
Training on Test Data with Bayesian Adaptation for
Covariate Shift

Aurick Zhou, Sergey Levine
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
{aurick,svlevine}@berkeley.edu

Abstract

When faced with distribution shift at test time, deep neural networks often make
inaccurate predictions with unreliable uncertainty estimates. While improving the
robustness of neural networks is one promising approach to mitigate this issue, an
appealing alternate to robustifying networks against all possible test-time shifts is
to instead directly adapt them to unlabeled inputs from the particular distribution
shift we encounter at test time. However, this poses a challenging question: in the
standard Bayesian model for supervised learning, unlabeled inputs are conditionally
independent of model parameters when the labels are unobserved, so what can
unlabeled data tell us about the model parameters at test-time? In this paper, we
derive a Bayesian model that provides for a well-defined relationship between
unlabeled inputs under distributional shift and model parameters, and show how
approximate inference in this model can be instantiated with a simple regularized
entropy minimization procedure at test-time. We evaluate our method on a variety
of distribution shifts for image classification, including image corruptions, natural
distribution shifts, and domain adaptation settings, and show that our method
improves both accuracy and uncertainty estimation.

1 Introduction

Modern deep learning methods can provide high accuracy in settings where the model is evaluated
on data from the same distribution as the training set, but accuracy often degrades severely when
there is a mismatch between the training and test distributions [Hendrycks and Dietterich, 2019, Taori
et al., 2020]. In safety-critical settings, effectively deploying machine learning models requires not
only high accuracy, but also requires the model to reliably quantify uncertainty in its predictions in
order to assess risk and potentially abstain from making dangerous, unreliable predictions. Reliably
estimating uncertainty is especially important in settings with distribution shift where inaccurate
predictions are more prevalent, but the reliability of uncertainty estimates often also degrades along
with the accuracy as the shifts become more severe [Ovadia et al., 2019]. In real-world applications,
distribution mismatch at test time is often inevitable, thus necessitating methods that can robustly
handle distribution shifts, both in terms of retaining high accuracy but also in providing meaningful
uncertainty estimates.

As it can be difficult to train a single model to be robust to all potential distribution shifts we might
encounter at test time, we can instead robustify models by allowing for adaptation at test time, where
we finetune the network on unlabeled inputs from the shifted target distribution, thus allowing the
model to specialize in the particular shift it encounters. Since test-time distribution shifts often
cannot be anticipated during training time, we restrict the adaptation procedure to operate without any
further access to the original training data. Prior work on test-time adaptation [Wang et al., 2020a,
Sun et al., 2019b] focused on improving accuracy, and found that simple objectives like entropy
minimization capable of providing substantial improvements under distribution shift [Wang et al.,

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

2020a]. However, these prior works do not consider uncertainty estimation, and an objective like
entropy minimization can quickly make predictions overly confident and less calibrated, leaving us
without reliable uncertainty estimates and thus unable to quantify risks when making predictions. Our
goal in this paper is to design a test-time adaptation procedure that can not only improve predictive
accuracy under distribution shift, but also provide reliable uncertainty estimates.

While a number of prior papers have proposed various heuristic methods for test-time adapta-
tion [Wang et al., 2020a, Sun et al., 2019a], it remains unclear what precisely unlabeled test data
under covariate shift can actually tell us about the optimal classifier. In this work, we take a Bayesian
approach to this question, and explicitly formulate a Bayesian model that describes how unlabeled
test data from a different domain can be related to the classifier parameters. Such a model requires
introducing an additional explicit assumption, as the classifier parameters are conditionally indepen-
dent of unlabeled data in the standard model for discriminative classification [Seeger, 2000]. The
additional assumption we introduce intuitively states that the data generation process at test-time,
though distinct from the one at training time (hence, under covariate shift) is still more likely to
produce inputs that have a single unambiguous labeling, even if that labeling is not known. We
argue that this assumption is reasonable in practice, and leads to an appealing graphical model where
approximate inference corresponds to a Bayesian extension of entropy minimization.

We propose a practical test-time adaptation strategy, Bayesian Adapatation for Covariate Shift
(BACS), which approximates Bayesian inference in this model and outperforms prior adaptive
methods both in terms of increasing accuracy and improving calibration under distribution shift. Our
adaptation strategy is simple to implement, requires minimal changes to standard training procedures,
and outperforms prior test-time adaptation techniques on a variety of benchmarks for robustness to
distribution shifts.

2 Bayesian Adaptation for Covariate Shift

In this section, we will devise a probabilistic graphical model that describes how unlabeled data in a
new test domain can inform our posterior about the model, and then describe a practical deep learning
algorithm that can instantiate this model in a system that enables test-time adaptation. We will begin
by reviewing standard probabilistic models for supervised and discuss why such models are unable to
utilize unlabeled data. We then discuss a probabilistic model proposed by Seeger [2000] that does
incorporate unlabeled data in a semisupervised learning (SSL) setting, and propose an extension to
the model to account for distribution shift. Finally, we discuss the challenges in performing exact
inference in our proposed model and describe the approximations we introduce in order to derive a
tractable inference procedure suitable for test-time adaptation.

2.1 Probabilistic Model for Covariate Shift

x y

θφ

N

Figure 1: Proba-
bilistic model for
standard supervised
learning, observing
N labeled data
points.

In the standard Bayesian model for supervised learning (Figure 1), we assume
that the inputs X are sampled i.i.d. from a generative model with parameters
φ, while the corresponding labels are sampled from a conditional distribution
p(Y |X, θ) parameterized by θ. The parameters θ and φ are themselves random
variables, sampled independently from prior distributions p(φ) and p(θ). We
observe only a dataset D = {Xi, Yi}ni=1, and then perform inference over the
parameters θ using Bayes rule:

p(θ|D) ∝ p(θ)
n∏
i=1

p(Yi|Xi, θ). (1)

To make predictions on a new input xn+1, we marginalize over the posterior
distribution of the classifier parameters θ to obtain the predictive distribution

p(Yn+1|Xn+1,D) =
∫
p(Yn+1|Xn+1, θ)p(θ|D) dθ.

Note that observing the (unlabeled) test input xn+1 (or more generally, any number of test inputs)
does not affect the posterior distribution of parameters θ, and so within this probabilistic model, there
is no benefit to observing multiple unlabeled datapoints before making predictions.

2

x y x̃ ỹ

θφ

N M

Figure 2: Model for SSL [Seeger, 2000],
observing N labeled pairs and M unlabeled
inputs, both generated from the same distri-
bution. Observing unlabeled inputs x̃ pro-
vides information about the input distribution
φ, and thus about θ.

Inference for semi-supervised learning. By treating the
parameters θ, φ as a-priori independent, the standard model
assumes there is no relationship between the input distri-
bution and the process that generates labels, leading to
the inability to utilize unlabeled data in inferring θ. To
utilize unlabeled data, we can introduce assumptions about
the relationship between the labeling process and input
distribution using a model of the form in Figure 2 [Seeger,
2000].

The assumption we use has a simple intuitive interpreta-
tion: we assume that the inputs that will be shown to our
classifier have an unambiguous and clear labeling. This
assumption is reasonable in many cases: if the classifier
discriminates between automobiles and bicycles, it is reasonable that it will be presented with images
that contain either an automobile or bicycle. Of course, this assumption is not necessarily true in all
settings, but this intuition often agrees with how discriminatively trained models are actually used.
This simple intuition can be formalized in terms of a prior belief about the conditional entropy of
labels conditioned on the inputs.

Similar to Grandvalet and Bengio [2004], we can encode this belief using the additional factor

p(θ|φ) ∝ µ(θ) exp(−αHθ,φ(Y |X)) (2)

= µ(θ) exp
(
αEX∼p(X|φ),Y∼p(Y |X,θ)[log p(Y |X, θ)]

)
, (3)

where µ(θ) is a prior over the parameters θ that is agnostic of the input distribution parameter φ.

Now, observing unlabeled test inputs U = {x̃1, . . . , x̃m} provides information about the parameter φ
governing the input distribution, which then allows us to update our belief over the learned parameters
θ through Equation 2 and thus allows inference to utilize unlabeled data within a Bayesian framework.

