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ABSTRACT

This work proposes a novel and simple sequential learning strategy
to train models on videos and texts for multimodal sentiment anal-
ysis. To estimate sentiment polarities on unseen out-of-distribution
data, we introduce a multimodal model that is trained either in a
single source domain or multiple source domains using our learn-
ing strategy. This strategy starts with learning domain invariant
features from text, followed by learning sparse domain-agnostic fea-
tures from videos, assisted by the selected features learned in text.
Our experimental results demonstrate that our model achieves sig-
nificantly better performance than the state-of-the-art approaches
on average in both single-source and multi-source settings. Our
feature selection procedure favors the features that are independent
to each other and are strongly correlated with their polarity labels.
To facilitate research on this topic, the source code of this work will
be publicly available upon acceptance.

KEYWORDS
MSA, OOD, Invariant Features

1 INTRODUCTION

Multimodal Sentiment Analysis (MSA) is concerned with under-
standing people’s attitudes or opinions based on information from
more than one modalities, such as videos and texts. It finds rich
applications in both industry and research communities, such as un-
derstanding spoken reviews of target products posted on YouTube
and developing multimodal Al assistants for mental health sup-
port. Prior MSA approaches make an impractical assumption that
training and test data comprise independent identically distributed
samples [58, 64, 76, 79-81]. However, training datasets are avail-
able only for a handful of applications that satisfy that assumption.
Therefore, this work aims to remove the assumption such that MSA
models trained on a single domain or multiple source domains can
work robustly on unseen out-of-distribution (OOD) data, without
leveraging any target domain data.

To enable models to work robustly across domains, a key idea
is to exploit domain invariant sparse representations, which serve
as causes of target labels from a causal perspective [63, 67]. In con-
trast, spurious correlations, which do not indicate causal relations,
impede the generalization capability of pre-trained foundation mod-
els [6, 25]. Existing MSA models heavily rely on jointly learned mul-
timodal features for sentiment analysis [27]. However, the spurious
features of the visual modality may adversely affect the features
of the text modality, leading to inaccurate prediction outcomes
[23, 24, 80]. Therefore, it would be interesting to investigate i) how
to automatically identify domain invariant representations
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Figure 1: Classifiers employ learnable masks to identify
domain-invariant text features first, conditioned on which
the classifiers learn domain-invariant features from videos.

for MSA, and ii) what are the key characteristics of domain
invariant features in a multimodal setting,.

To answer the above research questions, as illustrated in Figure
1, we propose a Sequential Strategy to Learn Invariant Features
(SZLIF) for building a domain generalization (DG) MSA model based
on videos and texts. Instead of learning domain-agnostic features
simultaneously from all modalities, our technique first leverages
the sparse masking technique [34] to select invariant hidden fea-
tures from texts, followed by learning the invariant features from
videos, conditioned on the selected textual features. To the best of
our knowledge, it is the first time to report the importance of fea-
ture learning order for domain generalization. We conduct extensive
experiments to i) demonstrate the superiority of our approach in
comparison with the competitive baselines in both single source
domain and multi-source domain settings, and ii) investigate key
characteristics of selected features using our approach. Our key
contributions are summarized as follows:

e We introduce a novel domain generalization MSA model,
which explicitly learns domain-invariant features and miti-
gates spurious domain-specific features by adopting a sparse
masking technique.

e We propose a new sequential multimodal learning strategy,
which extracts the domain-invariant features from texts
first, followed by employing them to identify the features
relevant to labels from videos using the sparsity technique.

e We demonstrate empirically that i) our sequential multi-
modal learning strategy prefer selecting the domain invari-
ant features in the visual modality, which are independent
of the selected features in the text modality and strongly
correlate with labels; and ii) it is important to adhere to the
learning order of our approach to mitigate spurious corre-
lations, because it is evident that the alternative learning
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order or learning all modalities simultaneously using the
same sparsity technique leads to inferior performance.

2 RELATED WORK

2.1 Multimodal Sentiment Analysis

MSA methods can be roughly divided into two categories: 1) Multi-
modal Representation Learning aims to learn fine-grained multi-
modal representation, which provides rich decision evidence for
multimodal sentiment prediction. They employ a disentangled tech-
nique to learn modality-common and modality-specific representa-
tions to mitigate the heterogeneity of multimodal representations
[28, 65, 71, 74]. 2) Multimodal Fusion aims to learn cross-modal
information transfer by designing complex cross-modal interac-
tive networks. The development of multimodal fusion methods
has evolved from multi-modal tensor fusion [76] to cross-modal
attention[44, 45, 64, 73, 77, 79-82]. The current MSA methods only
train and test on a specific domain, and do not consider the gener-
alization ability of the model. They suffer performance degradation
when tests on out-of-distribution data, so learning robust MSA
models is essential.

