Under review as a conference paper at ICLR 2024

FAST UNSUPERVISED DEEP OUTLIER MODEL SELEC-
TION WITH HYPERNETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Outlier detection (OD) has a large literature as it finds many applications in the
real world. Deep neural network based OD (DOD) has seen a recent surge of
attention thanks to the many advances in deep learning. In this paper, we consider
a critical-yet-understudied challenge with unsupervised DOD, that is, effective
hyperparameter (HP) tuning or model selection. While prior work report the
sensitivity of OD models to HP choices, it is ever so critical for the modern DOD
models that exhibit a long list of HPs. We introduce HYPER for HP-tuning DOD
models, tackling two key challenges: (1) validation without supervision (due to
lack of labeled outliers), and (2) efficient search of the HP/model space (due to
exponential growth in the number of HPs). A key idea is to design and train a novel
hypernetwork (HN) that maps HPs onto optimal weights of the main DOD model.
In turn, HYPER capitalizes on a single HN that can dynamically generate weights
for many DOD models (corresponding to varying HPs), which offers significant
speed-up. In addition, it employs meta-learning on historical OD tasks with labels
to train a performance estimator function, likewise trained with our proposed HN
efficiently. Extensive experiments on a testbed of 35 benchmark datasets show that
HYPER achieves 7% performance improvement and 4.2 x speed up over the latest
baseline, establishing the new state-of-the-art.

1 INTRODUCTION

With recent advances in deep learning, deep neural network (NN) based outlier detection (DOD)
has seen a surge of attention Pang et al.| (2021)); Ruff et al.| (2021)). These models, however, inherit
many hyperparameters (HPs); architectural (e.g. depth, width), regularization (e.g. dropout rate,
weight decay), and optimization HPs (e.g. learning rate). As expected, their performance is highly
sensitive to the HP settings Ding et al.| (2022). This makes effective HP or model selection critical,
yet computationally costly as the model space gets exponentially large in the number of HPs.

Hyperparameter optimization (HPO) can be written as a bi-level problem, where the optimal parame-
ters W™ (i.e. NN weights) on the training set depend on the hyperparameters .
A* = argm)\in Lo W*) st. W =arg H‘%n Lin(W; A))

where L, and Ly, denote the validation and training losses, respectively. There is a body of literature
on HPO for supervised settings |Bergstra & Bengio|(2012); Li et al.[|(2017); Shahriari et al.| (2016),
and several for supervised OD that use labeled outliers for validation |Li et al.|(2021; [2020); |Lai et al.
(2021)). While supervised model selection leverages Ly, unsupervised OD posits a unique challenge:
it does not exhibit labeled hold-out data to evaluate L,,. It is unreliable to employ the same L, loss
as Ly, as models with minimum training loss do not necessarily associate with accurate detection
Ding et al.|(2022) (e.g. autoencoder with low reconstruction error has likely missed the outliers).

1.1 RELATED WORK

Compared to the large body of work on new models for detection, prior work on unsupervised OD
model selection is quite slim. Earlier work proposed intrinsic measures for unsupervised model
evaluation, based on input data and output outlier scores Goix|(2016)); Marques et al.| (2015), or based
on consensus among various models [Duan et al.|(2020); Lin et al.| (2020), as well as properties of
the learned weights Martin et al.| (2021). As recent meta-analyses have shown, intrinsic measures
are quite noisy; only slightly and often no better than random Ma et al|(2023). Moreover, they
suffer from exponential compute cost in large HP spaces as they require training numerous candidate
models for evaluation. More recent solutions leverage meta-learning by selecting a model for a new

Under review as a conference paper at ICLR 2024

dataset based on how they perform on similar historical datasets Zhao et al.[(2021; 2022); Jiang et al.
(2023)). They are computationally slow in large HP spaces and cannot handle any continuous HPs.
Our proposed HYPER also leverages meta-learning, while it is more efficient with hypernetworks, and
is more effective by handling continuous HPs with a well-designed performance estimator function.
In experiments, we compare all the aforementioned baselines (see Fig. [5]and Table[C2).

1.2 PRESENT WORK

We introduce HYPER and tackle two key challenges with unsupervised DOD model selection: (Chl)
lack of supervision, and (Ch2) scalability as tempered by the cost of training numerous candidate
models. For (Chl), we employ meta-learning where the main idea is to train a performance estimator
function, f,,, which maps the input data, HPs A, and output outlier scores corresponding to A onto
detection performance on historical tasks. Note that meta-learning builds on past experience, i.e.
historical datasets with labels for which detection performance of various models can be evaluated.

Having substituted L, with meta-trained f,,;, one can adopt existing supervised HPO solutions
Feurer & Hutter| (2019) for model selection on a given/new dataset without labels. However, most of
those are susceptible to the scalability challenge, as they train each candidate model (with varying
A) independently from scratch. To address (Ch2) and bypass the expensive process of fully training
each candidate separately, we leverage hypernetworks (HN). This idea is inspired by the self-tuning
networks MacKay et al.| (2019), which estimate the best-response function that maps HPs A onto

optimal weights W* through a hypernetwork (HN) parameterized by ¢, i.e. \/7\\7¢()\) ~ W*,

A single auxiliary HN model can generate the weights of the main DOD model with varying HPs. In
essence, it learns how the model weights should change or respond to the changes in HPs (hence the
name, best-response). As one of our key contributions, besides the regularization HPs (e.g., dropout
rate) that STN MacKay et al.|(2019) considered, we propose a novel HN model that can also respond
to architectural HPs; including depth and width for DOD models with fully-connected layers.

In a nutshell, HYPER jointly optimizes the HPs A and the HN parameters ¢ in an alternating fashion.
Opver iterations, it alternates between (1) HN-training that updates ¢ to approximate the best-response
in a local neighborhood around the current hyperparameters via Ly, and then the (2) HPO step
that updates A in a gradient-free fashion by estimating detection performance through fy, of a large
set of candidate A’s sampled from the same neighborhood, using the corresponding approximate
best-response, i.e. the HN-generated weights.

Our HN model offers dramatic speed-ups, by dynamically generating weights for many candidate
models with varying HPs, as compared to freely training these candidates separately. Therefore, we
also utilize HNs during meta-training, where we replace independently training many models on
each historical dataset with a single HN. HN’s ability to produce weights for HPs unseen during
HN-training also makes it an attractive design choice for continuous-space HPO.

Summary of contributions. HYPER addresses the model selection problem for unsupervised
deep-NN based outlier detection (DOD), applicable to any DOD model, and is efficient despite the
large continuous HP space including regularization as well as NN architecture HPs. HYPER’s notable
efficiency is thanks to our proposed hypernetwork (HN) model that generates DOD model parameters
(i.e. NN weights) in response to changes in the HPs—in effect, we leverage a single HN acting like
many DOD models. Further, it offers unsupervised tuning thanks to a performance estimator function
trained via meta-learning on historical tasks, which also benefits from the efficiency of our HN.

We compare HYPER against 8 baselines through extensive experiments on 35 benchmark datasets.
HYPER achieves the best performance-runtime trade-off, and selects models with statistically better
detection than all baselines (see Fig. [5). Notably, it offers 30% performance improvement over the
default HPs, and 7% improvement with 4.2x speed-up over the latest method ELECT [Zhao et al.
(2022)) (see Table [C_?] in Appx.), thus establishing the new state-of-the-art.

Accessibility and Reproducibility. See repo. https://github.com/inreview23/HYPER

2 PRELIMINARIES

2.1 PROBLEM AND CHALLENGES

The sensitivity of outlier detectors to hyperparameter (HP) choices is well studied (Campos et al.
(2016a). Deep-NN models are no exception, in fact are even more sensitive as they have many more
HPs Ding et al.|(2022)). In fact, it would not be an overstatement to point to unsupervised outlier

https://github.com/inreview23/HYPER

Under review as a conference paper at ICLR 2024

model selection as the primary obstacle to unlocking the ground-breaking potential of deep-NNs for
OD. This is exactly the problem we consider in this work.