Extension to covariate shift. The previous probabilistic model for SSL assumes all inputs were
drawn from the same distribution (given by φ). However, our goal is use unlabeled data to adapt our
model to a different test distribution, so we extend the model to incorporate covariate shift.

x y ỹ x̃

θφ φ̃

N M

Figure 3: Our proposed probabilistic model
for adaptation for covariate shift, observing a
training set with N labeled pairs and M un-
labeled inputs from a shifted test distribution.

We now assume we have two input-generating distribu-
tions; φ specifies the input distribution for our labeled
training set, and φ̃ specifies the shifted distribution of
unlabeled test inputs which we aim to adapt to. Under
the assumption of covariate shift, the same classifier θ is
used to generate labels in both the train and test domains,
leading to the model in Figure 3.

We argue that our prior belief of low aleatoric uncertainty
is reasonable for both the distribution induced by φ and
the one induced by φ̃; even if there is some distribution
shift from the training set, we can still often expect the
test data we are shown to have unambiguous labels. We
can then incorporate both φ and φ̃ into our belief over θ
with the factor

p(θ|φ, φ̃) ∝ µ(θ) exp(−αHθ,φ(Y |X)) exp(−α̃Hθ,φ̃(Y |X)), (4)

with the two scalar hyperparameters α, α̃ controlling how to weight the entropies from each distri-
bution with the likelihoods of the labeled training set. While we can extend this model to include
more labeled or unlabeled input distributions, we focus on simply having one training distribution
and one test distribution as it is the most relevant for our problem setting of adapting to a particular
distribution shift at test time.

2.2 Approximations for Tractable Inference

Performing inference over θ in the above model can be challenging in our test-time adaptation setting
for several reasons. First of all, inference over θ would also require performing inference over the

3

parameters of the generative models φ and φ̃ to evaluate likelihoods in Equation 4. This is difficult in
practice for two reasons: First, the inputs x might be high-dimensional and difficult to model, as in
the case of images. Second, the amount of unlabeled data might be fairly small, and insufficient to
accurately estimate the parameters φ̃ if we employ a highly expressive generative model. As such,
we would much prefer to avoid explict generative modeling and to only perform inference over the
discriminative model parameters θ instead.

Another issue is that performing inference would require access to both the labeled training data and
the unlabeled test data at the same time, while our test-time adaptation setting assumes that we can
no longer look at the training set when it is time to adapt to the test distribution. We will discuss how
to address these issues and describe our method, Bayesian Adaptation for Covariate Shift (BACS),
which provides a practical instantiation of inference in this Bayesian model in a computationally
tractable test-time adaptation setting.

Plug-in approximation with empirical Bayes. We first propose to avoid explicit generative model-
ing by using with a plug-in empirical Bayes approach. Empirical Bayes is a common approximation
for hierarchical Bayesian models that simply uses a point estimate of φ rather than marginalizing
over φ’s (similarly for φ̃), which would reduce the computation to estimating only a single generative
model for each input distribution given by parameters φ∗ and φ̃∗. To eliminate the need to train the
parameters φ∗ of a generative model of the inputs altogether, we note that p(θ|φ, φ̃) only depends
on φ and φ̃ through the input distributions p(x|φ), p(x̃|φ̃). We can then approximate Equation 4 by
plugging in the empirical distributions of x and x̃ in place of p(x|φ∗), p(x̃|φ̃∗), resulting in

p(θ|φ̂, φ̃) ∝ µ(θ) exp

(
−α
n

n∑
i=1

H(Yi|xi, θ)

)
exp

(
− α̃
m

m∑
i=1

H(Yi|x̃i, θ)

)
.

Now, given a labeled training set D and unlabeled test points U = {x̃i}mi=1, the new posterior
distribution over parameters now has log probabilities (up to an additive normalizing constant)

log p(θ|D,U) = logµ(θ) +

n∑
i=1

log p(yi|xi, θ)−
α

n

n∑
i=1

H(Y |xi, θ)−
α̃

m

m∑
j=1

H(Y |x̃j , θ). (5)

For convenience, we simply set α = 0, as additionally minimizing entropy on the labeled training
set is unnecessary when we are already maximizing the likelihood of the given labels with highly
expressive models. Now, to infer θ given the observed datasets D and U , the simplified log-density is

log p(θ|D,U) = logµ(θ) +

n∑
i=1

log p(yi|xi, θ)−
α̃

m

m∑
j=1

H(Y |x̃j , θ). (6)

Computing the maximum-a-posteriori (MAP) solution of this model corresponds to simply optimizing
model parameters θ that on the supervised objective on the labeled training set in addition a minimum
entropy regularizer on the unlabeled input. However, we should not necessarily expect the MAP
solution to provide reasonable uncertainty estimates, as the learned model is being encouraged to make
confident predictions on the test inputs, and so any single model will likely provide overconfident
predictions. Marginalizing the predictions over the posterior distribution over parameters is thus
essential to recovering meaningful uncertainty estimates, as the different models, though each being
individually confident, can still express uncertainty through their combined predictions when the
models predict different labels.

Approximate inference for test-time adaptation. We now discuss how to perform inference in the
above model in a way suitable for test-time adaptation, where we adapt to the test data without any
further access to the original training set. To enable this, we propose to learn an approximate posterior

q(θ) ≈ p(θ|D) = log µ(θ) +

n∑
i=1

log p(yi|xi, θ) (7)

during training time, and then use this approximate training set posterior q(θ) in place of the training
set when performing inference on the unlabeled test data. This gives us an approximate posterior
with log density

log p(θ|D,U) = log q(θ)− α̃

m

m∑
j=1

H(Y |x̃j , θ) (8)

4

Algorithm 1 Bayesian Adaptation for Covariate Shift (BACS)

Input: Ensemble size k, Entropy weight α̃, Training Data: x1:n, y1:n, Test Data: x̃1:m

Output: Predictive distributions p(y|x̃j) for each test input x̃j
Training: For each i ∈ (1, . . . , k) compute an approximate density qi(θ) ≈ p(θ|x1:n, y1:n)
Adaptation:
for all ensemble members i ∈ (1, . . . , k) do

Compute adapted parameters θ̂i = argmaxθ
α̃
m

∑m
j=1−H(Y |x̃j , θ) + log qi(θ)

end for
For each test input x̃j , marginalize over ensemble p(y|x̃j) = 1

k

∑k
i=1 p(y|x̃j , θ̂i).

Unlike the full training set, the learned approximate posterior density q(θ), which can be as simple
as a diagonal Gaussian distribution, can be much easier to store and optimize over for test-time
adaptation, and the training time procedure would be identical to any approximate Bayesian method
that learns a posterior density. In principle, we can now instantiate test-time adaptation by running
any approximate Bayesian inference algorithm, such as variational inference or MCMC, to sample θ’s
from the density in Equation 8, and average predictions from these samples to compute the marginal
probabilities for each desired test label.

Practical instantiation with ensembles. As previously mentioned, marginalizing over different
models that provide diverse labelings of the test set is crucial to providing uncertainty estimates
after adaptation via entropy minimization. We thus propose to use an ensembling approach [Laksh-
minarayanan et al., 2016] as a practical method to adapt to the test distribution while maintaining
diverse labelings. Deep ensembles simply train multiple models from different random initializations,
each independently optimizing the target likelihoods, and averages together the models’ predicted
probabilities at test time. They are able to provide effective approximations to Bayesian marginaliza-
tion due to their ability to aggregate models across highly distinct modes of the loss landscape [Fort
et al., 2019, Wilson and Izmailov, 2020].

Our method, BACS, summarized in Algorithm 1, trains an ensemble of k different models on the
training set, each with their approximate posterior qi(θ) that captures the local loss landscape around
each mode in the ensemble. Then at test time, we independently optimize each of the k models by
minimizing Equation 8 (using the corresponding qi(θ) for each ensemble member), and then average
the predictions across all adapted ensemble members.

