both RT1 and Coinrun that the action-conditioned diffusion model
trained from scratch fails to maintain consistency with the original conditioning image: objects in
the initial image disappear in later frames in the video. The videos generated by PoE are blurry,
and sometimes appear like two superimposed videos. In contrast, the videos generated by AVID are
consistent throughout. In both AVID and action-conditioned diffusion, we observe that the motion
in the generated videos is accurate compared to the ground truth motion. The pretrained base models
do not generate accurate videos for either domain (Appendix A.5). The masks generated by AVID

6
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Figure 2: Top three rows: Examples of videos generated for RT1 (extended in Figure 7, Ap-
pendix A.5). Bottom row: Mask generated in downsampled latent space by AVID. White indicates
the mask is set to 1 and black indicates the mask is set to 0.
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Figure 3: Top three rows: Examples of videos generated for Coinrun 500k (extended in Figure 8,
Appendix A.5). Bottom row: Mask generated by AVID where white indicates the mask is set to 1
and black indicates the mask is set to 0.

are visualised in Figures 2 and 3. The lighter parts of the mask show that the pretrained models
predictions are predominantly used by AVID for maintaining background textures. The mask is
reduced nearer to 0 around the robot arm in RT1 and the character in Coinrun, showing that the
adapter outputs are predominantly used for action-relevant parts of the video. In Appendix A.6 we
show that AVID can be used to generate predictions for different actions given the same initial frame.

Quantitative Results To evaluate overall performance, in Figures 4a and 4b we plot the normalized
performance averaged across all evaluation metrics. AVID obtains similar or slightly better over-
all performance compared to ControlNet/ControlNet Small on both Coinrun500k and RT1. Note
that unlike ControlNet variants, AVID does not require access to the weights of the original pre-
trained model. For RT1, we observe that training an action-conditioned diffusion model performs
slightly worse than AVID at the largest model size. For Coinrun500k, AVID significantly outper-
forms action-conditioned diffusion at the larger model size. As the number of trainable parameters
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(a) (b) (c) (d)

Figure 4: (a) RT1 averaged normalized performance versus parameter count. (b) Coinrun500k
averaged normalized performance versus parameter count. (c) Coinrun averaged normalized perfor-
mance versus dataset size. Details on metric normalization are in Appendix B.4. (d) Average mask
(m) values of AVID throughout diffusion process.

Method Action Err.
Ratio ↓

FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑

M
ed

iu
m

AVID (Ours) (22M) 1.257 28.5 8.07 0.666 0.192 22.4
Action-Conditioned Diffusion (22M) 1.500 41.6 8.95 0.562 0.284 18.7
Product of Experts (22M) 1.601 101.8 9.96 0.584 0.281 19.1
Action Classifier-Free Guidance (22M) 1.966 191.1 13.09 0.454 0.3495 17.5
ControlNet-Small (22M) 1.465 34.7 8.49 0.652 0.205 21.9

L
ar

ge

AVID (Ours) (71M) 1.154 23.1 7.33 0.713 0.161 23.8
Action-Conditioned Diffusion (71M) 1.216 31.3 7.78 0.648 0.220 20.9
Product of Experts (71M) 1.247 84.8 9.07 0.651 0.229 21.0
Action Classifier-Free Guidance (71M) 2.079 188.7 13.05 0.463 0.341 17.7
ControlNet (71M) 1.418 18.5 7.16 0.758 0.128 25.5

Fu
ll

Pretrained Base Model (97M) 3.855 204.0 13.03 0.451 0.352 17.3
Classifier Guidance 4.070 192.9 12.68 0.450 0.351 17.4
Action-Conditioned Finetuning (97M) 1.227 14.1 6.52 0.761 0.120 25.8

Table 1: Results for Coinrun 500k dataset. Methods trained for 3 days on a single A100. Shading
indicates method requires access to the model parameters. Brackets indicate trainable parameters.