Problem 1 (Unsupervised Deep Outlier Model Selection (UDOMS)) Given a new input dataset
(i.e., detection taslﬂ) Direst = (Xiesr, §) without any labels, and a deep-NN based OD model M ;
Output model parameters corresponding to a selected hyperparameter configuration A € A to
employ on X5 to maximize M ’s detection performance.

Desiderata. Our work tackles two key challenges that arise when tuning OD models with deep NNs:
(1) Validation without supervision, and (2) Large HP/model space.

First, unsupervised OD does not exhibit any labels and therefore model selection via validating
detection performance on labeled hold-out data is not possible. While model parameters can be
estimated end-to-end through unsupervised training losses, such as reconstruction error or one-class
losses, one cannot reliably use the same loss as the validation loss; in fact, low error could easily
associate with poor detection since most DOD models use point-wise errors as their outlier scores.

Second, model tuning for the modern OD techniques based on deep-NNs with many HPs is a much
larger scale ball-game than that for their shallow counterparts with only 1-2 HPs. This is both due to
their (¢) large number of HPs and also (i¢) longer training time they typically demand. In other words,
the model space that is exponential in the number of HPs and the costly training of individual models
necessitate efficient strategies for effective search.

2.2 HYPERNETWORKS

We approach the challenge of efficiently searching the HP space with the help of hypernetworks, for
which we provide necessary background in this section.

In principle, a hypernetwork (HN) is a (usually small) network generating weights (i.e. parameters)
for another larger network (called the main network) Ha et al.| (2017). As such, one can think of the
HN as a “model compression” tool for training, one that requires fewer learnable parameters. HNs
have been used mainly for parameter-efficient training of large models with diverse architectures
MacKay et al.| (2019),Brock et al.| (2018)), Zhang et al.[|(2019).Knyazev et al.|(2021) as well as for
diverse learning tasks |[Przewigzlikowski et al.[(2022)), [von Oswald et al.| (2020)).

Historically, HNs can be seen as the birth-child of the “fast-weights” concept by |[Schmidhuber| (1992),
where one network produces context-dependent weight changes for another network. The context, in
our as well as several other work Brock et al.[(2018)); MacKay et al.| (2019), is the hyperparameters
(HPS)EI That is, we train a HN model that takes the (encoding of) HPs of the (main) DOD model as
input, and produces HP-dependent weight changes for the DOD model that we aim to tune. Training
a single HN that can generate weights for the (main) DOD model for varying HPs can effectively
bypass the cost of fully-training those candidate models separately. This offers dramatic speed up
during model search where one trained (HN) model acts like multiple trained (DOD) models.

3 PROPOSED FRAMEWORK FOR UDOMS: HYPER

Overview. HYPER consists of two phases (see Fig. [I): (§3.I) offline meta-training over historical
datasets, and (§3.2) online model selection for the test dataset. First we train the performance
estimator f, offline, which allows us to predict model performance on the test dataset without
relying on any labels. Given a new task online, we alternate between training our HN to efficiently
generate model weights for varying HPs around a local HP neighborhood, and refining the best HPs
at the current iteration based on fy,’s predictions for many locally sampled HPs.

We present the offline and online phases in detail as follows, and later in §4]describe the specifics of
our proposed HN, which is employed in both phases for efficient model training.

3.1 META-TRAINING (OFFLINE ON HISTORICAL DATASETS)

Through meta-learning the goal is to transfer supervision from labeled historical datasets, Dyyin =
{D; = (Xi,yi)}I. to enable model performance evaluation on a new dataset without labels. To
that end, we train f,, to map {data_embedding, model_embedding, HP_config} onto

'Throughout text, we use outlier detection fask and dataset interchangeably.
*We remark that iiypernetworks need not depend in any form to hyperparameters, as the naming similarity
may (incorrectly) suggest. In fact, earlier work used HNs for model compression rather than model/HP selection.

Under review as a conference paper at ICLR 2024

BEFORE D = (X y) PROPOSED HN-generated weights
for DOD Model
ips (M, 01—'—’1’1 (N I—HN(, 9> W, (A))
Reg. & d) 9 y

X_1 02—:#72 |:A>“" o - Ot i
o i} O, b P

Multiple Model perf.| Single .

DOD Model training HN model training
§3.1 Meta-Training (Offline) { (X, O,)\ } @ — p] on all D € Dy ain
Locally-sampled HN-generated weights Sample S around Acyrr x x A ES
HPs around Acurr for DOD Model -~ . LS

I oo | oI o)

v
Xpest (M)~ Oy Xtest—r»*OAA,—* Ps
o alternate
(1) HN model training v. - (2) Update Acurr := argmaxy s Psg

§3.2 Model Selection (Online on New Dataset): alternate between (1) & (2)

Figure 1: HYPER framework illustrated. (top) Offline meta-training of performance estimator fy, (depicted in
) on labeled historical datasets Diin (@; (bottom) Online model selection on a new unlabeled dataset Xie
(§32). We accelerate both meta-training and model selection using hypernetworks (HN) (depicted in ; §f).

the corresponding model performance across Dypin. fvar 1S then employed to predict performance
solely from characteristics of (1) the input data, (2) the trained model, and (3) the HP values.

Data Embedding. Datasets may have different feature and sample sizes (Appx. §C.IJ), which makes
it challenging to learn dataset embeddings. To address this, we use feature hashing Weinberger et al.
(2009), v (), to project a dataset to a k-dimensional unified feature space. Then, we train a feature
extractor h(-), a fully connected neural network, to map hashed samples to their corresponding
outlier labels, i.e. h : ¥(X) — y, where (X,y) denotes a historical dataset with labels. In effect,
embeddings by h(-) is expected to capture outlying characteristics of datasets. Finally, we use max-
pooling to aggregate sample-wise representations into dataset-wise embeddings by pool{h()(X))}.
Model Embedding. To represent a trained DOD model with HP-config. A, we train a neural network
g(+) that maps its set of output outlier scores onto detection performance, i.e. g : Ox — p. To handle
set-size variability of outlier scores (due to different size datasets), we employ DeepSet|Zaheer et al.
(2017) for g(+), and use the pooling layer’s output as the model embedding by pool{g(Ox)}.

Training an Effective and Efficient f,, for Validation without Supervision. Given a DOD
algorithm M for UDOMS, let M; denote the model with HP configuration A; from the set Ayeta =
{A1,..., A} € A HYPER uses Dy,in to compute (1) historical outlier scores O ;, as output by
each M on each D; € Diyin; and the corresponding (2) historical performance p; ;, denoting M;’s
detection performance (e.g. AUROC) on D;, calculated based on the scores O; ; and the labels y;.

Regression. As shown in Fig. [I| (top), the idea of fyq is to learn a mapping (e.g. lightGBM Ke
et al.|(2017) or any other regressor) from (1) input data embedding, (2) model embedding (based on
model output, i.e. outlier scores), and (3) given HP configuration onto the corresponding detection
performance across n historical datasets and m models (i.e. configurations). Specifically,

feal : {Ipool{h(w(Xi))}l, IPOOI{Q(OM)}Ia X b, ie{l,.. o n}l jef{l,...om}.

data embed. model embed. I—IE;

Further details on fy, are given in Appx. Notably, provided with the functions ¥ (-), h(-), g(-),
and the trained fy,, we can predict a given model’s performance on a new task without any labels.
Speed-up. Obtaining model embeddings requires the outlier scores and hence training the DOD
model for each HP configuration, which can be computationally expensive (see Fig. [1| (top, left)).
To address this efficiency issue, we train our proposed HN (details presented in §4)) only once per
dataset across m different HP configurations, which generates the weights and outlier scores for all
models, significantly speeding up the meta-training phase (see Fig. [1| (top, right)).