2.2 Domain Generalization

Domain generalization aims to design a deep neural network model
that learns domain-invariant features and is able to maintain sta-
ble performance in both the source domain and multiple unseen
target domains. Numerous domain generalization methods have
been proposed to learn domain-invariant features for single-source
or multi-source domain generalization[5, 12-18, 22, 26, 30, 31, 37,
38, 40, 48, 51, 54, 59, 72]. We roughly divide current methods of
domain generalization into three categories: 1) Learning invariant
features aims to capture the domain-generalized features to reduce
the dependence of features on specific domains and to achieve high
performance on unseen domains[48]. 2) Optimize algorithm aims
to learn domain-invariant features and remove domain-specific
features(5, 10, 22, 38, 52, 59], such as adversarial training and meta-
learning, through tailored designed network structures. 3) Data aug-
mentation aims to generate new data to improve the generalization
performance of the model, and these generated new data are out-of-
distribution samples different from the source domain[66, 68, 69].

2.3 Causal Representation Learning

From the perspective of data generation, causal representation
learning considers that raw data is entangled with two parts of
features: correlated features with label (domain-invariant features)
and spuriously correlated features with the label (domain-specific
features). The goal is to disentangle domain-invariant features and
domain-specific features. Domain-invariant features guarantee sta-
ble performance in different test environments[1, 49]. Based on
this assumption, numerous methods attempt to learn domain in-
variant features [2, 3, 11, 32, 56]. Following previous work, our
proposed approach aims to learn the domain-invariant features (i.e.,
the features correlated with the label), while removing the features
domain-specific (i.e., the spuriously correlated features with the
label). Concretely, we adopt sparse techniques to remove spuriously
correlated features with the label [36, 43, 47, 60].
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3 METHOD

Problem Statement. The goal of domain generalization for MSA
is to train a deep neural network model on a single-source or multi-
source domains Dg = {Dl, Dg, Dé\]} and evaluate the model
on the unseen target domains {Z)l s Z)Yz., e Z)IM }, where D denotes
a dataset in a domain, M and N denote the number of source do-
mains and target domains, respectively. We consider each MSA
task as a k-ways classification task. The dataset in a source domain
is denoted by Dg = {Xft,v}’yi}?:l’ where X{it’v} e R?, y e RK,
while Dr is a dataset in a target domain. The goal is to learn multi-
modal domain-invariant features for sentiment polarity prediction
in unseen domains without using target domain data for training.

Model Overview. Our work is motivated by the functional lot-
tery ticket hypothesis [41] suggesting that there is a subnetwork
that can achieve better out-of-distribution performance than the
original network. Hence, We employ the sparse masking techniques
to identify a subset of hidden features in the multimodal setting.
The findings of our empirical studies indicate the importance of
the learning order between modalities for domain generalization
performance.

The architecture of our model is illustrated in Figure 2. Given a
text and a sequence of video frames X, ), we employ a pre-trained
encoders ELECTRA [19] and VGGFace2 with a 1-layer Transformer
encoder [21] to map them to respective hidden representations x;
and x,. To achieve sparsity in hidden representations, our model
generates a mask vector my; ;) with the mask function fp, s to
select domain-invariant features x? 1o} from X{; 4} . The mask func-
tion is characterized by the learnable parameter r(; ;) and threshold
${t,0}- The feature selection in a modality is achieved by computing
the dot-product between the mask vectors and the corresponding
hidden representations. We empirically find that text is the superior
modality in comparison with videos based on their performance
in each modality. Our further studies show that conditioning on
the strong text features reduces the selection of visual features that
correlate with those text features. On the one hand, reduction of
statistical dependencies between features leads to improvement of
generalization performance. On the other hand, selection of fea-
tures adhere to the functional lottery ticket hypothesis. Therefore,
our text classifier g; first selects the key features using the masking
technique, followed by learning sparse video representations for
the visual classifier g, to predict sentiment polarity conditioned on
the selected text features. In addition, our model leverages prior
information from video frames to eliminate redundant frames.