Method Action Err.
Ratio ↓

FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑

Sm
al

l

AVID (Ours) (11M) 2.572 54.0 4.344 0.811 0.166 24.5
Action-Conditioned Diffusion (11M) 2.238 80.4 5.329 0.767 0.226 22.9
Product of Experts (11M) 2.859 89.9 5.276 0.790 0.201 23.6
Action Classifier-Free Guidance (11M) 3.503 104.8 4.858 0.737 0.217 22.2
ControlNet-Small (10M) 2.640 38.6 3.730 0.811 0.169 23.4

M
ed

iu
m

AVID (Ours) (34M) 1.907 38.7 3.645 0.831 0.150 25.0
Action-Conditioned Diffusion (34M) 1.737 36.7 4.038 0.813 0.172 24.3
Product of Experts (34M) 2.421 61.7 4.533 0.813 0.175 24.4
Action Classifier-Free Guidance (34M) 3.129 71.4 4.690 0.748 0.205 22.6
ControlNet-Small (38M) 2.227 35.0 3.539 0.821 0.162 24.0

L
ar

ge

AVID (Ours) (145M) 1.609 39.3 3.436 0.842 0.142 25.3
Action-Conditioned Diffusion (145M) 1.384 24.9 3.504 0.817 0.153 24.6
Product of Experts (145M) 1.947 47.0 4.026 0.819 0.160 24.8
Action Classifier-Free Guidance (145M) 3.188 79.3 4.775 0.748 0.205 22.8
ControlNet-Small (170M) 1.779 30.0 3.375 0.832 0.153 24.4

Fu
ll

Pretrained Base Model (1.4B) 4.183 237.6 5.432 0.712 0.228 20.6
Classifier Guidance 4.182 213.1 6.005 0.683 0.250 19.8
ControlNet (654M) 1.708 27.1 3.248 0.836 0.148 24.5
Action-Conditioned Finetuning (1.4B) 1.297 24.2 2.965 0.852 0.134 25.6
Language-Conditioned Finetuning (1.4B) 3.859 33.7 3.511 0.812 0.177 22.1

Table 2: Quantitative results for RT1 dataset. Methods trained for 7 days on 4× A100. Shading
indicates method requires access to the model parameters. Brackets indicate trainable parameters.

is reduced, the performance of action-conditioned diffusion declines much more quickly than AVID
in both domains, and therefore AVID is considerably stronger at smaller model sizes. In Figure 4c
we plot the overall performance of these three approaches against the Coinrun dataset size. A similar
trend is observed for all approaches as dataset size is modified.

In Figure 4d we plot the average mask value at each step of the diffusion process. On RT1 AVID has
a higher mask value, and therefore uses the pretrained model more heavily than on Coinrun. This is
likely because the backgrounds in RT1 are mostly static and DynamiCrafter is a strong model. We
see that the mask values are lower at diffusion steps where the noise level is high. This indicates
that the adapter model is more responsible for generating low-frequency information, such as the
positions of objects, which is defined early in the reverse process. Towards the end of the reverse
process, where fine details are generated (Ho et al., 2020), the pretrained model is relied on more.
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The values for every evaluation metric are reported in Tables 1 and 2. For Coinrun500k, AVID
performs the best for every evaluation metric at the smaller 22M model size. For the larger model
size of 71M, AVID performs the second best for most metrics to ControlNet, but obtains the best
performance for Action Error Ratio. In RT1, AVID is the strongest in the metrics that make frame-
wise comparisons (SSIM/LPIPS/PSNR) across all model sizes. In our setting, where the goal is to
generate accurate videos according to the input action sequence, these metrics are more suitable than
comparing the overall distribution of images and videos (i.e. FID and FVD) (Zhu et al., 2024a). Con-
trolNet Small generally obtains the best performance for FVD and FID, while Action-Conditioned
Diffusion is consistently the best for Action Error Ratio. Poor performance was obtained for Classi-
fier Guidance and Action Classifier-Free Guidance across both domains. For standard implementa-
tions of classifier(-free) guidance, the unconditional model is trained on the trained on data from the
target domain. In contrast, in our setting the pretrained models are not trained on data from Coinrun
or RT1 which may explain the lackluster performance of these methods. Product of Experts also
performed poorly (PoE). However, for PSNR and SSIM, PoE did slightly outperform both of the
models from which it is composed.