3 Related Work

Entropy minimization. Entropy minimization has been used as a self-supervised objective in many
settings, including domain adaptation [Saito et al., 2019, Carlucci et al., 2017], semisupervised
learning [Grandvalet and Bengio, 2004, Berthelot et al., 2019, Lee and Lee, 2013], and few-shot
learning [Dhillon et al., 2015]. Grandvalet and Bengio [2004] proposed a probabilistic model
incorporating entropy minimization for semisupervised learning (without distribution shift), but only
use the probabilistic model to motivate entropy minimization as a regularizer for a MAP solution
in order improve accuracy, which does not capture any epistemic uncertainty. In contrast, we are
concerned with test-time adaptation under distribution shift, which requires introducing a model
of separate training-time and test-time input distributions, and with providing reliable epistemic
uncertainty estimates, which we obtain via Bayesian marginalization.We also devise an approximate
inference scheme to allow for efficient adaptation without access to the training data.

Test time entropy minimization (TENT) [Wang et al., 2020a] uses entropy minimization as the sole
objective when adapting to the test data (though without an explicit Bayesian interpretation) and
adapts without any further access to the training data, but only aims to improve accuracy and not
uncertainty estimation. Similarly to Grandvalet and Bengio [2004], TENT only learns a single
model using entropy minimization, whereas we show that explicitly performing Bayesian inference
and marginalizing over multiple models is crucial for effective uncertainty estimation. TENT also
heuristically proposes to only adapt specific parameters in the networks at test time for stability
reasons, while our usage of a learned posterior density to account for the training set allows us to
adapt the whole network, improving performance in some settings and eliminating the need for the
heuristic design decision.

5

Domain Adaptation. Unsupervised domain adaptation [Ganin et al., 2015, Wang and Deng, 2018]
tackles a similar problem of learning classifiers in the presence of distribution shift between our
train and test distributions. Most unsupervised domain adaptation works assume access to both the
labeled training data as well as unlabeled test data at the same time, while we restrict adaptation to
occur without any further access to the training data. One recent line of work, known as source-free
domain adaptation [Liang et al., 2020, Kundu et al., 2020, Li et al., 2020] also restricts the adaptation
procedure to not have access to the training data together with the unlabeled data from the test
distribution. In contrast to these algorithms, we are concerned with using adaptation to improve both
uncertainty estimation as well as accuracy, and our algorithm is additionally amenable to an online
setting, where prediction and adaptation occur simultaneously without needing to see the entirety of
the test inputs.

Uncertainty estimation under distribution shift (no adaptation). Various methods have been
proposed for uncertainty estimation with distribution shift that do not incorporate test time adaptation.
Ovadia et al. [2019] measured the calibration of various models under various distribution shift
without any adaptation, finding that deep ensembles [Lakshminarayanan et al., 2016] and some other
Bayesian methods that marginalize over multiple models perform well compared to methods that try
to recalibrate predictions using only the source data. Beyond ensembles, other Bayesian techniques
[Dusenberry et al., 2020, Maddox et al., 2019] have also demonstrated improved uncertainty esti-
mation under distribution shift compared to standard models. Various other techniques have been
found to improving calibration under distribution shift through significant changes to the training
procedure, for example utilizing different loss functions [Padhy et al., 2020, Tomani and Buettner,
2020], extensive data-augmentations [Hendrycks et al., 2019], or extra pre-training [Xie et al., 2019b].

Uncertainty estimation with both train and test distributions. We now discuss prior work that
considers uncertainty estimation assuming access to both train and test data simultaneously. Recent
work studying calibration for domain adaptation algorithms [Pampari and Ermon, 2020, Park et al.,
2020, Wang et al., 2020b] found that predictions are poorly calibrated in the target domain even if
the models were well-calibrated on the labeled source domain. These works all propose methods
based on importance weighting between the target domain and the labeled source domain in order to
recalibrate target domain predictions using only labels in the source domain. They are not directly
applicable in our test-time adaptation setting, since they require estimates of density ratios between
target and source distributions, which we cannot obtain without either a generative model of training
inputs, or access to the training data during adaptation. Our method also differs in how we approach
uncertainty estimation. Instead of using extra labeled data and post-hoc recalibration techniques for
classifiers, our method uses Bayesian inference to provide meaningful uncertainty estimates.

For uncertainty estimation in regression problems, Chan et al. [2020] also propose to adapt Bayesian
posteriors to unlabeled data by optimizing the predictive variance of Bayesian neural network at an
input to serve as a binary classifier of whether the point is in-distribution or not. thus encouraging
higher variance for out-of-distribution points. Their method is again not applicable in our test-time
setting because they require access to both the train and test data at once.

Uncertainty estimation with test time adaptation. Nado et al. [2020] evaluate various techniques
for uncertainty estimation in conjunction with adapting batch-norm statistics to the shifted test domain,
and again find that deep ensembles provide well-calibrated prediction in addition to improved accuracy.
While our method similarly utilizes ensembles and adapts batch norm statistics, and we show that
additionally adapting via entropy minimization at test time further improves predictive accuracy
without sacrificing calibration.

Bayesian semi-supervised methods: Seeger [2000] proposed a probablistic model for incorporating
unlabeled data in semi-supervised learning to motivate regularization for the classifier that depends
on the input distribution in MAP inference. However, they do not tackle uncertainty estimation and
their model does not account for any distribution shift like ours does. Gordon and Hernández-Lobato
[2020] perform Bayesian semi-supervised learning combining both generative and discriminative
models. In contrast, our method does not need to learn a generative model of the data, and explicitly
tackles the problem of distribution shift instead of assuming the labeled and unlabeled data come
from the same distribution. Another line of work [Ng et al., 2018, Ma et al., 2019, Walker and
Glocker, 2019, Liu et al., 2020] propose Bayesian methods for semisupervised learning specialized
graph-structured data.

6

CIFAR10-C CIFAR100-C
Method Acc NLL Brier ECE Acc NLL Brier ECE
Vanilla 59.90 1.892 0.6216 0.2489 35.72 4.271 0.9797 0.3883

BN Adapt 82.36 0.8636 0.2909 0.1204 57.58 2.294 0.6401 0.2377
TENT (1 epoch) 84.29 0.7862 0.2629 0.1119 62.46 2.047 0.5828 0.2280
TENT (5 epoch) 85.16 0.8483 0.2603 0.1191 63.46 2.199 0.5987 0.2592

BACS (MAP) (1 epoch) 84.82 0.7808 0.2585 0.1119 63.05 2.090 0.5908 0.2411
BACS (MAP) (5 epochs) 85.20 0.8075 0.2575 0.1144 63.53 2.175 0.6009 0.2551

Vanilla Ensemble 61.72 1.535 0.5431 0.1684 38.66 3.343 0.8439 0.2462
Ensemble BN Adapt 85.99 0.4722 0.2043 0.03229 64.22 1.464 0.4793 0.0515

Ensemble TENT (1 epoch) 87.28 0.4351 0.1867 0.02868 67.83 1.318 0.4392 0.05909
BACS (ours) (1 epoch) 87.77 0.4260 0.1809 0.02986 68.33 1.324 0.4360 0.06519

Table 1: CIFAR-10/100 Corrupted results at the highest level of corruption, averaged over all
corruption types. With one epoch of adaptation, BACS consistently outperforms all baselines in
terms of accuracy, NLL and Brier score, and can further improve with more training. In terms of
ECE, all ensembled methods with adaptation performs similarly, and substantially outperforming the
non-adaptive or non-ensembled baselines.

4 Experiments

In our experiments, we aim to analyze how our test-time adaptation procedure in BACS performs
when adapting to various types of distribution shift, in comparison to prior methods, in terms of both
the accuracy of the adapted model, and its ability to estimate uncertainty and avoid over-confident
but incorrect predictions. We evaluate our method and prior techniques across a range of distribution
shifts, including corrupted datasets, natural distribution shifts, and domain adaptation settings.

Architectures and implementation. For our ImageNet [Deng et al., 2009] experiments, we use the
ResNet50v2 [He et al., 2016b] architecture, while for other datasets, we use ResNet26 [He et al.,
2016a]. For all methods utilizing ensembles, we use ensembles of 10 models, and report results
averaged over the same 10 seeds for the non-ensembled methods. While adapting our networks using
the entropy loss, we also allow the batch normalization statistics to adapt to the target distribution. To
obtain approximate posteriors for each ensemble member, we use SWAG-D [Maddox et al., 2019],
which estimates a Gaussian posterior with diagonal covariance from a trajectory of SGD and requires
minimal changes to standard training procedures. During adaptation, we initialize each model from
the corresponding posterior mean, corresponding to the solution obtained by Stochastic Weight
Averaging [Izmailov et al., 2018]. For methods that optimize on the test distribution, we report results
after one epoch of adaptation unless otherwise stated.