Keyframe-aware Masking. Given that there is a large amount
of frames in a video clip, which contains redundant information
[47, 60]. The frame sequence X, of a video clip contains rich pri-
ors, which explicitly correspond to neighboring frames. We can
easily obtain the motion of the video frame sequence to guide the
masking of redundant frames according to the temporal difference.
We employ global and local neighbor frames to select informative
frames x, and constrain the semantic invariance of video frames
by reconstructing losses Lrecon. Note that this part is not our main
contribution, and it is an extension of previous work [47]. See
supplementary materials for details.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214

216
217
218
219
220
221

223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240
241
242
243
244

245

252
253
254
255
256
257
258

260
261
262
263
264
265
266
267

269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

Learning in Order!
A Sequential Strategy to Learn Invariant Features for Multimodal Sentiment Analysis

Learning Sparse Text Features
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Figure 2: An overview of our proposed framework.

Sequential Multimodal Learning. The selection of domain
invariant features is also motivated from a causal perspective. The
logit of the classifier is computed as the product between the fea-
tures x and the weights W of the label k from the classification
layer g.

d;
Ok =Wl x= D5 3 Waypy xepreltoh ()

xe{t,o} j=1

where the subscripts j and k denote j-th feature and k-th class
respectively. For all polarity labels with both modalities, we obtain
a matrix R as follows, where each element w; Gy X € {t,v}
represents the evidence of the classifier.

Wr Xt Wi ky Xt
Wt{zyl)xtz Wt{z,K)xt2
Weiay 1y Xta, Wtid,. k) *ta,
R= (2)
Wi 1y X0 Wog ky Xo
Wt(o,1y X0z Wo, ky Xo,
L Woa,,1y Xod, Wordy K} X0d,

By analyzing the matrix R, we conclude that 1) Y is the result of
feature x estimated via a classifier. From the causal perspective,
the selected features can be seen as the causes of Y subjecting to

independent noise [29, 50, 62]:
Y = g(Pa(Y)) + € 3)

where the notation Pa(Y) denotes the features of direct causal ef-
fects with Y, where Pa(Y) is a subset of x. The function g represents
the classifier. The multimodal features x are divided into two sub-
sets, domain-specific features x* (spurious correlated features with
the label across domain) and domain-invariant features x¢ (cor-
related features with the label across domain) [55]. We use three
features {x1, x2, x3} to explain the causal relationship between x
and Y. As shown in Figure 3 (a), the outcome Y is specified as
Y = g(x1,%3) + €, {x1,x3} C x€. The feature x3 is the subset of x°.
There exist two distinct relationships between the feature sets x*
and x¢: a) there is no direct causal relationship between x3 and
x1. b) there is a direct causal relationship between x3 and x;. We
remove the edge between x2 and x3 to eliminate the impact of x3
on x. Therefore, our goal is to identify the features x¢ and remove
the features x°. Formally, we expect

P(Yl|do(x{,x;)) # P(Y]do(x},x7)) 4)

where the features {x{, xjc.} C x€ are selected mutual independent
domain-invariant features [57]. We design learnable masks m and
learnable threshold s in Section 3 to set the values of domain-specific
features in x7 to 0. Removing the features x$ C x° eliminates its
direct causal effects on (xl.c,x;f) and the outcome Y. 2) simulta-
neously optimizing such entangled features x = {x¢, x*} for
both text and visual modalities (i.e., imbalanced multimodal
features) poses a special challenge for the classifier [23, 24].
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Figure 3: (a): The causal structure of the data generation pro-
cess involves direct causal effects from x; and x; to Y. There
exists a causal relationship between x; and x3. € represents
independent noise. The latent variable U serves as a con-
founder for x; and xs. (b) Severing the edge between x; and
x3 and eliminating the causal relationship.

Our sequential learning strategy is also motivated by curriculum
learning [8, 46, 84] that we learn the features first, which perform
well on the target tasks, followed by more challenging ones.

By analyzing the causal relationship and removing spurious
correlation features using multimodal learnable masks, we can
obtain a new evidence matrix RM. The form of the new evidence
matrix RM for the classifier is as follows:

Wt{m) Xty My Wt“yK} Xt My
Wt ip 1y Xt Mty Wt (o iy Xt Mty
m my;

T i . N .