Under review as a conference paper at ICLR 2024

Algorithm 1 HYPER: Online Model Selection

Input: test dataset Dies = (Xiest, §) HN parameters ¢, HN learning rate ce, HN loss function Lpn(+), perfor-
mance estimator fva, HN (re-)training epochs 7', validation objective G(-), patience p
Output: optimized HP configuration A* for the test dataset

1: Initialize Acyrr and Ocyrr; et current best HP X* := Acuyr; sampled set of HPs S := ()

2: while patience criterion p is not met do

3 fort=1,...,Tdo

4 € ~ p(€|ocur) » sample local HP perturbations around current Acyrr
5 b+ a%ﬂm()\cm + €, Wy (A + €)) » train the HN with the sampled local HPs
6: S:=8U Aanr +€) » save locally sampled HPs
7 end for .

8 Acurr <= argmaxy ¢ p G(A, Ocur, Wep (A + €)) » update Acur by Eq. H
9: o ¢ argmax, G(Aar, o, \/7\7¢(Acm +¢€)) » update o by Eq. tﬂl
10: end while -
11: Output the best HP A" & argmax, s fral(Xiest, W (A), A) » Eq.

3.2 MODEL SELECTION (ONLINE ON NEW DATASET)

Model selection via performance estimator. Given our meta-trained fy,, we can train DOD models
with randomly sampled HPs on the test dataset to obtain outlier scores, and then select the one with
the highest predicted performance by fya, that is, argmaxyca fvai(Xeest; Oest,x, A) -

Training OD models from scratch for each HP can be computationally expensive. To speed this
up, we propose to build a HN to generate model weights and subsequently the outlier scores for
randomly sampled HPs. Parameterized by ¢, the HN maps a given HP configuration A; to the

weights \/7\\/'4,()\]-) := HN();; ¢), which are effectively the predicted parameters of the DOD model
under HP configuration \;. (See details in) As the DOD model weights also dictate the output
outlier scores Oy, we abuse notation and use them interchangeably as input to fy in this section.

Training local HN iteratively and adaptively. We propose to iteratively train our HN over locally
selected HPs, since training a “global HN” to predict weights across the entire A and over unseen A
is a challenging task especially for large model spaces MacKay et al.|(2019), impacting the quality of
model selection. We design HYPER to jointly optimize the HPs A and the (local) HN parameters ¢
in an alternating fashion; as shown in Fig.] (bottom) and Algo. [I] It alternates between:

1. HN-training that updates HN parameters ¢ to approximate the best-response in a local
neighborhood around the current hyperparameters Agy via Ly, and
2. HPOpt that updates A, in a gradient-free fashion by estimating detection performance
through f,. of a large set S of candidate A’s sampled from the same neighborhood, using the
corresponding approximate best-response, i.e. the HN-generated weights, W 4 ().
To dynamically control the sampling range around A, We use a factorized Gaussian with standard

deviation o to generate local HP perturbations p(€|o). oy is used during HN-training for sampling
local HPs and gets updated during HPOpt at each iteration.

Updating Acyr and ocyr. HYPER iteratively explores promising HPs and the corresponding
sampling range. To update Ay and o, We maximize the following objective.

Eewp(e|o-)[fval(xtesta “ ¢(>‘+ 6)a>‘ + 6)] + T H(p(€|0')) (3)
L 1 _
update Ay to a better model/HPs w/ high expectation sampling range around Acurr

The objective consists of two terms. The first term emphasizes selecting the next model/HP configura-
tion with high expected performance, aiming to improve the overall model performance. The second
term measures the uncertainty of the sampling factor, quantified with Shannon’s entropy H. A higher
entropy value indicates a less localized sampling, allowing for more exploration. The objective is
to find an HP configuration that can achieve high expected performance, within a reasonably local
region to contain a good model, that is also local enough for the HN to be able to effectively learn the
best-response. If the sampling factor o is too small, it limits the exploration of the next HP configura-
tion and training of the HN, potentially missing out on better-performing options. Conversely, if o is
too large, it may lead to inaccuracies in the HN’s generated weights, compromising the accuracy of
the first term. The balance factor 7 controls the trade-off between the two terms.

Under review as a conference paper at ICLR 2024

We approximate the expectation term in Eq. (3)) by the empirical mean of predicted performances
through V' number of sampled perturbations around A. Then, we define our validation objective G as

G\ o, Wy) = vaal Xies Wo(A+ €), A+ ;) + TH(p(€|o)) . 4)
i=1
In each iteration of the HP configuration update, we first fix o and find the HP configuration
with the highest value of Eq. (). Specifically, we sample V), local configurations around Ay, i.e.,
Aaurr + €Oy fori € 1,..., V. After Aqyy is updated, we fix it and update the sampling factor
ocurr by Eq. (@) based on V,, samples of . To ensure encountering a good HP configuration, we set
V) and V;, to be a large number, e.g. 500. (see specific settings in Appx. §C.2})

Selecting the Best Model/HP *. We employ f, to choose the best HP A* from all the locally
sampled HPs S during the HN training. Note that HYPER directly uses the HN-generated weights

\/7\\/'¢()\) for fast computation, without the need to build any model for evaluating by fy,. That is,

A" ~ argmax fval(Xlesta Wq.’w()\)v A) . ©)
xes
Initialization and Convergence. We initialize A.,; and o, with the globally best values across
historical datasets. We consider HYPER as converged if the highest predicted performance by fy.
does not change in p consecutive iterations. A larger p, referred as “patience”, requires more iterations
to converge yet likely yields better results. Note that p can be decided by cross-validation on historical
datasets during meta-training. See Appx. §C.3|for analysis of initialization and patience.

4 PROPOSED HYPERNETWORK FOR SPEED UP — TRAIN ONE, GET MANY

To tackle the challenge of model-building efficiency, we design hypernetworks (HN) that can effi-
ciently train OD models with different hyperparameter configurations. A hypernetwork (HN) is a
network generating weights (i.e. parameters) for another network (in our case, the DOD model) Ha
et al. (2017). Our input to HN, A € A, breaks down into two components as A = [)\Teg, Aarch)s
corresponding to regularization HPs (e.g. dropout, weight decay) and architectural HPs.

Our HN resolves three challenges: (Ch.I) its fixed-size output Wd) must be able to adjust to different

architectural shapes, (Ch.II) {7\V¢,()\) should output sufficiently diverse weights in response to varying
A inputs, and (Ch.III) training HN should be more efficient than training individual DOD models.

- (4x5x5)
Parer) A {0,105 Daren) Acidl}
A=A, [4,2,4,5] — | A A= [Areg, [3,0,0,5]] ——

A
O) © G JPE‘*“””') W)
HN(-,) HN(-, ¢)

Wo(N)s| © ®_‘
No op
Zero Masking — [Wa(A)4 © EE—» Wy(A)4 €
NW Output Output

Figure 2: Illustration of the proposed HN. Left: HN generates weights for a 4-layer AE, with layer widths

equal to [4, 2,4, 5]. Weights V/Vd, is fed into the DOD model, while hidden layers’ dimensions are shrunk by the
masking A. Right: HN generates weights for a 2-layer AE, with layer widths equal to [3, 5]. Aqrcn is padded as

No op

[epom'aoq
lepom'uou

Wo(N)s

[3,0,0, 5], and the architecture masking at the second and third layer are set to all zeros. When W g is fed into
the DOD model, zero masking enables the No-op, in effect shrinking the DOD model from 4 layers to 2 layers.