Comparisons. We compare our method against two state-of-the-art prior methods for test-time
adaptation: TENT [Wang et al., 2020a], which simply minimizes entropy on the test data with a
single model, without the additional posterior term accounting for the training set that we use in
BACS, and ensembles adapted using the batch norm statistics of the shifted test set, as discussed by
Nado et al. [2020]. We also compare to deep ensembles [Lakshminarayanan et al., 2016] without any
adaptation as a baseline for uncertainty estimation under distribution shift, as well as ensembles of
models each adapted using TENT.

Metrics. In addition to accuracy, we also evaluate uncertainty estimation using the negative log
likelihood (NLL), Brier score [Brier, 1950] and expected calibration error (ECE) [Naeini et al., 2015]
metrics. NLL and Brier score are both proper scoring rules [Gneiting and Raftery, 2007], and are
minimized if and only if the predicted distribution is identical to the true distribution. ECE measures
calibration by binning predictions according to the predicted confidence and averaging the absolute
differences between the average confidence and empirical accuracy within each bin.

Corrupted images. We first evaluate our method on CIFAR-10-C, CIFAR-100-C, and ImageNet-C
[Hendrycks and Dietterich, 2019], where distribution-shifted datasets are generated by applying
different image corruptions at different intensities to the test sets of CIFAR10, CIFAR100 [Krizhevsky,
2012], and ImageNet [Deng et al., 2009] respectively. In Table 1, we show comparisons at the most
severe level of corruption for CIFAR10-C and CIFAR100-C. With just a single epoch of adaptation
at test time, both our method BACS and TENT ensembles substantially outperform other baselines
in accuracy, NLL, and Brier score, with BACS improving slightly over TENT ensembles, showing
that combining test-time entropy minimization with Bayesian marginalization can lead to strong
improvements over either alone. We also note that simply adapting for more epochs with entropy

7

Figure 4: ImageNet-C Results by Corruption. For each corruption type, we show the results
for each method averaged over all levels of corruption. BACS improves over baselines for every
corruption type except for contrast, where BACS has close to 0 accuracy at the most severe level of
corruption.
minimization (as seen in TENT (5 epochs)), can further improve accuracy of a single model, but
can actually lead to worse uncertainty estimates as measured by NLL or ECE as predictions become
excessively overconfident. In contrast, combining ensembling with entropy minimization consistently
improves accuracy much more than simply adapting a single model for more epochs, while also
substantially improving uncertainty estimates.

Method Acc NLL Brier ECE
Vanilla 41.79 3.127 0.7152 0.06439

BN Adapt 51.54 2.676 0.6564 0.1709
TENT 57.06 2.035 0.5536 0.0342

BACS (MAP) 58.06 2.036 0.5528 0.04270
Vanilla ensemble 46.03 2.788 0.6670 0.07256

Ensemble BN Adapt 58.30 2.428 0.6333 0.2594
Ensemble TENT 62.40 1.788 0.5131 0.1010

BACS (ours) 63.04 1.726 0.4962 0.08308
Table 2: ImageNet-C results averaged over all corruption
types and levels. BACS outperforms all baselines in accuracy,
NLL, and Brier scores.

In Table 2, we show comparisons on
ImageNet-C averaged over all cor-
ruption levels and corruption types.
BACS is able to outperform all prior
methods in terms of accuracy, NLL,
and Brier score. We note that en-
sembling and batch norm adaptation
actually worsen calibration, as mea-
sured by ECE, compared to the sin-
gle model or non-adapted baselines
respectively, despite each technique
providing substantial improvements
on all other metrics. We see that an ablation of our method that only uses a single model, BACS
(MAP), outperforms the other non-ensemble methods in accuracy, NLL, and Brier score.

We also show results for accuracy and Brier score at each level of corruption in Figure 4. BACS (ours)
consistently outperforms baselines at each level of corruption (with one exception being accuracy at
the highest level of corruption, where a single corruption with much lower accuracy drags down the
mean to be slightly below to that of Ensemble TENT).

ImageNet-R. In Table 3, we further evaluate robustness using ImageNet-R [Hendrycks et al., 2021],
which consists of images that are abstract renditions of 200 of the ImageNet classes. Similar to our
Imagenet-C results, we find that BACS performs the best across accuracy, NLL, and Brier score,
while being slightly outperformed in ECE by vanilla ensembles.

8

Method Acc NLL Brier ECE
Vanilla 36.40 3.288 0.7602 0.05667

BN Adapt 38.05 3.236 0.7646 0.09744
TENT 41.13 2.967 0.7167 0.02666

BACS (MAP) 43.55 2.909 0.7183 0.1074
Vanilla ensemble 40.38 3.011 0.7180 0.02339

Ensemble BN Adapt 42.82 3.019 0.7408 0.1696
Ensemble TENT 45.75 2.726 0.6815 0.1025

BACS (ours) 47.31 2.565 0.6625 0.04270
Table 3: ImageNet-R results. BACS outperforms all base-
lines in accuracy, NLL, and Brier scores.

Impact of posterior term. In this
section, we discuss the effects of us-
ing the training set posterior density in
our objective (Equation 8) when adapt-
ing at test time. Intuitively, the train-
ing posterior density ensures that our
adapted classifiers, while minimizing
entropy on the target distribution, re-
main constrained to still perform well
on the training set and stay near the
initial solution found during training.
We empirically find that the posterior term can be important for preventing entropy minimization from
finding degenerate solutions: adapting the whole network on several ImageNet-C corruptions without
the posterior term can lead to poor models that achieve close to 0 accuracy on many corruptions.

While TENT, which adapts via entropy minimization without any term accounting for the training
data, uses an ad-hoc solution that restricts adaptation to only the learnable scale and shift parameters
in the batch norm layers, our use of the training set posterior density is motivated directly from
our proposed probabilistic model and does not require any heuristic choices over which parameters
should or should not be adapted. In our ImageNet experiments (Tables 2 and 3), we see that an
ablation of our method without ensembles, corresponding to the MAP solution in our proposed model,
outperforms TENT. The difference between our ablation BACS (MAP) and TENT is precisely that
BACS (MAP) adapts the whole network, but with an additional regularization term, while TENT
adapts only a small part of the network without any regularizer.

However, we find the approximate posterior density can also be limiting in certain situations, which
we can observe in experiments transferring from SVHN to MNIST (Appendix B.4). Here, there
is a large discrepancy between the training and test domains, and we find that adaptation with the
posterior is unable to adjust the parameters enough and underperforms compared to an ablation of
our method that simply removes the posterior term while still adapting the whole network.

5 Discussion

We presented Bayesian Adaptation for Covariate Shift (BACS), a Bayesian approach for utilizing
test-time adaptation to obtain both improved accuracy and well-calibrated uncertainty estimates
when faced with distribution shift. We have shown that adapting via entropy minimization without
Bayesian marginalization can lead to overconfident uncertainty estimates, while our principled usage
of an approximate training posterior during adaptation can outperform previous heuristic methods.
These observation support our hypothesis that framing entropy minimization within a well-defined
Bayesian model can lead to significantly more effective test-time adaptation techniques. Our method
is straightforward to implement, requires minimal changes to standard training procedures, and
improves both accuracy and uncertainty estimation for a variety of distribution shifts in classification.

Limitations and future work. One limitation of our approach is that it requires effective techniques
for estimating the parameter posterior from the training set. While the study of such methods, and
Bayesian neural networks more broadly, is an active area of research, it remains a significant practical
challenge. It is likely that the simple Gaussian posteriors we employ provide a poor estimation of the
true posterior and can overly constrain the network during adaptation. Therefore, a relevant direction
for future work is to integrate BACS with more sophisticated Bayesian neural network methods.