Wegay1y Xta, M, We(ay, k) Xtdy ™y

RY = ©)
Wegy,1y Xo1 Moy Woyy iy Xor Moy
We(z,1) X0 Mo, Woyy ky Xop Moy
o My, TR Mo,

L Wota,.1y*0a, Moq, Woig,, K} Xog, Mog,

where {m;, my} denotes mask vector in Section 3. The red notation
my; and my; represent learnable mask to select domain-invariant
feature with two stages in the above equations. By analyzing the
evidence matrix RM of the classifier g and the direct causal effect
with outcome Y, we can utilize the learnable mask and threshold to
sequential select domain-invariant features x¢ and remove domain-
specific features x°.

Multimodal Learnable Masks. Regarding how to automati-
cally identify domain invariant representations for MSA, we design
multimodal learnable masks to select features. Specifically, to re-
move domain-specific features, we tailor a function, denoted as
fmask- The inputs of f;,,sx consists of the features x from a modal-
ity, a learnable parameter r , and a dynamic threshold s. The output
is domain-invariant features x°.

x© = fmask (x.7,5) (6)

where we apply the mask vector m € R? (consisting of zero and
non-zero value) on the feature x € RZ. The mask vector m is
obtained by utilizing a trainable pruning threshold s € R? and a
learnable parameter r € R?. Given a set of features x, our method
can dynamically select features using mask vector m. We utilize
the unit step function 7 (-) to produce mask vector, which takes
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the learnable parameters r and thresholds s as input and output the
binary masks p. Formally,

0 ift<o0
F(t) = , 7
® {l ift >0 @
where the binary mask p and mask vector m are obtained by:
p=Frl-s), ®)
m=rop ©9)
xX=xom, (10)

where x° represents domain-invariant features, which remove spu-
riously correlated features and retain the correlated features with
the label y in training stage. It was unable to complete end-to-
end training during model training. The reason is that the binary
mask produced by our unit step function is non-differentiable. To
overcome this issue, previous works [33, 61, 83] based on straight-
through estimator (STE) [7] to estimate derivatives and design
binarization function that can be back-propagatation. [70] give
more approximate estimates than STE to handle non-differentiable
scenarios. Using this derivative estimate to approximate the unit
step function allows the model to train end-to-end.

p 2—-4lt, —04<tr<04
ET(” =140.4, 04<|t] <1 (11)
0, otherwise

To encourage the model to learn sparse features, we add a sparse
regularization term [34] to the threshold as one of the training
objectives. Formally,

N
L£parse Z exp(—s}),* € {t, 0}, (12)
i=1
where the regular term exp(—s;) raises the value of the dynamic
threshold s, so that a few feature values can exceed the threshold to
learn more sparse features. We utilize the function f;,,s to obtain
domain-invariant features of textual and visual tokens. Formally,

X5 = finask (%6 T, 1), % € {t,0} (13)

where the definitions of f;,4sk, r+, and s, are specified in Equation
6 ~ 10.

Apart from learning the domain-invariant features of each to-
ken, we also calculate the similarity between each token and the
learnable mask to learn domain-invariant tokens. Formally,

ax = sim(m*,x,fj),s< € {t,v}, (14)
Tx T

x$ = Zx:] ~ax% % € {t, v}, (15)
Jj=1

where x:j denotes j-th token of text and visual modalities. The xf/
and x¢ represent the features of fused domain-invariant tokens.
The symbol sim denotes similarity. The symbol a denotes attention
weight. The classifier g; and g, takes inputs xf' and x¢', and outputs
logits O; and logits Oy. Formally,

0r = g1 (x); 0y = go([x¢:x¢']) (16)

where ’;” denotes concatenation along the feature dimension.
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Learning Objective. Initially, we employ the classifier to learn
domain-invariant features from the text modality (i.e. text modality).
Formally,

Ly=LEE v o L (17)

Subsequently, we utilize the domain-invariant features from the
text modality to assist in selecting domain-invariant features from
the visual modality. Formally,

Ly = Lz(,:E +a- szarse + Lrecon (18)

where the symbol £EF denotes Cross-Entropy loss and « is hyper-
parameter. Accordingly, the overall learning objective is:

L=L+ Ly (19)

4 EXPERIMENTS

4.1 Datasets

We select three typical MSA benchmark datasets: CMU-MOSI [78],
CMU-MOSEI [79] and MELD [53]. The detailed partition of the
dataset is included in the supplementary materials.

4.2 Implementation Detail

We employ text pre-trained language model Electra [19] and visual
pre-trained model VGG Face2 [9], extracting features from both
textual content and video frames. We use a multilayer perceptron to
unify the multimodal feature dimensions and a 1-layer Transformer
encoder [21] to model the multimodal data of the sequence. The
batch size and epoch are set to 16 and 200, and the learning rate
is configured to 7e-5. Warm up epoch is 3. Our implementation is
executed using the PyTorch framework with Adam optimizer [35]
on the V100 GPU.