Architecture Masking for (Ch.I) To allow HN output to adapt to various architectures, we let \/7\\74)’5
size be equal to size of the largest architecture in model space A. Then for each Ayycn, we build a

corresponding architecture masking A and feed the A-masked version of W¢ to the DOD model. In
other words, our W¢, handles all smaller architectures by properly padding zeros on the W¢,

Taking DOD models built upon MLPs as an example (see Fig. , we make HN output W¢ €

RP*WxW) “\where D and W denote the maximum depth and maximum layer width from A.
Assume A\, contains the abstraction of a smaller architecture; e.g., L layers with corresponding

Under review as a conference paper at ICLR 2024

width values {Wy, W ..., W} all less than or equal to W. Then A,,..r, € NP is given as
Aarch = [Wla WQa B WLL/2j7 0,...,0 7WLL/2J+17 EERE) W(L71)7 WL] .

(D—L) zeros

The architecture masking A € {0, 1}(P*W>W) i5 constructed as the following:

{A[Z,O:AM.C;L[O],:] =1 Jfl =0
A[l’O:AaTch [l]vozkarch [l_z]] =1 ’ OtherWISe

(6)

where Agrcn[l — 2] is the last non-zero entry in Age [0 : 1] (e.g., for Agren = [5,3,0,0,3] and [= 4,
the last nonzero entry is Ag;-c; [1] where z = 3). Then, I’th layer weights are multiplied by masking
as Ajp..) © Wy i, where non-zero entries are of shrunk dimensions. If A . ;) contains only zeros,
layer weights become all zeros, representing a "No-op" (and DOD model ignores this layer).

Other Architectures. We find that this masking works well with linear autoencoders with a "hour-
glass" structure, in which case the maximum width W is the input dimension. For networks built with
convolutions, on the other hand, the architecture masking becomes A € {0, 1}D XMep X Mep X My X My, |
where D, M.y, M}, represent maximum number of layers, channels, and kernel size specified in
A, respectively. Here we abbreviate the masking procedure: Channels, similar to the previously
discussed widths, are padded by masking out the second dimension of the A tensor. When we
need a smaller kernel size k < M), at layer [, the corresponding Aj; . . ; pads zeros around the size

M.y, x k x k center. The masked weights Ay . ..} © W are equivalent to obtaining smaller-size
kernel weights, as shown in Wang et al.| (2020). Further details of masking and constructing the
Aaren input for other architectures can be found in Appx.

Diverse Weight Generation for (Ch.II) While HN is a universal function approximator in theory, it
may not generalize well to offer good approximations for many unseen architectures], especially
given that the number of A’s during training is limited. When there is only little variation between
two inputs A; and Aj/, the HN provides more similar weights W (\;) and W (), since the
weights are generated from the same HN where implicit weight sharing occurs.

We employ two ideas toward enabling the HN to generate
more expressive weights in response to changes in Ag.ch.
First is to inject more variation within its input space where, 1
instead of directly feeding in A,,.cx, we input the positional §
encoding of each element in A,,..;. Positional encoding §
Vaswani et al.|(2017) transforms each scalar element intoa -
vector embedding, which encodes more granular informa- .
tion, especially when A,,.c, contains zeros representing a
shallower sub-architecture. Second idea is to employ a sched- o w0
uled training strategy of the HN as it produces weights for

both shallow and deep architectures. During HN training, we Figure 3: Loss of individual models dur-
train with X associated with deeper architectures first, and ing scheduled training. Lighter colors de-
later A for shallower architectures are trained jointly with pict loss curves of deeper architectures,
deeper architectures. Our scheduled training alleviates the ~Which enter training carly.

problem of imbalanced weight sharing, where weights associated with shallower layers are updated
more frequently as those are used by more number of architectures. Fig. [3] (best in color) illustrates
how the training losses change for individual architectures during the HN’s scheduled training.

Batchwise Training for (Ch.IIT) Like other NNs, HN allows for several inputs {\;}72, syn-

chronously and outputs {{N\I(b()\j) j=1- To speed up training, we batch the input at each forward

step with a set of different architectures M to obtain {Agych,; }je s, Which pair with a sampled
regularization HP configuration, A,.g ;. Given dataset D, the HN loss for one pass is calculated as

£hn = Z Z £tm (W¢([Aarch7lj» ATE.(]?S])) X) . (7)
xeD jeM
In summary, our HN mimics fast DOD model building across different HP configurations. This offers
two advantages: (¢) training many different HPs jointly in meta-training and (¢7) fast DOD model
parameter generation during online model search. Notably, our HN can tune a wider range of HPs
including model architecture, and as shown in provides superior results to only tuning A.cg.

200 300 400 500 600 700 800

Num of Epochs

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

Benchmark Data. We show HYPER’s effectiveness and efficiency with fully connected AutoEncoder
(AE) for DOD on tabular data, using a testbed consisting of 35 benchmark datasets from two different
public OD repositories; ODDS [Rayana| (2016) and DAMI|Campos et al| (2016b)). See Appx. [C.I|for
detailed descriptions of the datasets in both repositories.

Baselines. We include 8 baselines for comparison ranging from simple to state-of-the-art (SOTA);
Appx. Table[C2]provides a conceptual comparison of the baselines. Briefly, they are organized as

(i) No model selection: (1) Default adopts the default HPs used in the popular OD library PyOD

Zhao et al.[(2019), (2) Random picks an HP randomly (we report expected performance);

(i) Model selection without meta-learning: (3) MC|Ma et al.[(2023) leverages consensus; and

(iii) Model selection by meta-learning: (4) Global Best (GB) selects the best performing model

on the historical datasets on average, and SOTA baselines include (5) ISAC Kadioglu et al.

(2010), (6) ARGOSMART (AS) Nikolic et al.|(2013), (7) MetaOD [Zhao et al.| (2021, and
finally the latest SOTA (8) ELECT Zhao et al.| (2022).

Baselines (1), (2), and (4)-(7) are zero-shot that do not require any candidate model building during
model selection. More detailed descriptions of the baselines are given in Appx. §C.2]

Evaluation. We use 5-fold cross-validation to
split the train/test datasets; that is, each time
we use 28 datasets as the historical datasets to
select models on the remaining 7 datasets. We
use the area under the ROC curve to measure de-
tection performance, while it can be substituted
with any other measure. As the raw ROC per-
formances are not comparable across datasets
with varying difficulty, we report the normalized
ROC Rank of an HP/model, ranging from 0O (the
best) to 1 (the worst)—i.e., the lower the better.
We use the paired Wilcoxon signed rank test
Groggel (2000) across all datasets in the testbed
to compare two methods. Full performance re-
sults on all 35 datasets are in Appx. §C.4

5.1

Fig. [4shows that HY PER outperforms all base-
lines with regard to the average ROC Rank
on the 35 dataset testbed. It also strikes a good

EXPERIMENT RESULTS

balance between computation and performance.

In addition, Fig. [3] provides the full perfor-
mance distribution across all datasets and shows
that HYPER is statistically better than all base-
lines, including SOTA meta-learning based
ELECT and MetaOD. Among the zero-shot
baselines, Default and Random perform signif-
icantly poorly while the meta-learning based
GB leads to comparably higher performance.
Replicating earlier findings Ma et al.|(2023)), the
internal consensus-based MC, while computa-
tionally demanding, is no better than Random.

HN-powered efficiency enables HYPER to
search more broadly. Fig. M| shows that
HYPER offers significant runtime gains over
the SOTA method ELECT, with an average of-

1] i 4.2x faster | [ours
e 0-3 1pareto frontier ,*T¢< = @ cELecT
P R MC
= , e @ P MetaOD
2 0.4 - . £ GB
© - e]
£ 7 4 ISAC
& R 8 AS
= X () Default
€ 0.5 1) gk Random
8 ©

X
@ gp a
=] {
0649

1 10 100
Avg. runtime at test (mins) in log-scale
Figure 4: Avg. running time (log-scale) vs. avg. model
ROC Rank. Meta-learning methods are depicted with
solid markers. Pareto frontier (red dashed line) shows
the best methods under different time budgets. HYPER
outperforms all with reasonable computational demand.