Another promising direction for future work is to explore other objectives that have had success
in semi-supervised learning settings, such as consistency based losses [Sajjadi et al., 2016, Miyato
et al., 2017, Xie et al., 2019a, Sohn et al., 2020] or information maximization [Gomes et al., 2010],
which can be straightforwardly incorporated into our method as suitable priors on the relationship
between the data distribution and classifier. More broadly, we hope that our work will spur further
research into test-time adaptation techniques based on well-defined Bayesian models that describe
how unlabeled test data should inform our posterior estimates of the model parameters, even in the
presence of distributional shift.

9

Acknowledgements

We thank the anonymous reviewers for their extremely valuable feedback and discussions, which
have greatly improved our paper. This research was supported by the DARPA Assured Autonomy
program and DARPA LwLL, with compute support from Google Cloud and the Tensorflow Research
Cloud (TFRC) program.

References
D. Berthelot, G. Research, N. Carlini, I. Goodfellow, A. Oliver, N. Papernot, and C. Raffel. MixMatch:

A Holistic Approach to Semi-Supervised Learning. Technical report, 2019. URL https://
github.com/google-research/mixmatch.

G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78
(1), 1 1950. ISSN 0027-0644. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

F. M. Carlucci, L. Porzi, B. Caputo, E. Ricci, and S. R. Bulò. AutoDIAL: Automatic DomaIn
Alignment Layers. Proceedings of the IEEE International Conference on Computer Vision,
2017-October:5077–5085, 4 2017. URL http://arxiv.org/abs/1704.08082.

A. J. Chan, A. M. Alaa, Z. Qian, and M. Van Der Schaar. Unlabelled Data Improves Bayesian Uncer-
tainty Calibration under Covariate Shift. Technical report, 11 2020. URL http://proceedings.
mlr.press/v119/chan20a.html.

A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 215–223, 2011.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255, 2009.

G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto. A Baseline for Few-Shot Image
Classification. In International Conference on Learning Representations. arXiv, 9 2015. URL
http://arxiv.org/abs/1909.02729.

M. W. Dusenberry, G. Jerfel, Y. Wen, Y.-a. Ma, J. Snoek, K. Heller, B. Lakshminarayanan, and
D. Tran. Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors. arXiv preprint
arXiv:2005.07186, 2020.

N. Ford, J. Gilmer, N. Carlini, and D. Cubuk. Adversarial Examples Are a Natural Consequence of
Test Error in Noise. 36th International Conference on Machine Learning, ICML 2019, 2019-June:
4115–4139, 1 2019. URL https://arxiv.org/abs/1901.10513v1.

S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective. arXiv,
12 2019. URL http://arxiv.org/abs/1912.02757.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky. Domain-Adversarial Training of Neural Networks. Advances in Computer Vision
and Pattern Recognition, 17(9783319583464):189–209, 5 2015. URL http://arxiv.org/abs/
1505.07818.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Jour-
nal of the American Statistical Association, 102(477):359–378, 3 2007. ISSN 01621459. doi:
10.1198/016214506000001437. URL https://www.tandfonline.com/doi/abs/10.1198/
016214506000001437.

R. Gomes, A. Krause, and P. Perona. Discriminative Clustering by Regularized Information Maxi-
mization. Technical report, 2010. URL http://www.cs.ubc.ca/.

J. Gordon and J. M. Hernández-Lobato. Combining deep generative and discriminative models for
Bayesian semi-supervised learning. Pattern Recognition, 100:107156, 4 2020. ISSN 00313203.
doi: 10.1016/j.patcog.2019.107156.

10

https://github.com/google-research/mixmatch
https://github.com/google-research/mixmatch
http://arxiv.org/abs/1704.08082
http://proceedings.mlr.press/v119/chan20a.html
http://proceedings.mlr.press/v119/chan20a.html
http://arxiv.org/abs/1909.02729
https://arxiv.org/abs/1901.10513v1
http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1505.07818
http://arxiv.org/abs/1505.07818
https://www.tandfonline.com/doi/abs/10.1198/016214506000001437
https://www.tandfonline.com/doi/abs/10.1198/016214506000001437
http://www.cs.ubc.ca/

Y. Grandvalet and Y. Bengio. Semi-supervised Learning by Entropy Minimization. In Advances in
Neural Information Processing Systems, volume 17, 2004.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume
2016-December, pages 770–778. IEEE Computer Society, 12 2016a. ISBN 9781467388504. doi:
10.1109/CVPR.2016.90. URL http://image-net.org/challenges/LSVRC/2015/.

K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV, 2016b.
URL https://arxiv.org/abs/1603.05027v3.

D. Hendrycks and T. Dietterich. Benchmarking Neural Network Robustness to Common Corruptions
and Perturbations. 7th International Conference on Learning Representations, ICLR 2019, 3 2019.
URL http://arxiv.org/abs/1903.12261.

D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan. AugMix: A
Simple Data Processing Method to Improve Robustness and Uncertainty. arXiv, 12 2019. URL
http://arxiv.org/abs/1912.02781.

D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli,
M. Guo, D. Song, J. Steinhardt, and J. Gilmer. The Many Faces of Robustness: A Critical
Analysis of Out-of-Distribution Generalization. ICCV, 2021. URL https://arxiv.org/abs/
2006.16241v3.

P. Izmailov, D. Podoprikhin, T. Garipov, D. P. Vetrov, and A. G. Wilson. Averaging Weights Leads to
Wider Optima and Better Generalization. In UAI, 2018.

A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. University of Toronto, 6
2012.

J. N. Kundu, N. Venkat, R. M V, and R. V. Babu. Universal Source-Free Domain Adaptation. Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 4543–4552, 4 2020. URL https://arxiv.org/abs/2004.04393v1.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles. Advances in Neural Information Processing Systems, 2017-
December:6403–6414, 12 2016. URL http://arxiv.org/abs/1612.01474.

Y. LeCun, C. Cortes, and C. J. Burges. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

D.-h. Lee and D.-h. Lee. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method
for Deep Neural Networks. ICML Workshop on challenges in representation learning, 2013. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.664.3543.

R. Li, Q. Jiao, W. Cao, H. S. Wong, and S. Wu. Model Adaptation: Unsupervised Domain Adaptation
without Source Data. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 9638–9647, 2020. doi: 10.1109/CVPR42600.2020.00966.

J. Liang, D. Hu, and J. Feng. Do We Really Need to Access the Source Data? Source Hypothesis
Transfer for Unsupervised Domain Adaptation. arXiv, 2 2020. URL http://arxiv.org/abs/
2002.08546.

Z.-Y. Liu, S.-Y. Li, S. Chen, Y. Hu, and S.-J. Huang. Uncertainty Aware Graph Gaussian Process for
Semi-Supervised Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):
4957–4964, 4 2020. ISSN 2159-5399. doi: 10.1609/aaai.v34i04.5934. URL www.aaai.org.

J. Ma, W. Tang, J. Zhu, and Q. Mei. A Flexible Generative Framework for Graph-based Semi-
supervised Learning. arXiv, 5 2019. URL http://arxiv.org/abs/1905.10769.

W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. A simple baseline for
bayesian uncertainty in deep learning. In Advances in Neural Information Processing Systems,
pages 13132–13143, 2019.

11

http://image-net.org/challenges/LSVRC/2015/
https://arxiv.org/abs/1603.05027v3
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1912.02781
https://arxiv.org/abs/2006.16241v3
https://arxiv.org/abs/2006.16241v3
https://arxiv.org/abs/2004.04393v1
http://arxiv.org/abs/1612.01474
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.664.3543
http://arxiv.org/abs/2002.08546
http://arxiv.org/abs/2002.08546
www.aaai.org
http://arxiv.org/abs/1905.10769

T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual Adversarial Training: A Regularization
Method for Supervised and Semi-Supervised Learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 41(8):1979–1993, 4 2017. URL http://arxiv.org/abs/1704.03976.

Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and J. Snoek. Evaluating
Prediction-Time Batch Normalization for Robustness under Covariate Shift. arXiv, 6 2020. URL
http://arxiv.org/abs/2006.10963.