4.3 Baselines

We select the state-of-the-art model in the field of MSA, MLLM and
DG (OOD) as the Baseline.

MULT [65] designs a Multimodal Transformer to align multi-modal
sequential data and capture cross-modal information interaction.
ALMT [80] employs non-verbal modalities to reinforce the features
of the text modality several times and dismisses the non-verbal in-
formation after completing the reinforcement process.

MAD [54] designs a two-stage learning strategy, learning domain-
specific and domain-invariant features respectively to constrain
the two features by regular terms.

RIDG [17] aligns the labels of each class with the classified evi-
dence to ensure the domain generalization of the model.

MLLM. We selected five multimodal large language models, in-
cluding Blip-2 [39], InstructBlip [20], [42] and Qwen-VL [4] with
excellent performance from the benchmark [75] of the multimodal
large model as the baseline.

4.4 Evaluation Criteria

The distribution of the dataset is approximately balanced. We eval-
uate the model performance using a 3-class accuracy metric, specif-
ically [Positive, Neutral, Negative].
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Figure 4: Visualization of domain-invariant features across
domain.

4.5 Results and Discussions

Overall Comparisons. To justify the effectiveness of our proposed
S2LIF model, we compareed the model with the following state-of-
the-art baseline in the filed of MSA and DG. Models that focus on
capturing cross-modal dependencies, called MulT and ALMT. Mod-
els that aims to learn domain-invariant features, namely, MAD and
RIDG. Tables 1 and 2 show the results of the comparison. By analyz-
ing these two tables, we draw the following conclusions: i) The MSA
method shows visual performance in the unseen domain. With the
addition of our multimodal learnable masks, the traditional models
also gain the ability of DG. The fact demonstrates the effectiveness
of sparse mask in DG. ii) Our model significantly outperforms the
multimodal large model in 4 of the 6 Settings. We speculate that
there is contamination from emotional datasets during the training
phase of the multimodal large language model. In the two settings
with better performance, the logits of InstructBlip for correctly
predicted samples exceed 0.93, significantly higher than the logits
generated by other multimodal large language models, which are
around 0.65. iii) The model performance in sequential multimodal
learning is better than that in non-sequential multimodal learning
when we distinguish text and visual modalities. This demonstrates
the effectiveness of the sequential multimodal learning strategy.

Existence of Domain-invariant Features. An essential assumption
in our study is the presence of domain-invariant features in cross-
domain multimodal data. To gain insight into this assumption, we
visualized the selected and removed features for each domain using
a heatmap. We marked positions with 1’ where the features are
consistently selected across domains. From Figure 4, we could con-
clude that there is a presence of domain-invariant features across
multiple domains, and our proposed model can automatically se-
lect the domain-invariant features. Moreover, we visualized the
proportion of features retained during the training phase. Figure 5
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Table 1: The performance (accuracy of 3-classification) of single-source domain generalization. The symbols V,T, and M denote
using visual, textual, and multimodal features, respectively. The symbols T — V and V — T indicate the multimodal learning
order. T&V denotes simultaneous learning. ’Frozen’ and ’Fine tuning’ represents freezing and fine-tuning the parameter of

pre-trained language model. We train the model on the source domain and infer on both the source and target domains.

Single-source Setting A

Single-source Setting B

Single-source Setting C

Category ‘ Method ‘ Source Domain ~ Target Domain  Source Domain  Target Domain  Source Domain  Target Domain
| | MOSEIL MOSI  MELD MOSI MELD  MOSEI MELD MOSI MOSEIL

MuLT (M-Frozen) (ACL2019) 0.644 0.693  0.516 0.609 0.344 0.452 0.663 0.258 0.435

MSA MuLT (M-Fine tuning) (ACL2019) 0.691 0.740  0.526 0.736 0.400 0.506 0.687 0.453 0.493
ALMT (M-Frozen) (EMNLP2023) 0.611 0.688  0.468 0.548 0.373 0.465 0.686 0.306 0.457

ALMT (M-Fine tuning)(EMNLP2023) 0.676 0.675  0.540 0.760 0.522 0.513 0.679 0.478 0.440

MuLT + Mask (M-Frozen) (ACL2019) 0.649 0.710  0.545 0.625 0.435 0.487 0.667 0.325 0.456