Across both domains, finetuning the pretrained model with action conditioning is the strongest base-
line. However, like the ControlNet variants, this requires access to the weights of the pretrained
model which we assume we do not have access to. In comparison, finetuning with language instead
of action conditioning results in poor performance in all metrics except FID and FVD, demonstrating
that fine-grained action conditioning is necessary to generate accurate synthetic videos.

AVID Ablations We evaluate the following two ablations of AVID: No Mask (NM): The output
adapter does not output a mask. Instead, the outputs of the pretrained model and adapter are directly
added: ϵfinal = ϵpre + ϵadapt. No Conditioning (NC): The adapter is no longer conditioned on the
output of the pretrained model, ϵpre. Results for the ablations are in Table 3. For NM, performance
across most metrics is worse for RT1, but similar for Coinrun500k. For NC, the performance on
most metrics gets significantly worse for both Coinrun500k and RT1. Output conditioning enables
AVID to observe errors in the pretrained output and then immediately make corrections. In contrast,
NC has slower feedback to correct the pretrained model output as discussed in Zavadski et al. (2023).

Method Action Err.
Ratio ↓

FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑

C
oi

nr
un

50
0k

L
ar

ge

AVID (Ours) (71M) 1.154 23.1 7.33 0.713 0.161 23.8
No Mask (71M) 1.136 22.2 7.15 0.721 0.158 24.0
No Conditioning (71M) 1.141 27.8 8.02 0.682 0.189 22.3

R
T

1
L

ar
ge AVID (Ours) (145M) 1.609 39.3 3.436 0.842 0.142 25.3

No Mask (145M) 1.769 44.1 3.533 0.836 0.146 25.3
No Conditioning (145M) 1.775 36.2 3.550 0.827 0.149 25.0

Table 3: Results for AVID ablations (extended in Table 6, Appendix A.2).

5 RELATED WORK

Diffusion for Decision-Making Many works utilise diffusion models for generating ac-
tions (Pearce et al., 2023; Janner et al., 2022). However, the focus of our work is on generat-
ing action-conditioned synthetic data for world modelling (Ha & Schmidhuber, 2018), which can
be used downstream for planning (Hafner et al., 2021). SynTHER (Lu et al., 2024) employs an
unconditional diffusion model to generate synthetic data for reinforcement learning (RL). Other
works (Alonso et al., 2024; Yang et al., 2024a; Rigter et al., 2024; Hu et al., 2023; Zhang et al.,
2024) utilise diffusion models to train action-conditioned world models. All of these works train
the diffusion model from scratch. In our work, the focus is on making effective use of a pretrained
video diffusion model to leverage web-scale pretraining. Most related is Pandora (Xiang et al.,
2024) which integrates an LLM and text-to-video diffusion model to generate videos conditioned on
actions described as natural language. While natural language is suitable for describing high-level
actions, it is inadequate for our goal of modelling low-level actions (McCarthy et al., 2024).

Video Pre-Training for World Models To address the scarcity of action-labeled real-world data,
several studies have investigated using unlabeled videos to enhance the efficiency of world model
training. Seo et al. (2022) and Wu et al. (2024) pre-train an autoregressive video prediction model,
which is later fine-tuned with action-labeled data. Mendonca et al. (2023) develop a world model
from videos of humans by defining a high-level action space that is shared between both embodi-
ments. Another approach involves learning latent actions from videos (Bruce et al., 2024; Schmidt
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& Jiang, 2024). Our work integrates video pre-training by utilizing a pre-trained video diffusion
model, with the distinction that we do not have access to the weights of the original model.

Adding Controllability to Diffusion Models Classifier guidance (Dhariwal & Nichol, 2021) adds
conditioning to a pretrained diffusion model using a separate classifier. Classifier-free guidance (Ho
& Salimans, 2021) achieves stronger empirical performance but requires the model to be trained
with conditioning signals, rendering it unsuitable for post-hoc application to a pretrained model.