OusH{ —m— [H

ELECT { m— T H
MetaOD™* { —m [}

Isac”" 4 —— T 1+

GB" 4+—— [+

Random™™ ™ - o —{T1H++

McrrtA—— T ——

A — T F—

Default™™ q { [—

Ours (reg&width)** { —— T 1—
Ours (reg8depth) ™" 4 —————— [+H—
Ours (reg only)™™ ™ 1 '.—.ﬁl—.|_|.
10 08 06 04 02 00

ROC Rank (lower the better)

Figure 5: Distribution of ROC Rank across datasets.
HYPER achieves the best performance among all. Bot-
tom three bars depict HYPER’s variants that do not fully
tune architectural HPs (for ablation). Paired significance
test results are depicted as *significance at 0.1, **at 0.01,
“*at 0.001. See p-values in Appx. Table[C3]

fline training speed-up of 5.8 and a model selection speed-up of 4.2x. Unlike ELECT, which
requires building OD models from scratch during both offline and online phases, HYPER leverages
the HN-generated weights to avoid costly model training for each candidate HP.

Under review as a conference paper at ICLR 2024

Moreover, HYPER can search over a broader range of the HP space thanks to the lower model training
cost by HN. This contributes to its effectiveness, yielding 7% improvement in avg. ROC Rank over
ELECT and 10% improvement over the latest meta-learning baseline MetaOD (see Table [C2] Appx.).

Meta-learning methods achieve the best performance at different budgets. Fig. [4|shows that the
best performers at different time budgets are global best (GB), MetaOD, and HYPER, which are all on
the Pareto frontier. In contrast, simple no-model-selection approaches, i.e., Random and Default, are
among the lowest performing methods. Based on Table[C2] HYPER achieves respectively 20% and
30% improvements in avg. ROC Rank over Random picking and Default HPs in PyOD [Zhao et al.
(2019), a widely used open-source OD library. Although meta-learning entails additional (offline)
training time, it is to amortize across multiple future model selection tasks in the long run.

5.2 ABLATION STUDIES (SEE OTHERS IN APPX. ~|

Benefit of Tuning Architectural HPs via HN. HYPER tackles the challenging task of accom-
modating architectural HPs. Through ablations, we study the benefit of our novel HN design, as
presented in §4] which can generate DOD model weights in response to changes in architectural HPs.
Bottom three bars of Fig. [5]show the performances of three HYPER variants across datasets. The
proposed HYPER (with median ROC Rank = 0.1349) outperforms all these variants significantly (with
p<0.001), namely, only tuning regularization and width (median ROC Rank = 0.2857), only tuning
regularization and depth (median ROC Rank = 0.3095), and only tuning regularization (median ROC
Rank = 0.3650). By extending its search for both neural network depth and width, HYPER explores a
larger model space that helps find better-performing model configurations.

HP Schedules over Iterations. In 2 ot 997 9107 x
. T 071 = 008 /by
Fig. [6] we more closely analyze _ o]] 5317 88077 »
g S g 054 S 008] r
how the HP values change over g g S 04+ *+ Eo0a] ¥
: . 4jhkhAdkhkrad T 21 S 039 Hy 20031
HYPER iterations on spamspace, £ 927 20021 |
2T 1 -SRI S .0 0.00 FF———r+1
where we compare between (top) 123456780910 123456780910 o0 12345678910 12345678910
Ol'lly tuning the I'Cg. HPS namely # iterations # iterations # iterations # iterations
? 8 4 0.9 0.10
the dropout and weight decay rates, $. 087 5081
. . . 6 3 5 0.6 0L
while fixing model depth and width § g N égf S 0061 N
. . n { | 9 4 < 4 1
(i.e., shrinkage rate) and (bottom) © 4jckaddmsads 24 1 o SO | @ §§§ %o
. : : G | ma 014 ./ ¥ So0d/ ” Y
tuning all HPs including both reg. .l R il S R A (AR S -
. 12345678910 12345678910 12345678910 12345678910
and aIChlteCtural HPS Bottom ﬁg' # iterations # iterations # iterations # iterations

ures show that depth remains fixed Figure 6: Trace of HP schedules over HYPER iterations on
at 4, shrinkage rate increases from spamspace: (top) tuning only regularization HPs; (bottom) tuning
1 to 2.25 (i.e., width gets reduced), both regularization and architectural HPs (proposed). When architec-
while dropout and weight decay re- ture is fixed, reg. HPs incur more changes in magnitude and reach
duce to 0.2, and 0.05 respectively; larger values to adjust model complexity. HYPER tunes complexity
in other words, overall model capac- more flexibly by also accommodating architectural HPs.

ity is reduced relative to initialization. In contrast, top figures show that when model depth and width
are fixed, regularization HPs compensate more to regulate the model capacity, with a larger dropout
rate at 0.4 and larger weight decay at 0.08, achieving ROC rank of only 0.3227 (top) in contrast to
proposed HYPER’s 0.0555 (bottom). This comparison showcases the merit of HYPER which adjusts
model complexity more flexibly by being able to accommodate a larger model space.

6 CONCLUSION

We introduced HYPER, a new framework for unsupervised deep outlier model selection. HYPER
tackles two key challenges in this setting: validation in the absence of labels and efficient search of
the large hyperparameter (HP)/model space. To that end, it uses meta-learning to train a performance
estimator fy, on historical datasets to effectively predict model performance on a new task without
labels. To speed up search, it utilizes a novel hypernetwork (HN) design that generates weights for the
detection model with varying HPs including its architecture, and achieves significant efficiency gains
over individually training the candidate models. Experiments on a testbed of 35 benchmark datasets
showed that HYPER significantly outperforms all 8 baselines, establishing the new state-of-the-art.

We also discuss limitations and possible extensions of HYPER: Future work can aim to design a better
fval estimator, e.g. by improving dataset and model representations; explore other HP optimization
strategies for search, which was not our main focus; and develop other HN designs with lower
memory requirement as our focus has not been a small HN that also provides model compression.

Under review as a conference paper at ICLR 2024

REFERENCES

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281-305, 2012. URL http://dblp.uni-trier.de/db/journals/
Jmlr/Jmlrl3.html#BergstraBl2.

Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston. Smash: One-shot model
architecture search through hypernetworks. In ICLR (Poster). OpenReview.net, 2018.

Guilherme Oliveira Campos, Arthur Zimek, Jorg Sander, Ricardo J. G. B. Campello, Barbora
Micenkova, Erich Schubert, Ira Assent, and Michael E. Houle. On the evaluation of unsupervised
outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Discov., 30(4):
891-927, 2016a.

Guilherme Oliveira Campos, Arthur Zimek, Jorg Sander, Ricardo J. G. B. Campello, Barbora
Micenkovd, Erich Schubert, Ira Assent, and Michael E. Houle. On the evaluation of unsupervised
outlier detection. DAMI, 30(4):891-927, 2016b.

Xueying Ding, Lingxiao Zhao, and Leman Akoglu. Hyperparameter sensitivity in deep outlier
detection: Analysis and a scalable hyper-ensemble solution. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022.

Sunny Duan, Loic Matthey, Andre Saraiva, Nick Watters, Christopher Burgess, Alexander Lerchner,
and Irina Higgins. Unsupervised model selection for variational disentangled representation
learning. In /CLR. OpenReview.net, 2020. URL http://dblp.uni-trier.de/db/conf/
iclr/iclr2020.html#DuanMSWBLH2O0.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pp. 3-33, 2019.