M. P. Naeini, G. Cooper, and M. Hauskrecht. Obtaining well calibrated probabilities using bayesian
binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading Digits in Natural Images
with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

Y. C. Ng, N. Colombo, and R. Silva. Bayesian Semi-supervised Learning with Graph Gaussian
Processes. Advances in Neural Information Processing Systems, 2018-December:1683–1694, 9
2018. URL http://arxiv.org/abs/1809.04379.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. V. Dillon, B. Lakshminarayanan,
and J. Snoek. Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under
Dataset Shift. arXiv, 6 2019. URL http://arxiv.org/abs/1906.02530.

S. Padhy, Z. Nado, J. Ren, J. Liu, J. Snoek, and B. Lakshminarayanan. Revisiting One-vs-All
Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks. arXiv,
7 2020. URL http://arxiv.org/abs/2007.05134.

A. Pampari and S. Ermon. Unsupervised Calibration under Covariate Shift. arXiv, 6 2020. URL
http://arxiv.org/abs/2006.16405.

S. Park, O. Bastani, J. Weimer, and I. Lee. Calibrated Prediction with Covariate Shift via Unsupervised
Domain Adaptation. arXiv, 2 2020. URL http://arxiv.org/abs/2003.00343.

K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko. Semi-supervised Domain Adaptation
via Minimax Entropy. Proceedings of the IEEE International Conference on Computer Vision,
2019-October:8049–8057, 4 2019. URL http://arxiv.org/abs/1904.06487.

M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization With Stochastic Transformations and
Perturbations for Deep Semi-Supervised Learning. Advances in Neural Information Processing
Systems, pages 1171–1179, 6 2016. URL http://arxiv.org/abs/1606.04586.

M. Seeger. Input-dependent Regularization of Conditional Density Models. Technical report, 2000.
URL https://infoscience.epfl.ch/record/175482.

K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang, and
C. Raffel. FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence.
arXiv, 1 2020. URL http://arxiv.org/abs/2001.07685.

S. Sun, G. Zhang, J. Shi, and R. Grosse. Functional Variational Bayesian Neural Networks. 3 2019a.
URL http://arxiv.org/abs/1903.05779.

Y. Sun, X. Wang, Z. Liu, J. Miller, A. A. Efros, and M. Hardt. Test-Time Training with Self-
Supervision for Generalization under Distribution Shifts. 9 2019b. URL http://arxiv.org/
abs/1909.13231.

R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt. Measuring Robustness to Natural
Distribution Shifts in Image Classification. arXiv, 7 2020. URL http://arxiv.org/abs/2007.
00644.

C. Tomani and F. Buettner. Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration. 12 2020. URL http://arxiv.org/abs/2012.10923.

I. Walker and B. Glocker. Graph Convolutional Gaussian Processes. In International Conference on
Machine Learning, 5 2019. URL http://arxiv.org/abs/1905.05739.

12

http://arxiv.org/abs/1704.03976
http://arxiv.org/abs/2006.10963
http://arxiv.org/abs/1809.04379
http://arxiv.org/abs/1906.02530
http://arxiv.org/abs/2007.05134
http://arxiv.org/abs/2006.16405
http://arxiv.org/abs/2003.00343
http://arxiv.org/abs/1904.06487
http://arxiv.org/abs/1606.04586
https://infoscience.epfl.ch/record/175482
http://arxiv.org/abs/2001.07685
http://arxiv.org/abs/1903.05779
http://arxiv.org/abs/1909.13231
http://arxiv.org/abs/1909.13231
http://arxiv.org/abs/2007.00644
http://arxiv.org/abs/2007.00644
http://arxiv.org/abs/2012.10923
http://arxiv.org/abs/1905.05739

D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell. Tent: Fully Test-time Adaptation by
Entropy Minimization. arXiv, 6 2020a. URL http://arxiv.org/abs/2006.10726.

M. Wang and W. Deng. Deep Visual Domain Adaptation: A Survey. Neurocomputing, 312:135–153,
2 2018. doi: 10.1016/j.neucom.2018.05.083. URL https://arxiv.org/abs/1802.03601v4.

X. Wang, M. Long, J. Wang, and M. I. Jordan. Transferable Calibration with Lower Bias and Variance
in Domain Adaptation. arXiv, 7 2020b. URL http://arxiv.org/abs/2007.08259.

A. G. Wilson and P. Izmailov. Bayesian Deep Learning and a Probabilistic Perspective of Generaliza-
tion. arXiv, 2 2020. URL http://arxiv.org/abs/2002.08791.

Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le. Unsupervised Data Augmentation for Consistency
Training. arXiv, 4 2019a. URL http://arxiv.org/abs/1904.12848.

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-training with Noisy Student improves ImageNet
classification. Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 11 2019b. URL http://arxiv.org/abs/1911.
04252.

13

http://arxiv.org/abs/2006.10726
https://arxiv.org/abs/1802.03601v4
http://arxiv.org/abs/2007.08259
http://arxiv.org/abs/2002.08791
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] Our

contributions are in improving algorithms for robustness and adaptation, rather than
any specific application. We expect the broader impacts of our work to be similar to
those of prior works that are concerned with robustness and adaptation, and do not see
any negative societal impacts specific to our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Included in
supplemental materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See appendix A.1

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See expanded results in appendix B with spread across
different corruptions.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix A.1

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] All datasets are cited

in the text of the experiments section.
(b) Did you mention the license of the assets? [Yes] See appendix A.3.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We use only standard, widely used datasets in
our experiments.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Experimental Details

A.1 Training Details

Model Training: Following TENT [Wang et al., 2020a], we use ResNet26 models [He et al., 2016a]
for all experiments besides the ImageNet experiments. For ImageNet, we use ResNet50v2 [He et al.,
2016b]. All methods utilizing ensembles use 10 different models in the ensemble.

For all ResNet26 experiments, we train all models and obtain posteriors using SWAG-D [Maddox
et al., 2019] and use the same hyperparameters as provided by the authors for training a WideRes-
Net28x10. For methods that do not include the posterior density term, we simply use the mean of the
learned SWAG-D posterior, which simply corresponds to the solution obtained by Stochastic Weight
Averaging (SWA) [Izmailov et al., 2018]. We train for 300 epochs on each training dataset, starting
to collect iterates for SWA/SWAG starting from epoch 160. We use SGD with momentum for all
experiments, with a learning rate schedule given by 0.1 for the first 150 epochs, decaying linearly
down to 0.01 until epoch 270, then remaining at 0.01 for the remaining 30 epochs.

For ResNet50v2 experiments on ImageNet, we first train for 90 epochs using the example train-
ing script at https://github.com/deepmind/dm-haiku/tree/master/examples/imagenet.
We then train for an additional 10 epochs with a constant learning rate of 0.0001 to collect iterates for
SWAG, collecting 4 iterates per epoch.

Adaptation Details: For test time adaptation on the small scale experiments with ResNet26, we use
the same hyperparameters described in TENT [Wang et al., 2020a]. using learning rate 0.001 and
batch size 128, using SGD with momentum. For the ImageNet experiments with ResNet50v2, we
tune the learning rate for accuracy using the validation corruptions in ImageNet-C, and keep the batch
size fixed at 64. For TENT, we found a learning rate 0.001 to perform the best, while for our method
BACS, we found a smaller learning rate of 0.0001 to perform the best.

During adaptation with BACS, according to equation 8, we would optimize each model with the
objective

max
θ

log qi(θ)−
α̃

m

m∑
j=1

−H(Y |x̃j , θ). (9)

where qi(θ) is a diagonal Gaussian posterior density obtained by SWAG-D, and α̃ is a hyperparameter
controlling how much to weight the entropy minimization objective against the posterior term. We
initialize from the mean of the SWAG posterior before adaptation. In practice, we also rewrite the
objective as

max
θ
β log qi(θ)−

1

m

m∑
j=1

−H(Y |x̃j , θ), (10)

where β = 1
α̃ , and use minibatches of test inputs for the entropy minimization term. For all small-

experiments with ResNet26, we use β = 0.0001. For the ImageNet experiments, we jointly tuned β
with the learning rate using the extra validation corruptions and selected β = 0.0003.