Recent advancements include ControlNet (Zhang et al., 2023a) and T2I-Adapter (Mou et al., 2024),
which introduce conditional control to pretrained diffusion models by freezing the original UNet
and injecting additive signals into the pretrained network. ControlNet-XS (Zavadski et al., 2023)
extends this concept by increasing the interactions between the pretrained and adapter networks.
Li et al. (2023) incorporates additional trainable layers into the frozen pretrained UNet. These
techniques have been applied to introduce controls such as language (Xing et al., 2024), optical
flow (Hu & Xu, 2023), and depth maps (Chen et al., 2023b) into video models. However, they are
not applicable in our context as they require access to the original model’s weights, which we assume
are inaccessible. Textual inversion (Gal et al., 2023) and null text inversion (Mokady et al., 2023)
optimize text embeddings to add controllability to text-conditioned diffusion models. However,
this requires backpropagation through the pretrained model which is not feasible in our setting.
Cascaded diffusion models (Ho et al., 2022a;b), train a sequence of diffusion models, which each
condition on the outputs of the previous diffusion model. However, the focus of these works is
improving the spatial and temporal resolution at each step, whereas our focus is on incorporating a
new conditioning signal, actions, that was absent in the pretrained model.

Compositional Generative Models Our work is related to compositional generative models, where
generative models are combined probabilistically (Liu et al., 2022; Nie et al., 2021; Du et al., 2020).
RoboDreamer applies this idea to world modeling by decomposing language conditioning into mul-
tiple components to generate several predictions that are then combined (Zhou et al., 2024). Yang
et al. (2024b) modifies the style of a pretrained video diffusion model by combining it’s output
with a domain-specific diffusion model that is trained independently. Unlike Yang et al. (2024b),
the focus of our work is on adding action-conditioning to a pretrained model, and our experiments
demonstrate that the approach proposed by Yang et al. (2024b) works poorly in our setting.

6 DISCUSSION

Limitations Adding the AVID adapter increases the inference compute required compared to the
pretrained model. AVID adapters are tailored to a specific pretrained model and therefore cannot be
composed with different models. Developing a method that works across different pretrained models
is an exciting direction for future work. AVID does not require access to pretrained model weights,
but it does require access to intermediate predictions during denoising, including the outputs of the
encoder and decoder in the case of latent diffusion. Many closed-source APIs do not provide access
to these quantities, and therefore we advocate for model providers to provide API access to the
outputs of the denoising model and autoencoder to facilitate more flexible use of their models.

In the RT1 domain we found that training an action-conditioned diffusion model from scratch re-
sulted in the best Action Error Ratio, despite the videos being less visually accurate. For some
downstream applications, action consistency might be the most important performance metric. If
this is the case, training from scratch may be the preferred approach for some domains.

Conclusion We introduced the novel problem of adapting pretrained video diffusion models to
action-conditioned world models without requiring access to the pretrained model’s parameters.
Our proposed approach, AVID, generates accurate videos with similar performance to ControlNet
variants without requiring access to the pretrained model parameters. AVID obtains superior over-
all performance to existing baselines that do not require access to the internals of the pretrained
model. Our results demonstrate that AVID benefits from the pretrained model by maintaining better
consistency with the initial image across both pixel-space and latent diffusion models.

As general image-to-video diffusion models continue to advance in capability, our findings highlight
the considerable potential of adapting these models to world models that are suitable for planning
and decision-making. This work represents an initial step in that direction. In future research, we
aim to use synthetic data generated by AVID adapters for planning tasks. We also wish to explore
using AVID adapters to add new conditioning signals to pretrained models other than actions.
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A ADDITIONAL RESULTS

A.1 COINRUN100K AND COINRUN 2.5M RESULTS

Tables 4 and 5 contain results for Coinrun datasets of different sizes (100k and 2.5M). The results
in the main paper use a dataset size of 500k.