MSA+Mask MuLT + Mask (M-Fine tuning) (ACL2019) 0.693 0.759  0.554 0.766 0.500 0.553 0.706 0.519  0.510
ALMT + Mask (M-Frozen) (EMNLP2023) 0.642 0.693  0.509 0.574 0.472 0.473 0.697 0.376 0.460

ALMT + Mask (M-Fine tuning) (EMNLP2023) 0.687 0.749  0.562 0.777 0.541 0.586 0.700 0.553 0.497

MAD (V) (CVPR2023) 0.450 0.279  0.291 0.390 0.214 0.312 0.468 0.218 0.326

MAD (T-Frozen) (CVPR2023) 0.413 0.172  0.349 0.344 0.205 0.334 0.482 0.154  0.346

MAD (T-Fine tuning)(CVPR2023) 0.464 0.154  0.331 0.491 0.204 0.296 0.660 0.157 0.311

MAD (M-Frozen) (CVPR2023) 0.448 0.304  0.423 0.374 0.303 0.346 0.495 0.243 0.368

00D MAD (M-finetune) (CVPR2023) 0.670 0.744  0.527 0.746 0.505 0.563 0.683 0419  0.484
RIDG (V) (ICCV2023) 0.317 0.313  0.419 0.437 0.221 0.335 0.471 0.262 0.358

RIDG (T-Frozen) (ICCV2023) 0.555 0.384  0.477 0.481 0.256 0.351 0.491 0.311 0.367

RIDG (T-Fine tuning) (ICCV2023) 0.665 0.728  0.489 0.644 0.527 0.487 0.657 0.495 0.417

RIDG (M-Frozen) (ICCV2023) 0.572 0.467  0.520 0.505 0.318 0.392 0.657 0.319  0.425

RIDG (M-Fine tuning) (ICCV2023) 0.657 0.736  0.523 0.695 0.540 0.583 0.680 0.513 0.501

Blip-2 (ICML2023) 0.397 0.290  0.448 0.290 0.448 0.397 0.448 0.290  0.397

InstructBlip (NeurIPS2024) 0.540 0.739  0.492 0.739 0.492 0.540 0.492 0.739  0.540

MLLM LLava-1.5-7B (NeurIPS2023) 0.510 0.351  0.527 0.351 0.527 0.510 0.527 0.351 0.510
LLava-1.5-13B (NeurIPS2023) 0.453 0.192  0.496 0.192 0.496 0.453 0.496 0.192 0.453

Qwen-VL 0.455 0.250  0.536 0.250 0.536 0.455 0.536 0.250  0.455

S2LIF V—T (M-Frozen) 0.653 0.718  0.513 0.631 0.421 0.492 0.645 0.383 0.445

S?LIF T&V (M-Frozen) 0.651 0.720  0.535 0.629 0.450 0.504 0.658 0.380  0.464

Ours S?LIF T—V (M-Frozen) 0.660 0.745  0.543 0.638 0.465 0.517 0.643 0.408 0.488
S?LIF V—T (M-Fine tuning) 0.688 0.759  0.539 0.775 0.498 0.606 0.683 0.529  0.491

S?LIF T&V (M-Fine tuning) 0.689 0.755  0.540 0.742 0.524 0.584 0.677 0.481 0.504

S?LIF T—V (M-Fine tuning) 0.701 0.774  0.572 0.762 0.556  0.613 0.692 0.580  0.519
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Figure 5: The proportion of domain-invariant features.

illustrates the proportion of features retained for both the text and
visual modalities during the training phase.

Cross-modal Feature Correlation Analysis. Apart from the the
superior performance, the key advantage of our proposed model

compared to other models is that its sequential multimodal learning.

It can conditionally assist visual modalities in selecting domain-
invariant features based on the domain-invariant features learned
from the text modality. The features of these visual modalities pre-
fer mutually independent from the features of the text modality,
allowing the information learned from the visual modalities to
complement that of the text modality. For each domain-invariant
g
z-test to calculate the ratio of features in the domain-invariant
feature set xf,, of the visual modality that are independent and de-

feature x; C xf' from the text modality, we employed Fisher’s

pendent of that specific feature xfi’. From Figure 6, we could see that,
conditioning on the text modality, the model exhibits a higher pro-
portion of independence among domain-invariant features across
modalities. These results demonstrate that our proposed sequential
multimodal learning strategy in Equation (4) is capable of learning
more effective, sparse, and independent cross-modal features.