Nicolas Goix. How to evaluate the quality of unsupervised anomaly detection algorithms?
CoRR, abs/1607.01152, 2016. URL http://dblp.uni-trier.de/db/journals/
corr/corrl607.html#Goix16l

David J. Groggel. Practical nonparametric statistics. Technometrics, 42(3):317-318, 2000.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR (Poster). OpenReview.net,
2017.

Mingqi Jiang, Chaochuan Hou, Ao Zheng, Songqgiao Han, Hailiang Huang, Qingsong Wen, Xiyang
Hu, and Yue Zhao. Adgym: Design choices for deep anomaly detection. Advances in Neural
Information Processing Systems, 36, 2023.

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. Isac - instance-specific
algorithm configuration. In ECAI, volume 215, pp. 751-756, 2010.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Parameter
prediction for unseen deep architectures. Advances in Neural Information Processing Systems, 34:
29433-29448, 2021.

Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile Chen,
Purav Zumkhawaka, Minyang Wan, Diego Martinez, and Xia Hu. TODS: an automated time
series outlier detection system. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 16060-16062. AAAI Press, 2021. URL |https://o0js.aaail
org/index.php/AAATI/article/view/18012.

10

http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#DuanMSWBLH20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#DuanMSWBLH20
http://dblp.uni-trier.de/db/journals/corr/corr1607.html#Goix16
http://dblp.uni-trier.de/db/journals/corr/corr1607.html#Goix16
https://ojs.aaai.org/index.php/AAAI/article/view/18012
https://ojs.aaai.org/index.php/AAAI/article/view/18012

Under review as a conference paper at ICLR 2024

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-
band: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res.,
18:185:1-185:52, 2017. URL http://dblp.uni-trier.de/db/journals/Jmlr/
Jmlrl18.html#LiJDRT17.

Yuening Li, Daochen Zha, Praveen Kumar Venugopal, Na Zou, and Xia Hu. Pyodds: An end-to-
end outlier detection system with automated machine learning. In Amal El Fallah Seghrouchni,
Gita Sukthankar, Tie-Yan Liu, and Maarten van Steen (eds.), Companion of The 2020 Web
Conference 2020, Taipei, Taiwan, April 20-24, 2020, pp. 153—-157. ACM / IW3C2, 2020. doi:
10.1145/3366424.3383530. URL https://doi.org/10.1145/3366424.3383530.

Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, and
Xia Hu. Autood: Neural architecture search for outlier detection. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp. 2117-2122.
IEEE, 2021. doi: 10.1109/ICDE51399.2021.00210. URL https://doi.org/10.1109/
ICDE51399.2021.00210.

Zinan Lin, Kiran Thekumparampil, Giulia Fanti, and Sewoong Oh. InfoGAN-CR and ModelCen-
trality: Self-supervised model training and selection for disentangling GANSs. In International
Conference on Machine Learning, pp. 6127-6139. PMLR, 2020.

Martin Q Ma, Yue Zhao, Xiaorong Zhang, and Leman Akoglu. The need for unsupervised out-
lier model selection: A review and evaluation of internal evaluation strategies. ACM SIGKDD
Explorations Newsletter, 25(1), 2023.

Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and Le-
man Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering, 2021.

Matthew MacKay, Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger B. Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions. In
ICLR (Poster). OpenReview.net, 2019.

Henrique O. Marques, Ricardo J. G. B. Campello, Arthur Zimek, and J6rg Sander. On the internal
evaluation of unsupervised outlier detection. In SSDBM, pp. 7:1-7:12. ACM, 2015. URL http:
//dblp.uni-trier.de/db/conf/ssdbm/ssdbm2015.html#MarquesCZS15.

Charles H Martin, Tongsu Peng, and Michael W Mahoney. Predicting trends in the quality of
state-of-the-art neural networks without access to training or testing data. Nature Communications,
12(1):4122, 2021.

Mladen Nikolic, Filip Maric, and Predrag Janicic. Simple algorithm portfolio for sat. Artif: Intell.
Rev., 40(4):457-465, 2013.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1-38, 2021.

Marcin Przewigzlikowski, Przemystaw Przybysz, Jacek Tabor, M Zigba, and Przemystaw Spurek.
Hypermaml: Few-shot adaptation of deep models with hypernetworks. arXiv preprint
arXiv:2205.15745, 2022.

Shebuti Rayana. ODDS library, 2016.

Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek,
Marius Kloft, Thomas G Dietterich, and Klaus-Robert Miiller. A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE, 109(5):756-795, 2021.

Jirgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131-139, 1992.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proc. IEEE, 104(1):148-175, 2016.
doi: 10.1109/JPROC.2015.2494218. URL https://doi.org/10.1109/JPROC.2015!
2494218.

11

http://dblp.uni-trier.de/db/journals/jmlr/jmlr18.html#LiJDRT17
http://dblp.uni-trier.de/db/journals/jmlr/jmlr18.html#LiJDRT17
https://doi.org/10.1145/3366424.3383530
https://doi.org/10.1109/ICDE51399.2021.00210
https://doi.org/10.1109/ICDE51399.2021.00210
http://dblp.uni-trier.de/db/conf/ssdbm/ssdbm2015.html#MarquesCZS15
http://dblp.uni-trier.de/db/conf/ssdbm/ssdbm2015.html#MarquesCZS15
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218

Under review as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4al845aa—-Paper.pdfl

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and Jodo Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URLhttps://arxiv.org/abs/1906.00695.

Xiaoxing Wang, Chao Xue, Junchi Yan, Xiaokang Yang, Yonggang Hu, and Kewei Sun. Mergenas:
Merge operations into one for differentiable architecture search. In Christian Bessiere (ed.),
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-
20, pp. 3065-3072. International Joint Conferences on Artificial Intelligence Organization, 7 2020.
doi: 10.24963/ijcai.2020/424. URL https://doi.org/10.24963/1jcai.2020/424,
Main track.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th annual international
conference on machine learning, pp. 1113-1120, 2009.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
In ICLR (Poster). OpenReview.net, 2019.

Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.
Journal of Machine Learning Research, 20:1-7, 2019.

Yue Zhao, Ryan Rossi, and Leman Akoglu. Automatic unsupervised outlier model selection. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Yue Zhao, Sean Zhang, and Leman Akoglu. Toward unsupervised outlier model selection. In /IEEE
International Conference on Data Mining, ICDM, pp. 773-782. IEEE, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1906.00695
https://doi.org/10.24963/ijcai.2020/424

Under review as a conference paper at ICLR 2024

APPENDIX
A META-TRAINING DETAILS

DOD models
P M,
N historical datasets e
' ‘ , P € RV
‘ D, ‘ ‘ Dy |+++| Dn ‘_’ MO;Q;;tfffr(ng performance
for i-th dataset D; (i.e.,AUROC
h(:)train by Inapplng train by mapping g(-) — P l
o, Pool (BRI Poc (01} — .,
HP Data Embedd]ng Model Embeddmg

Figure A1: Illustration of the fy.. We use all historical datasets (i.e., X and ground-truth labels y) to train the
data embeddings and historical embeddings, during which we obtain performance P on the DOD models’ outlier
scores O. During the offline phase, We train h(-), g(+), and fva. During the online model selection time, fya
gives the performance estimation of a DOD model (with a specific HP A), on the embedding of the test dataset.

We provide details of training f, in this section. Fig. [AT]illustrate the training of f,, in Eq.).

Data Embeddings. . We employ feature hashing Weinberger et al.| (2009) to address the issue of
that datasets may have different feature and sample sizes. Specifically, a hashing function) (-), is
employed to project each dataset to a k-dimensional unified feature space, regardless of the number
of features in the original data. To ensure sufficient expressiveness, the projection dimension should
not be too small (e.g., kK = 256 in our experiments).