Method Action Err.
Ratio ↓

FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑

M
ed

. AVID (Ours) (22M) 1.355 57.4 10.77 0.592 0.270 19.9
Action-Conditioned Diffusion (22M) 1.501 65.6 11.82 0.487 0.365 17.2
ControlNet-Small (22M) 1.559 62.6 10.39 0.603 0.263 20.3

L
ar

ge AVID (Ours) (71M) 1.222 56.0 10.47 0.624 0.253 20.6
Action-Conditioned Diffusion (71M) 1.224 60.0 11.16 0.558 0.312 18.5
ControlNet (71M) 1.491 57.6 9.92 0.697 0.197 22.9

Fu
ll Pretrained Base Model (97M) 3.855 204.0 13.03 0.451 0.352 17.3

Action-Conditioned Finetuning (97M) 1.311 34.7 8.38 0.716 0.167 23.9

Table 4: Quantitative results for Coinrun 100k dataset. Shaded rows indicate that the method re-
quires access to the model parameters.

Method Action Err.
Ratio ↓

FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑

M
ed

. AVID (Ours) (22M) 1.277 24.7 8.01 0.679 0.177 23.0
Action-Conditioned Diffusion (22M) 1.574 34.8 8.88 0.580 0.254 19.4
ControlNet-Small (22M) 1.467 23.8 7.80 0.653 0.194 22.1

L
ar

ge AVID (Ours) (71M) 1.158 14.5 6.44 0.740 0.131 25.1
Action-Conditioned Diffusion (71M) 1.203 17.7 6.63 0.704 0.158 23.4
ControlNet (71M) 1.393 14.8 6.68 0.760 0.120 25.7

Fu
ll Pretrained Base Model (97M) 3.855 204.0 13.03 0.451 0.352 17.3

Action-Conditioned Finetuning (97M) 1.216 12.0 6.28 0.782 0.107 26.6

Table 5: Quantitative results for Coinrun 2.5M dataset. Shaded rows indicate that the method re-
quires access to the model parameters.

A.2 FULL RESULTS FOR AVID ABLATIONS

Table 6 contains ablation results for AVID across the full range of model sizes.

Method Action Err.
Ratio ↓

FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑

C
oi

nr
un

50
0k

M
ed

. AVID (Ours) (22M) 1.257 28.5 8.07 0.666 0.192 22.4
No Mask (22M) 1.241 28.6 8.06 0.675 0.186 22.7
No Conditioning (22M) 1.276 33.7 8.50 0.655 0.208 21.5

C
oi

nr
un

50
0k

L
ar

ge

AVID (Ours) (71M) 1.154 23.1 7.33 0.713 0.161 23.8
No Mask (71M) 1.136 22.2 7.15 0.721 0.158 24.0
No Conditioning (71M) 1.141 27.8 8.02 0.682 0.189 22.3

R
T

1
Sm

al
l AVID (Ours) (11M) 2.572 54.0 4.344 0.811 0.166 24.5

No Mask (11M) 2.752 63.7 4.566 0.809 0.168 23.8
No Conditioning (11M) 2.938 60.5 4.620 0.806 0.172 24.5

R
T

1
M

ed
. AVID (Ours) (34M) 1.907 38.7 3.645 0.831 0.150 25.0

No Mask (34M) 2.155 49.7 3.940 0.825 0.156 24.5
No Conditioning (34M) 2.349 48.6 4.018 0.819 0.160 25.1

R
T

1
L

ar
ge AVID (Ours) (145M) 1.609 39.3 3.436 0.842 0.142 25.3

No Mask (145M) 1.769 44.1 3.533 0.836 0.146 25.3
No Conditioning (145M) 1.775 36.2 3.550 0.827 0.149 25.0

Table 6: Full results for AVID ablations.