Intra-modal Feature Correlation Analysis. To valid the indepen-
dence among the learned domain-invariant features, we conducted
Fisher’s z-test on the features in the Multi-source setting A with
intra-modality. Specially, we selected xJC.’ from the domain-invariant
feature set x° and computed the ratio of features in the set that
are independent and dependent of x¢". From Figure 7, we could
be observed that, for the learned domain-invariant feature set, the
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Table 2: The performance (accuracy of 3-classification) of multi-source domain generalization.

ACM MM, 2024, Melbourne, Australia

Multi-source Setting A

Multi-source Setting B

Multi-source Setting C

Category | Method | Source Domain  Target Domain  Source Domain  Target Domain  Source Domain  Target Domain
‘ ‘ MOSEI/MELD MOSI MOSI/MELD MOSEI MOSI/MOSEIL MELD
MuLT (M-Frozen) (ACL2019) 0.619/0.625 0.621 0.666/0.646 0.470 0.676/0.636 0.464
MSA MuLT (M-Finetune) (ACL2019) 0.674/0.710 0.660 0.742/0.673 0.549 0.797/0.661 0.494
ALMT (M-Frozen) (EMNLP2023) 0.630/0.669 0.597 0.660/0.685 0.454 0.664/0.591 0.471
ALMT (M-Finetune) (EMNLP2023) 0.683/0.697 0.654 0.753/0.770 0.528 0.746/0.680 0.516
MuLT (M-Frozen) (ACL2020) 0.647/0.659 0.645 0.644/0.688 0.505 0.730/0.654 0.531
MSA+Mask MuLT (M-Finetune) (ACL2020) 0.682/0.708 0.683 0.769/0.721 0.576 0.765/0.682 0.561
ALMT (M-Frozen) (EMNLP2023) 0.640/0.657 0.640 0.645/0.682 0.512 0.673/0.631 0.527
ALMT (M-Finetune) (EMNLP2023) 0.684/0.711 0.681 0.771/0.721 0.570 0.787/0.688 0.566
MAD (V) (CVPR2023) 0.437/0.468 0.306 0.365/0.411 0.306 0.355/0.436 0.356
MAD (T-frozen) (CVPR2023) 0.404/0.481 0.306 0.393/0.444 0.319 0.349/0.365 0.388
MAD (T-finetune) (CVPR2023) 0.444/0.691 0.274 0.432/0.653 0.275 0.438/0.481 0.364
MAD (M-Finetune) (CVPR2023) 0.485/0.672 0.297 0.484/0.676 0.305 0.445/0.511 0.383
00D MAD (M-Frozen) (CVPR2023) 0.431/0.480 0.316 0.370/0.445 0.349 0.371/0.349 0.428
RIDG (V) (ICCV2023) 0.410/0.332 0.355 0.339/0.199 0.367 0.154/0.411 0.381
RIDG (T-frozen) (ICCV2023) 0.548/0.623 0.422 0.561/0.643 0.440 0.571/0.552 0.407
RIDG (T-finetune) (ICCV2023) 0.646/0.656 0.635 0.737/0.666 0.556 0.752/0.663 0.499
RIDG (M-Frozen) (ICCV2023) 0.550/0.630 0.486 0.605/0.654 0.465 0.603/0.594 0.445
RIDG (M-Fine tuning) (ICCV2023) 0.659/0.678 0.645 0.747/0.674 0.555 0.766/0.672 0.527
Blip-2 (ICML2023) 0.397/0.448 0.290 0.290/0.448 0.397 0.290/0.397 0.448
InstructBlip (NeurIPS2024) 0.540/0.492 0.739 0.739/0.492 0.540 0.739/0.540 0.492
MLLM LLava-1.5-7B (NeurIPS2023) 0.510/0.527 0.351 0.351/0.527 0.510 0.351/0.510 0.527
LLava-1.5-13B (NeurIPS2023) 0.453/0.496 0.192 0.192/0.496 0.453 0.192/0.453 0.496
Qwen-VL 0.455/0.536 0.250 0.536/0.455 0.250 0.250/0.455 0.536
S’LIFV —» T (M-Frozen) 0.660/0.696 0.658 0.626/0.678 0.484 0.740/0.655 0.493
S’LIFV & T (M-Frozen) 0.657/0.700 0.659 0.653/0.676 0.487 0.702/0.649 0.505
Ours S?LIF T— V (M-Frozen) 0.650/0.699 0.674 0.625/0.679 0.529 0.737/0.638 0.532
S’LIFV — T (M-Finetine) 0.679/0.712 0.677 0.758/0.707 0.566 0.778/0.691 0.557
S’LIFV & T (M-Finetune) 0.686/0.706 0.686 0.762/0.704 0.539 0.768/0.671 0.546
S?LIF T— V (M-Finetune) 0.687/0.710 0.687 0.759/0.723 0.581 0.791/ 0.687 0.578