Subsequently, we train a cross-dataset feature extractor h(-), a fully connected neural network, to map
hashed samples to their corresponding outlier labels, i.e. h : ¢ (X;) > y; for the i-th dataset. Finally,
we use max-pooling to aggregate sample-wise representations into dataset-wise embeddings, denoted
by pool{h(1(X;))}. The overall goal of h(-) is to capture outlying characteristics of datasets, as
demonstrated in the left middle of Fig.

Model Embeddings . In addition to data embeddings, we have also designed model embeddings to
capture the impact of model changes on the detection performance. To achieve this, existing work
uses internal performance measures (IPMs) as model embeddings|Zhao et al.| (2022)). IPMs are a
set of unsupervised performance evaluation metrics for OD that solely rely on model outputs and/or
input features. They serve as weak proxies for model performance (more details can be found in|Ma
et al.| (2023)). However, the design of IPMs is typically handcrafted, and their computation at runtime
can be computationally expensive.

To represent a trained DOD model more systematically, we utilize a neural network denoted as
g(+), which maps the output outlier scores of the model to the corresponding detection performance,
ie. g: O;; — P; . To handle the variability in the size of outlier scores, which can arise from
differences in sample sizes across datasets, we employ the DeepSet architecture |[Zaheer et al.|(2017)
for g(-). The DeepSet architecture is designed to leverage the inherent permutation invariance of sets,
meaning that the order of elements in a set does not affect its overall meaning. Similarly, the order of
outlier scores does not impact the overall detection performance. In our approach, we use the output
of the pooling layer in the DeepSet architecture, denoted as pool(g(O; ;)), as the model embedding.
This pooling layer output effectively captures the information from the outlier scores and produces a
fixed-size representation of the model’s performance, as shown in the right middle of Fig.

Obtaining outlier scores O; ; requires training the DOD model, which can be computationally
expensive. To speed up this process for meta-training, we use HN-generated weights other than

training individual DOD models from scratch, to obtain @l j = M;(D;; w)()\)), where w)()\)
denotes model M;’s weights as generated by our HN trained on D;, and)\ are over existing)\meta.

Training fy,. The goal of fy, is to map the aforementioned components, e.g., HPs, data embeddings,
and model embeddings, onto the corresponding model performance across [V historical datasets and

13

Under review as a conference paper at ICLR 2024

m models with varying HP configurations. The choice of f,, can be flexible: we use lightGBM [Ke
et al.|(2017) in this work; although one may use any regressor.

We decide the hyperparameters associated with (), h(), g(-), and f, by the cross-validation of
the historical datasets. The goal is to optimize the performance of fy, on the historical datasets. We
provide additional meta-training details in §C.2}

B HYPERNETWORK DETAILS

Ac {O, 1}(3><16><16><6><6)

Channel (A h)
arc

A= Dhreg, [10,5,10,5,3, 4] A Inpu
Kernel X G (X)
PE(Aarch) . z 6) A—
3 g 16 ——
. g Y- (with 13 zeros)
2| [~ o TR ST 7
AW st N
- 16 SN NN
HN(,¢) é .A6 6 &l Neio
C:; —~ § @gﬁith 6 zeros) l =
W4 (A)s GE- : = NN, 8
Bl OSS TE \ \ i =
16 t 2N \ g
- ; g 16
Zero Masking 9@16 — =
J o - (with 6 zeros)
AN Wa (s [©Z0
NS %: \:
N\ N

Figure B2: Illustration of the proposed HN. HN generates weights for a 3-layer convolutional networks , with

channels equal to [10, 10, 3], and kernels equal to [5, 5, 4]. The HN weights \/7\\/},5 is of size 3 X 16 x 16 x 6 x 6,
and similarily we construct the same-size architecture masking A. At the first layer, we need to pad A for 1
zero, among the third and fourth dimension (we pad starting from the left and from the top). This will enable

us to extend W to a convolutional operation of kernel size 5, from fixed kernel size 6. To match the padding
operation, we also pad the input X along the first and second dimension, with 1. The rest layers follow similairly.

Architecture Masking for Convolution Operations. Since more complex data such as images and
videos are used as mediums to find anomalies, many DOD models have taken convolutional networks
as the backbone structure. Therefore, how to tune convolution operation within the DOD model has
been an emergent problem. Here we design the input of the HN A,,..;, and the architecture A in a

format that could alter output of the HN output W 4 to adapt to various architectures.

For convolutional networks, despite that we are able to tune depths and channels, we can also include
kernel sizes and dilation rate by properly padding \/7\\7¢, with zeros [Wang et al.| (2020). For our
demonstration purposes, we only inlude the kernel size as the additional turnable variable. We make
HN output \/7\\/'4) € RPXMenxMenxMpxMi) \where D, M.y, My represent maximum number of
layers, channels, and kernel size specified in A, respectively.

Assume A, contains the abstraction of a smaller architectures, e.g. L layers with corresponding

channel values { M.y, M., ..., M1} all less than or equal to My, and { K1, Ko, ..., K.} are less

than or equal to Mj,. Then, the Ayen, € N2P is given as:

Xareh = [Me1, K1, Meo, Koy ..., Meiny2), K| £y2)5 0,...,0 , Meny2)41, K| n/2)415 - Mer, K] -
2(D—L) zeros

The architecture masking A € {0, 1}(P*MenxMenxMixMe) jg constructed as the following:

=1 ,if I =0

[0 A [2X01,0: Mg ren [25 (1—2)], | Mgl | — [Raren X141 1) Mo | 4 Agpepl2ita)) = 1, otherwise
8)

{A[l70:>\mch[2xl],:iM«‘?"J—LA“”h[fXHUJ:LM;”’ R
A

14

Under review as a conference paper at ICLR 2024

Again, Agrcn[2 X (I — 2)] is the last entry corresponding to the non-zero input channel in Ag;.cp[2 X 1.
Similar to the linear operation, at layer [, if Agrcn[2 x [] is all zero, then the resulting Ay .. .
would contain only zeros and represent a "No-op" in the DOD model. Otherwise, assume we want
obtain a smaller kernel size, K; < M, at layer [, the corresponding Ay . . . 1 pads zeros around the

size M.y, X k x k center (See Figure . The masked weights Ay, ... 1 © Wy are equivalent to
obtaining smaller-size kernel weights. Notice that, when kernel sizes are different, the output of the
layer’s operation will also differ (smaller kernels would result in larger output size); therefore, we
need to guarantee the spatial size by similarily padding zeros around the input of that convolutional
layer. The padding is similar to how we construct the architecture masking A and similar to the
padding approach discussed in|[Wang et al.| (2020).

Extending to Other Architectures. We envision our proposed HN can be extended to other
architectures, for example, to tune the number of attention heads and dimensions of query, key and
values in the multi-headed attention mechanism |Vaswani et al.|(2017). We will continuously work on
the implementations for other architectures, as more complex DOD models are developed recently.

15

Under review as a conference paper at ICLR 2024

C ADDITIONAL EXPERIMENT SETTINGS AND RESULTS
C.1 DATASETS

To build a comprehensive testbed, we use 15 OD datasets from the DAMI repositoryﬂ and 20 OD
datasets from the ODDS repositoryﬂ All of these benchmark datasets are widely used in OD research.
We provide the dataset summary in Table [C1]

Table C1: The tabular testbed includes 35 datasets from DAMI and ODDS repositories.