A.3 RT1 RESULTS WITH LARGER COMPUTE LIMIT

The results in the main paper train models for RT1 using a compute limit of 7 days of 4× A100
GPUs. To provide reference values for performance we also evaluated IRASim (Zhu et al., 2024a)
using our evaluation setup. IRASim is a 679M parameter model trained using 100 GPU-days on
A800 GPUs. We also include results for action-conditioned finetuning of DynamiCrafter using a
similar amount of compute (104 GPU-days on A100 GPUs). The results for these two models are
in Table 7. By finetuning DynamiCrafter, we obtain slightly stronger performance than IRASim.
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Method Action Err.
Ratio ↓

FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑

IRASim - 21.0 2.759 0.879 0.1296 28.2
Action-Conditioned Finetuning (1.4B) 1.151 19.5 2.655 0.871 0.1160 27.1

Table 7: Quantitative results for RT1 dataset with greater computational budget.

A.4 EXAMPLES OF AVID MASKING

Figures 5 and 6 illustrate examples of the mask generated by AVID which is used to mix the pre-
trained model and adapter outputs.
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Figure 5: Examples of the mask, m, produced by AVID averaged throughout the diffusion process
for Coinrun500k. White indicates the mask is set to 1, and black indicates the mask is set to 0.
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Figure 6: Examples of the mask, m, produced by AVID averaged throughout the diffusion process
for RT1. Note that the mask is in the latent space, where the images have been downsampled by a
factor of 8. White indicates the mask is set to 1, and black indicates the mask is set to 0.

A.5 EXTENDED QUALITATIVE EXAMPLES
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Figure 7: Extended qualitative comparison of videos generated for RT1.
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Figure 8: Extended qualitative comparison of videos generated for Coinrun 500k.
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A.6 EXAMPLE VIDEOS WITH SAME INITIAL FRAME

In Figure 9 we generate videos by providing the same initial conditioning frame but different actions.
The provided action is fixed for all 16 steps of the video.
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Figure 9: Examples of videos generated for RT1 with same initial frame but different actions.

B EXPERIMENT DETAILS

B.1 DATASET DETAILS

Procgen Pretrained Model Dataset The pretrained model is trained on videos sampled from 15
out of the 16 procedurally generated games of Procgen, excluding the 16th game Coinrun. Because
the games are procedurally generated, each level in each Procgen game has different visual charac-
teristics. To generate the dataset for the pretrained model, in each of the 15 games we sample an
episode of 1000 steps long from each of the first 2000 levels by executing uniformly random actions.
This results in 2M frames from each game for a total dataset of 30M steps, each with a resolution of
64 × 64. For training, we sample windows of 10 steps from the episodes. The pretrained model is
trained on videos from this dataset for 12 days in a single A100.

Coinrun Datasets To train the Coinrun adapters, we generate an action-labelled dataset from the
Coinrun game. At each timestep, the action is one of 15 discrete actions corresponding to keypad
inputs. We sample episodes of 1000 steps from each of the first 100, 500, or 2500 levels by executing
uniform random actions to create the Coinrun100k, Coinrun500k, and Coinrun2.5M datasets. For
training, we sample action-labelled trajectories of 10 steps.

For evaluation, we create a held-out evaluation set of ground truth trajectories of videos and actions.
We use 1024 ground truth trajectories of 10 steps each, sampled by executing random action se-
quences in levels sampled uniformly at random between level 10000 and 11000 of Coinrun. We use
the same evaluation trajectories for all methods.

RT1 Dataset The RT1 dataset contains 87212 action-labelled episodes of a robot performing tasks
such as picking up and placing objects, with a total of 3.78M steps. The action at each step is a 7
dimensional continuous vector corresponding to the movement and rotation of the end effector and
opening or closing of the gripper. The videos have a resolution of 320 × 512. For training, we use
95% of the episodes, equating to 82851 episodes in the training dataset. We sample windows of 16
steps from these episodes for training the models. For evaluation, we use 1024 trajectories of 16
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Figure 10: Examples from Procgen pretraining dataset on the 15 out of 16 Procgen games. Note
that the pretraining dataset does not include any samples from Coinrun.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

steps each sampled uniformly at random from the held-out test set of 4361 test episodes. We use the
same evaluation trajectories for all methods.