Compute Resources: The initial training for each ResNet50 model on ImageNet used a Google
Cloud TPU v3 instance with 8 cores, each taking approximately 20 hours to train. In total, as we
needed to train 10 models for the ensemble, this utilized 200 hours of compute with TPU v3 instances
with 8 cores each.

All other model training and all the adaptation were run using local GPU servers with Nvidia Titan
RTX GPUs. We estimate model training time to be around 200 hours in total for all ResNet26 models
(10 models for each of CIFAR10, CIFAR100, and SVHN and an estimated 6 hour training time with
on one GPU). For adaptation and evaluation, we estimate the total time needed for the ImageNet-
Corrupted experiments, as these would take up the bulk of the time spent on adaptation. For each of
the 15 corruption types and 5 corruption levels, we estimate the total time it takes to adapt each model
using entropy minimization for one epoch, evaluate the model without any adaptation, evaluate the
model with adapted batchnorm statistics, and evaluate each model after entropy minimization to be
10 minutes. With 10 models for each corruption, this totals 125 hours of GPU time to compile the
ImageNet Corrupted results, which take up the bulk of the time needed for adaptation and evaluation
in our experiments.

15

https://github.com/deepmind/dm-haiku/tree/master/examples/imagenet

CIFAR10-C CIFAR100-C
Method Acc NLL Brier ECE Acc NLL Brier ECE
TENT 84.52 0.7248 0.2289 0.09914 64.37 3.265 0.6111 0.2759

BACS (ours) 87.43 0.4242 0.1845 0.02882 67.28 1.323 0.4435 0.0500

Table 4: CIFAR-10/100 Corrupted Online results at the highest level of corruption, averaged over
all corruption types at severity level 5 (the most severe level). While online adaptation performs
slightly worse than offline adaptation, our method BACS still provides substantial improvements over
TENT, ensembles with BN adaptation and other baselines.

A.2 Metrics

We compute Brier score for a probability vector p(y|xn) and true label yn as∑
y∈Y

(p(y|xn)− δ(y − yn))2. (11)

To compute expected calibration error (ECE), we use 20 bins. We order all predictions by confidence
and aggregate them into 20 bins, each with the same number of data points, instead of using fixed
windows for the buckets. Given the bins Bi, we then compute ECE as

ECE =
1

20

20∑
i=1

|acc(Bi)− conf(Bi)|, (12)

where acc and conf compute the average accuracies and confidences within the predictions in each
bucket.

A.3 Dataset details

Models were trained on CIFAR10/100 [Krizhevsky, 2012], ImageNet [Deng et al., 2009],
CIFAR10/100-Corrupted and Imagenet-Corrupted [Hendrycks and Dietterich, 2019], STL10 [Coates
et al., 2011], SVHN [Netzer et al., 2011], MNIST [LeCun et al., 2010].

For the corrupted datasets, we report results averaged over all 15 standard corruption types in
[Hendrycks and Dietterich, 2019], using the 4 extra corruption types for validation.

CIFAR10-Corrupted, STL10, SVHN, and MNIST were downloaded using Tensorflow Datasets. The
Imagenet training data was directly downloaded from www.image-net.org), while CIFAR-100-
Corrupted and Imagenet-Corrupted were downloaded from the author-released images at zenodo.
org/record/3555552 and https://zenodo.org/record/2235448 respectively.

For Imagenet-C, we initially ran experiments and performed hyperparameter tuning using the datasets
generated through Tensorflow Datasets, which recomputed the the corrupted images instead of simply
downloading the images released by the original authors. However, performance on the TFDS version
of ImageNet-C (see appendix B.3) is not directly comparable to that using the official released dataset,
with overall results being substantially stronger with the TFDS version. This discrepancy is also
noted in Ford et al. [2019], who postulated the performance differences are due to the extra JPEG
compression used for the officially released dataset making the tasks more difficult.

We were unable to find licensing information for CIFAR10, CIFAR100 or STL10. Imagenet is
released under a custom license stipulating non-commercial research and educational use only (see
www.image-net.org/download). SVHN is released with a note stating it should be used for non-
commercial uses only. MNIST is released under the CC BY-SA 3.0 license. CIFAR10/100-Corrupted
and Imagenet-Corrupted are released under the CC BY 4.0 License.

B Additional Experimental Results

B.1 Online Evaluation

For the results in the main paper, all methods that adapted to the test distribution were evaluated in an
offline setting, where each method could access the full test dataset before making any predictions.

16

www.image-net.org
zenodo.org/record/3555552
zenodo.org/record/3555552
https://zenodo.org/record/2235448
www.image-net.org/download

CIFAR10 CIFAR100
Method Acc NLL Brier ECE Acc NLL Brier ECE
Vanilla 95.50 0.1715 0.07252 0.02549 77.88 1.023 0.3389 0.1198

BN Adapt 95.49 0.1767 0.07303 0.02588 77.88 1.071 0.3437 0.1266
TENT 95.48 0.1788 0.07662 0.03180 77.86 1.083 0.3458 0.1322

BACS (MAP) 95.40 0.1827 0.07734 0.02884 77.81 1.1388 0.3494 0.1412
Vanilla ensemble 96.07 0.122 0.05835 0.009644 80.34 0.7182 0.2711 0.04254

Ensemble BN Adapt 96.09 0.1244 0.05834 0.009433 80.46 0.7312 0.2720 0.04438
TENT Ensemble 96.08 0.1240 0.05869 0.01065 80.68 0.7341 0.2719 0.05352

BACS (ours) 95.98 0.1340 0.06154 0.01091 80.32 0.7428 0.2754 0.05051

Table 6: CIFAR-10/100 In-distribution results. We evaluate all methods on the standard (uncor-
rupted) test sets.

For BACS, this involves first making one pass through the test data to update the network for one
epoch of optimization (or multiple epochs when specified), then making one more pass through the
dataset to make predictions with the fully adapted network.

As there might be scenarios where we do not have access to all the test data from a particular
distribution at once, we also include experiments on the corrupted datasets evaluating methods in an
online setting, where we adapt the network and make predictions in a single pass through the dataset.
The online procedure is more computationally efficient (requiring one fewer forward pass per batch)
and does not require the model to wait for all the data to arrive before making predictions. Note that
all adaptive methods we evaluate still require access to batches of test data to make updates, and we
utilize the same adaptation hyperparameters as with the offline experiments. For online experiments,
we fix the ordering on the test dataset for all methods.

Method Acc NLL Brier ECE
TENT 54.12 2.330 0.6005 0.09544

BACS (MAP) 56.13 2.171 0.5771 0.07055
TENT Ensemble 60.22 2.093 0.5702 0.1828

BACS (ours) 61.81 1.911 0.5369 0.1503
Table 5: ImageNet-C Online results averaged over all corrup-
tion types and levels. Again, online adaptation performs worse
compared to offline adaptation, but online BACS still outper-
forms one TENT (as well as other baseliens) in accuracy, NLL,
and Brier score.

We show results in the online set-
ting for TENT and BACS in Tables
4 and 5. Compared to the offline
results in Tables 1 and 2, online
BACS generally performs worse
than offline BACS, but still out-
performs all baselines in accuracy,
NLL, and Brier score.

B.2 In Distribution Results

At test time, it is also possible that the distribution we encounter is actually the same as training,
though we would not necessarily know a priori. We thus also evaluate the performance of different
adaptive methods when there is no distribution shift at test time in Table 6. We see that BACS
does slightly underperform relative to ensembles without adaptation and ensembles with batch-norm
adaptation.

B.3 Expanded ImageNet-C and CIFAR-C Results

Method mCE
Vanilla 73.42

BN Adapt 61.24
TENT 54.37

BACS (MAP) 53.13
Vanilla Ensemble 67.98

Ensemble BN Adapt 52.70
TENT Ensemble 47.50

BACS (ours) 46.78
Table 7: ImageNet-C mCE results. BACS (ours)
outperforms all other methods, while our ablation
without ensembles BACS (MAP) outperforms all
non-ensembled methods.

In addition to measuring the average accuracy
across the ImageNet-C corruptions, we also re-
port results using the mean corruption error
(mCE) [Hendrycks and Dietterich, 2019], which
normalizes the per-corruption error rates using
the performance of an AlexNet model as a base-
line before averaging across corruption types.
We include these results in Table 7.