Table 3: Ablation study on Multi-source Setting A.

proportion of features that are independent of any other feature
in the set is significantly higher than the proportion of features
that are dependent. This observation substantiates our assumption
in Equation (4) that the combination of the learnable mask and
classifier can effectively learn sparse and independent features.

Correlation Analysis Between Features and Label. To demonstrate
the effectiveness of sequential multimodal learning, we also em-
ployed Fisher’s z-test to analyze the correlation between the learned
domain-invariant features and labels. From Figure 8, we could ob-
serve that sequential multimodal learning is capable of capturing
more features that are dependent with labels. The removed fea-
tures exhibit independent with the labels. This experimental result
validates the efficacy of sparse masks for feature selection and the
effectiveness of sequential multimodal learning (as described in
Equation (3) and (4).

Ablation Studies. To gain the insights into our sequential multi-
modal learning strategy, We compare our model with the follow-
ing variants: 1) Reordering sequence learning, including T — V,
V — T, T&V, where they respectively denote sequential multi-
modal learning with textual modality as the condition, with visual
modality as the condition, and simultaneous learning of textual
and visual modality. 2) Add Noise, introducing noise by replacing
domain-invariant features with random noise as evidence for the
classifier. 3) Using DS, utilizing domain-specific features as evi-
dence for the classifier. 4) w/o key-frame mask, eliminating the

‘ Multi-source Setting A

Method ‘ Source Domain Target Domain
| MOSEIMELD MOSI

Add Noise 0.367/0.199 0.339

Using DS 0.372/0.202 0.341

w/o key-frame mask 0.642/0.695 663

S?LIF T — V (M-Frozen) ‘ 0.650/0.699 0.674

key-frame masking module. From Table 1, 2 and 3, we could see that
leveraging the text modality as a condition yields higher perfor-
mance. Table 2 reveals that replacing the learned domain-invariant
features with noise results in a modest performance decline, with
domain-specific features outperforming random noise to a slight
extent. These observations reflect the following key insights: 1) The
effectiveness of sequential multimodal learning. 2) The capability
of our model to efficiently learn domain-invariant features. 3) Our
model effectively eliminates domain-specific features that do not
contribute significantly to classification.
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Figure 6: X-axis: Single textual domain-invariant feature.
Y-axis: The independent and dependent ratio of the visual
domain-invariant feature set to the each textual domain-
invariant feature.
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Figure 7: X-axis: Single domain-invariant feature of intra-
modality. Y-axis: The independent and dependent ratio be-
tween single domain-invariant feature and the other domain-
invariant features of intra-modality.

4.6 Case Study.

To qualitatively validate the effectiveness of our proposed model, we
showcase the predictive outcomes of our model on several samples,
encompassing positive, negative, and neutral sentiments. As shown
in Figure 9, our model demonstrates accurate recognition of all
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Figure 8: The correlated proportion of domain-invariant and
domain-specific features with label.

Modal Content Ground Truth Prediction
This movie isnt just bad its diabolical.
Negative Negative v/
And he really seems to be channeling michael bay
in this movie.
Neutral Neutral v/
But he has some of the funniest scenes in this
movie. .
Positive Positive v/
¥ 4 £ £ ¥

Figure 9: The predictions on the testset of Multi-source Set-
ting A.

three sentiment polarity. This indicates the robustness of our model
on unseen domains.

5 CONCLUSION

In this paper, we design a sequential multimodal learning strategy
to learn cross-domain invariant features for MSA. Specifically, we
first employ learnable masks and classifiers to learn the invari-
ant features from texts, and then select the invariant features of
videos, conditioned on the selected text features. The experiment
demonstrates the efficacy of our model in both single-domain and
multi-source domain settings. Based on extensive experiments, we
conclude that i) the learning order between modalities is important
for domain generalization performance, and ii) our learning strategy
prefers the selection of features that are statistically independent
to each other, in particular between modalities.

In the future, we will consider including more modalities, such
as audio modality, to analyze the correlation between cross-modal
invariant features in cross-domain scenarios.
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