B.2 MODEL AND TRAINING DETAILS

Procgen and Coinrun For both the pretrained model trained on 15 of the 16 Procgen games, and
the adapters trained on the Coinrun datasets, we use the 3D UNet architecture from Video Diffusion
Models (Ho et al., 2022c) trained on videos of resolution 64× 64. We condition each model on two
initial images to allow the initial direction the agent is moving in to be inferred and allow for more
accurate video generation. Detailed hyperparameters for each of the models are in Table 8.

Table 8: Hyperparameters for models trained on Procgen and Coinrun.

Hyperparameter Value Models

Base Channels

100 97M Pretrained Model, ControlNet
90 71M
50 22M, ControlNet-Small 22M

Attention Head Dims
64 97M Pretrained Model, all ControlNet variants
50 22M, 71M

Attention Heads
8 97M Pretrained Model, all ControlNet variants
6 71M
4 22M

Learning Rate 2e-5 Finetuning
1e-4 All other models

Training Time 12 days 97M Pretrained Model
3 days All other models

Training Hardware 1× A100 GPU

All

EMA 0.995
Channel Multipliers [1, 2, 4, 8]
Sequence Length 10 steps
Batch Size 64
Noise Steps 200
Inference Steps 200
Sampling Method DDPM
Prediction Target x0

Noise Schedule Sigmoid

RT1 The pretrained model is DynamiCrafter (Xing et al., 2023), a latent video diffusion model.
DynamiCrafter is trained to generate videos at a resolution of 320× 512. To accommodate this, we
resize and pad the images from the RT1 dataset to this resolution. DynamiCrafter is trained to op-
tionally accept language conditoning. We use an empty language prompt, except in the case where
the model is finetuned with language conditioning (see Section 4.1). DynamiCrafter uses the 1.4B
3D UNet architecture from (Chen et al., 2023a) and the autoencoder from Stable Diffusion (Rom-
bach et al., 2022).

As discussed in Section 3.3, we use the same autoencoder for our AVID adapter, as well as all
baselines. For all methods on RT1, we train a 3D UNet with the same architecture as Dynamicrafter
from (Chen et al., 2023a), but with a reduced number of parameters. The hyperparameters for each
of the models can be found in Table 9.

Parameterisation We parameterise all models on Procgen and Coinrun to predict the clean video,
x0, meaning that in practice the output of the pretrained model and the adapter output are both
predictions of x0 rather than the noise. DynamiCrafter is trained using the v prediction target
parameterisation (Salimans & Ho, 2022), so it outputs a prediction of v. We also train all models on
the RT1 dataset to predict the v-target.

B.3 ACTION ERROR RATIO EVALUATION METRIC DETAILS

Coinrun The actions in Coinrun are discrete so to evaluate the Action Error Ratio we first train a
classifier to predict the actions. The video is first processed using the encoder part of the 3D Unet
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Table 9: Hyperparameters for models trained on RT1.

Hyperparameter Value

Base Channels

320 1.4B, ControlNet
160 ControlNet-Small 170M
96 145M
64 34M, ControlNet-Small 38M
32 11M, ControlNet-Small 10M

Attention Head Dims 16 11M, ControlNet-Small 10M
64 All other models

Channel Multipliers
[1, 2, 4, 4] 1.4B, 145M, all ControlNet variants
[1, 1, 2, 3] 34M

[1, 2, 3] 11M

Learning Rate 2e-5 Finetuning
1e-4 All other models

Attention Heads Channels / Attention Head Dims

All

Training Time 7 days
Training Hardware 4× A100 GPU
EMA 0.9995
Sequence Length 16 steps
Batch Size 64
Noise Steps 1000
Inference Steps 50
Sampling Method DDIM
Prediction Target v
Noise Schedule Linear

architecture that we use for the diffusion model. This encoding is then flattened, and processed by an
MLP which outputs a softmax over the 15 possible actions at each step of the video. The classifier
is trained using the cross-entropy loss and has 60M total parameters. It is trained on a large dataset
of 10M steps: 1000 steps sampled from each of 10,000 levels of Coinrun.