We include expanded experimental results for
ImageNet-Corrupted in Figure 7. For each met-
ric, we now use box plots to show the variability
of results over different corruption types, sep-
arating out results at each level of corruption.

17

Across all corruption levels, BACS consistently performs the best in accuracy, NLL and Brier score
(with the exception being the mean accuracy at the highest level of corruption, where a single corrup-
tion where BACS has very low accuracy drags down the mean, though median performance is still
higher than all baselines).

finally, we include expanded experimental results for CIFAR10 and CIFAR100 Corrupted in Figures
5 and 6.

Method Acc NLL Brier ECE
Vanilla 45.64 2.867 0.6750 0.0614

BN Adapt 55.97 2.363 0.6050 0.1606
TENT 60.82 1.803 0.522 0.0313

BACS (MAP) 61.96 1.712 0.5022 0.0294
Vanilla Ensemble 50.48 2.519 0.6211 0.07878

Ensemble BN Adapt 62.18 2.137 0.5802 0.2438
TENT Ensemble 65.83 1.586 0.4726 0.0956

BACS (ours) 66.64 1.492 0.4548 0.0735
Table 8: ImageNet-C (TFDS) results averaged over all cor-
ruption types and levels. BACS again substantially outper-
forms all baselines in accuracy, NLL, and Brier score.

We also include experimental results
using the TFDS version of ImageNet-
C in Table 8, which we note has sub-
stantially better results overall than
the officially released dataset. We
also included boxplots for the Ten-
sorflow Datasets version of ImageNet-
Corrupted in Figure 8, where we see
BACS performs the best in accuracy,
NLL, and Brier scores at each level of
corruption.

B.4 Domain Adaptation Results

We further evaluate BACS in additional small-scale experiments commonly evaluated for domain
adaptation. We evaluate transferring from CIFAR10 to STL10 (using only the 9 overlapping classes),
as well as a commonly used digit recognition task transferring from SVHN to MNIST.

Method Acc NLL Brier ECE
Vanilla 82.38 0.7825 0.2886 0.1185

BN adapt 83.72 0.7926 0.2709 0.1147
TENT 84.05 0.8831 0.2753 0.1216

Vanilla Ensemble 84.03 0.5360 0.2333 0.06561
Ensemble BN Adapt 85.40 0.5301 0.2195 0.05949

TENT Ensemble 85.10 0.5337 0.2270 0.06844
BACS (ours) 85.47 0.5284 0.2184 0.06114

Table 9: CIFAR10 to STL10: Source model trained on CI-
FAR10 and evaluated on STL10 test set the (with nonoverlap-
ping classes removed during both training and test). Here, the
ensembled approaches perform the best overall and perform
similarly to one another in uncertainty estimation.

CIFAR10 to STL10. We further
evaluate all methods on a more natu-
ral distribution shift by considering
evaluating a model trained CIFAR-
10 and evaluated on STL-10 [Coates
et al., 2011]. We only use the 9 over-
lapping classes in each dataset. In
this setting, BACS and BN ensem-
bles outperform the other methods.

While TENT is able to improve
accuracy slightly over the non-
ensembled baselines, we again see
that uncertainty estimates degrade
as entropy is minimized (as seen
by the increases in NLL, Brier, and
ECE scores). In contrast, BACS still remains well-calibrated, again emphasizing the importance
of Bayesian marginalization for reliable uncertainty estimation when adapting models via entropy
minimization.

SVHN to MNIST transfer. We also evaluate our method on a digit classification task, transferring a
model trained on SVHN [Netzer et al., 2011] to MNIST [LeCun et al., 2010], which is commonly
studied as a the domain adaptation setting [Ganin et al., 2015, Liang et al., 2020]. We find that BACS
is able to significantly outperform the models with no adaptation as well as ensembles with batch
norm adaptation in accuracy, NLL, and Brier score.

We find that this severe distribution shift requires larger changes in parameters to effectively adapt,
as seen by the substantial improvements between optimizing for one epoch and optimizing for 10.
We also find that the approximate posterior term used in our method overly constrains the network
during adaptation, as removing the regularizer from the method (denoted BACS-posterior in the table)
results in the best performance in all metrics. We note that all ensemble methods perform much better
than non-ensembled methods in terms of calibration, emphasizing the benefits of marginalizing over
different models for uncertainty estimation when adapting via entropy minimization.

We note that our method and the compared baselines are focused on improving results in robustness
settings, and do not necessarily obtain state-of-the-art performance in common domain adaptation

18

Figure 5: CIFAR10 Corrupted Results. For each corruption level, we use boxplots the spread of
results over the different individual corruption types. Boxes are drawn at the 25th and 75th percentiles,
with the median being drawn as a line in the middle of the box and the mean being shown with white
dots. The ends of the whiskers show the min and max across corruption types at the level (with black
diamonds for outliers).

19

Figure 6: CIFAR100 Corrupted Results. For each corruption level, we use boxplots the spread of
results over the different individual corruption types. Boxes are drawn at the 25th and 75th percentiles,
with the median being drawn as a line in the middle of the box and the mean being shown with white
dots. The ends of the whiskers show the min and max across corruption types at the level (with black
diamonds for outliers).

20

Figure 7: ImageNet Corrupted Results. For each corruption level, we use boxplots the spread of
results over the different individual corruption types. Boxes are drawn at the 25th and 75th percentiles,
with the median being drawn as a line in the middle of the box and the mean being shown with white
dots. The ends of the whiskers show the min and max across corruption types at the level (with black
diamonds for outliers).

21

Figure 8: ImageNet Corrupted (TFDS) Results. For each corruption level, we use boxplots the
spread of results over the different individual corruption types. Boxes are drawn at the 25th and 75th
percentiles, with the median being drawn as a line in the middle of the box and the mean being shown
with white dots. The ends of the whiskers show the min and max across corruption types at the level
(with black diamonds for outliers). At each corruption level, BACS (ours) outperforms all baselines
in accuracy, NLL, and Brier score.

22

Method Acc NLL Brier ECE
Vanilla 76.99 0.9967 0.3645 0.1290

Vanilla ensemble 79.52 0.7368 0.3024 0.03856
BN Adapt 73.43 1.4502 0.4453 0.1878

Ensemble BN Adapt 76.84 0.9444 0.3442 0.07855
TENT (1 epoch) 77.24 1.321 0.3896 0.1605

TENT (10 epochs) 85.53 0.9554 0.2035 0.1166
TENT Ensemble (1 epoch) 79.48 0.8869 0.3149 0.09254

TENT Ensemble (10 epochs) 86.89 0.5784 0.2035 0.06384
BACS (ours) (1 epoch) 84.14 0.6024 0.2285 0.05595

BACS (ours) (10 epochs) 86.32 0.5553 0.2094 0.05133
BACS - posterior (1 epoch) 87.28 0.4214 0.1650 0.02603

BACS - posterior (10 epochs) 93.03 0.2371 0.0965 0.02404

Table 10: SVHN to MNIST: In this domain adaptation setting, we find adapting batch norm
statistics alone hurts performance compared to the unadapated models, but methods utilizing entropy
minimization are able to improve substantially in accuracy.

settings when compared to algorithms specifically designed for these problems. For example, Liang
et al. [2020] introduce a source-free domain adaptation algorithm (that also does not require access to
the training data during adaptation) and report 99% accuracy transferring from SVHN to MNIST,
though results are not directly comparable due to architecture and training differences. In contrast to
typical source-free domain adaptation algorithms, our algorithm also focuses on improving uncertainty
estimation, does not require multiple epochs of optimization during adaptation, and is amenable to
online evaluations where predictions need to be made before seeing the entirety of the test data.

23

	Introduction
	Bayesian Adaptation for Covariate Shift
	Probabilistic Model for Covariate Shift
	Approximations for Tractable Inference

	Related Work
	Experiments
	Discussion
	Experimental Details
	Training Details
	Metrics
	Dataset details

	Additional Experimental Results
	Online Evaluation
	In Distribution Results
	Expanded ImageNet-C and CIFAR-C Results
	Domain Adaptation Results