The Action Error Ratio is then computed as the ratio between the accuracy of the action classifier
on real videos divided by the accuracy of the classifier on generated videos:

ActionErrorRatio(discrete) =
action accuracy(real videos)

action accuracy(generated videos)

The action classifier achieves an accuracy of 0.267 on real videos from a held-out test-set. The
accuracy score is low because not all of the 15 actions result in different outcomes in all states in
Coinrun. Therefore it is not possible to predict actions at near 100% accuracy as the action taken is
often ambiguous.

RT1 The actions in RT1 are continuous so we train a regression model to predict the actions. The
actions are first normalised to mean zero and unit variance. The video is processed by the encoder
part of the 3D UNet architecture and then an MLP which outputs a prediction for the action at each
time step. The regression model is trained using the MSE loss on the same 82851 video dataset that
we use for training the adapter models, and has 85M parameters.

The Action Error Ratio is then computed as the ratio between the mean absolute error of the action
predictions of the regression model on the generated videos compared to the real videos:

ActionErrorRatio(continuous) =
action MAE(generated videos)

action MAE(real video)

The action error predictor achieves an MSE of 0.110 on a held-out test set of normalized actions.
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B.4 NORMALIZED EVALUATION METRIC DETAILS

To compute normalized evaluation metrics plotted in Figures 4a, 4b and 4c, we first normalize each
evaluation metric to between 0 and 1. In RT1, 0 represents the worst performance for each metric
across the Small, Medium or Large model sizes for Action-Conditioned Diffusion, ControlNet-
Small, or AVID. 1 represents the best performance for each metric across these models. In Coinrun,
0 and 1 represent the worst and best performance for each metric across the Medium or Large model
sizes for Action-Conditioned Diffusion, ControlNet/ControlNet-Small, or AVID, across all of the
three datasets: Coinrun100k, Coinrun500k, and Coinrun2.5M.

The minimum and maximum values used for normalization are summarised in Tables 10 and 11.

Action Err. Ratio FVD FID SSIM LPIPS PSNR

Minimum 1.384 24.9 3.375 0.767 0.142 22.9
Maximum 2.640 80.4 5.329 0.842 0.226 25.3

Table 10: Minimum and maximum values for metric normalization in RT1.

Action Err. Ratio FVD FID SSIM LPIPS PSNR

Minimum 1.154 14.5 6.44 0.487 0.120 17.2
Maximum 1.574 65.6 11.82 0.760 0.365 25.7

Table 11: Minimum and maximum values for metric normalization in Coinrun.

If the goal is to maximize the metric, the normalized value of the metric is computed using:

normalized value = (value− min value)/(max value− min value) (7)

If the goal is to minimize the metric, the normalized value of the metric is computed using:

normalized value = 1− (value− min value)/(max value− min value) (8)

Once the metrics have been normalized, we compute the mean across all 6 normalized metrics. This
final value is plotted in Figures 4a, 4b and 4c.

B.5 BASELINE DETAILS

Here we provide additional details about the baselines that are not included in the main paper.

• Language-Conditioned Finetuning – the language description that we use is: “Robot arm performs
the task {task description} ” where {task description} is the description given in the RT1
dataset.

• Classifier Guidance (Dhariwal & Nichol, 2021) – For the RT1 domain, since the actions are
continuous, we discretise each action dimension into 256 bins uniformly following Padalkar
et al. (2023) to train the classifier. We tune the weight of the guidance within w ∈
{0.003, 0.01, 0.03, 0.1, 0.3}.

• Product of Experts – we tune the weighting of the two models within λp ∈ {0.2, 0.4, 0.6}.
• Action Classifier-Free Guidance – we tune the weighting within λa ∈ {0.3, 1.0, 3.0, 10.0}.

For the baselines that require hyperparameter tuning, we sweep over each value of the hyperparam-
eter and choose the value that obtains the best FVD in our evaluation.
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