Dataset Source | #Samples #Dims %Outlier
DAMI_Annthyroid DAMI | 7129 21 7.49
DAMI_Cardiotocography DAMI | 2114 21 22.04
DAMI_Glass DAMI | 214 7 421
DAMI_HeartDisease DAMI | 270 13 44.44
DAMI_PageBlocks DAMI | 5393 10 9.46
DAMI_PenDigits DAMI | 9868 16 0.2
DAMI_Pima DAMI | 768 7 34.9
DAMI_Shuttle DAMI | 1013 9 1.28
DAMI_SpamBase DAMI | 4207 57 39.91
DAMI_Stamps DAMI | 340 9 9.12
DAMI_Waveform DAMI | 3443 21 29
DAMI_WBC DAMI | 223 9 4.48
DAMI_WDBC DAMI | 367 30 2.72
DAMI_Wilt DAMI | 4819 5 533
DAMI_WPBC DAMI | 198 33 23.74
ODDS_annthyroid ODDS | 7200 6 7.42
ODDS_arrhythmia ODDS | 452 274 14.6
ODDS_breastw ODDS | 683 9 34.99
ODDS_glass ODDS | 214 9 421
ODDS_ionosphere ODDS | 351 33 35.9
ODDS_letter ODDS | 1600 32 6.25
ODDS_lympho ODDS | 148 18 4.05
ODDS_mammography ODDS | 11183 6 2.32
ODDS_mnist ODDS | 7603 100 9.21
ODDS_musk ODDS | 3062 166 3.17
ODDS_optdigits ODDS | 5216 64 2.88
ODDS_pendigits ODDS | 6870 16 227
ODDS_satellite ODDS | 6435 36 31.64
ODDS_satimage-2 ODDS | 5803 36 1.22
ODDS_speech ODDS | 3686 400 1.65
ODDS_thyroid ODDS | 3772 6 247
ODDS_vertebral ODDS | 240 6 12.5
ODDS_vowels ODDS | 1456 12 3.43
ODDS_wbc ODDS | 378 30 5.56
ODDS_wine ODDS | 129 13 7.75

*DAMI repository: https://www.dbs.ifi.lmu.de/research/outlier-evaluation/
DAMI/
*ODDS repository: https://odds.cs.stonybrook.edu/

16

https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/
https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/
https://odds.cs.stonybrook.edu/

Under review as a conference paper at ICLR 2024

Table C2: HYPER and baselines for time and performance comparison with categorization by whether it
selects models (2nd column), uses meta-learning (3rd column), and requires model building at the test time (4th
column). Overall, HYPER (with patience p = 3) achieves the best detection performances (also see Fig. and
. Compared to the SOTA ELECT, HYPER has markedly shorter offline and online time with the help of HN.

Method Model Meta Zero Offline Average Online Median Online | Avg. ROC Rank
Selection Learning shot | Time (mins.) Time (mins.) Time (mins.) (| better)
Default X X v N/A 0 0 59.54%
Random X X v N/A 0 0 56.03%
MC v X X N/A 215 277 56.42%
GB v v v 7,461 0 0 46.68 %
ISAC v v v 7,466 1 1 41.81%
AS v v v 7,465 1 1 52.22%
MetaOD v v v 7,525 1 1 39.18%
ELECT v v X 7,611 59 71 36.21%
Ours | v v X | 1,320 14 17 | 29.54%

C.2 ALGORITHM SETTINGS AND BASELINES

In this section, we present additional experiment settings and describe the baselines. For detailed
implementation information, please see https://github.com/inreview23/HYPER!

Setting of the HN: The HN utilized in the experiments consists of two hidden layers, each containing
200 neurons. It is configured with a learning rate of 1e-4, a dropout rate of 0.2, and a batch size of
512. We find this setting give enough capacity to generate various weights for linearAEs. Because
of the meta-learning setting, the hyperparameters of HN can be tested with validation data and test
results, on historical data.

Meta-training for f,. Table|C6|includes the HP search space for training. In the table, compression
rate refers to how many of the widths to shrink between two adjacent layers. For example, if the
first layer has width of 6, compression_rate equals 2 would gvie the next layer width equal to 3. We
also notice that some datasets may have smaller numbers of features. Thus, with the corresponding
compression rate, we also have discretized the width to the nearest integer number. Thus, for some
datasets, the HP search space will be smaller than 240.

HN (Re-)Training during the Online Phase: In order to facilitate effective local re-training, we
set a training epoch of 7' = 100 for each iteration, indicating the sampling of 100 local HPs for HN
retraining. In Eq. (@), we designate the number of sampled HPs and the sampling factor as 500, i.e.,
V\ =V, = 500. The minimum depth and maximum depth of the searched DOD models are set to 2
and 8, respectively. Essentially, we tune the DOD model depth within the integer range of 2 to 8.

Convergence: To achieve favorable performance within a reasonable timeframe, we set the patience
value as p = 3 in the experiment. Further analysis for the impact of patience is available in §C.3.2]

Baselines: We have incorporated 8 baselines, encompassing a spectrum from simple to state-of-the-art
(SOTA) approaches. Table [C2|offers a comprehensive conceptual comparison of these baselines.

(i) no model selection:

(1) Default employs the default HPs utilized in the widely-used OD library PyOD [Zhao et al.
(2019). This serves as the default option for practitioners when no additional information is
available.

(2) Random randomly selects an HP/model (the reported performance represents the expected
value obtained by averaging across all DOD models).

(if) model selection without meta-learning:

(3) MC Ma et al.[(2023)) utilizes the consensus among a group of DOD models to assess the
performance of a model. A model is considered superior if its outputs are closer to the
consensus of the group. MC necessitates the construction of a model group during the testing
phase. For more details, please refer to a recent survey [Ma et al.[(2021)).

17

https://github.com/inreview23/HYPER

Under review as a conference paper at ICLR 2024

(iii) model selection by meta-learning requires first building a corpus of historical datasets on a group
of defined DOD models and then selecting the best from the model set at the test time. Although
these baselines utilize meta-learning, none of them take advantage of the HN for acceleration.

(4) Global Best (GB) selects the best-performing model based on the average performance across

historical datasets.

(5) ISAC Kadioglu et al.| (2010) groups historical datasets into clusters and predicts the cluster of
the test data, subsequently outputting the best model from the corresponding cluster.

(6) ARGOSMART (AS) Nikolic et al.|(2013) measures the similarity between the test dataset
and all historical datasets, and then outputs the best model from the most similar historical

dataset.
(7) MetaOD |Zhao et al.[(2021)) employs matrix factorization to capture both dataset similarity and

model similarity, representing one of the state-of-the-art methods for unsupervised OD model

selection.
(8) ELECT [Zhao et al.|(2022) iteratively identifies the best model for the test dataset based on

performance similarity to the historical dataset. Unlike the above meta-learning approaches,
ELECT requires model building during the testing phase to compute performance-based

similarity.
Baseline Model Set. We use the same HP search spaces for baseline models as well as the HN-trained
models. Table[C6|provides the detailed HP search space.

C.3 ADDITIONAL ABLATIONS
C.3.1 EFFECT OF META-INITIALIZATION

0.01 4 0.00 0.4
. Ak A icAAcAcAAA AEAkAAAA
o™ 0.025 kA 0024 - AdA
0.02 ! A : ’ 0.5
’ £ 0.050 | re £
! A" 0.04 4) 06
x 1 x x 1 x
< 0.03 4 c 0.075 A = c
I ‘II) ‘/‘ & 0.06 *I’ K —A&- random init.
Q Q 0.100 / Q Q 0.74 —— ours (meta init.) A
0.04 4
2 ; 2 £ £ o008 ! g ool
H 01254)/ i &&
1 / H 08 i
005 |) A - 010 | - e
1 —A- random init. 0.1504 —k- random init. I —A- random init. "A
0.06 4 " —— ours (meta init.) " —— ours (meta init.) 0.12 4 " —— ours (meta init.) 0.91 Ai"‘
B o - —
1234567 89101112131415 1234567 89101112131415

vvvvvvvvvvvvvvv
123456789101112131415 1234567 89101112131415

random initializations

(a) ODDS_wine (b) DAMI_WDBC (c) DAMI_HeartDisease

random initializations # random initializations # random initializations

(d) ODDS_ionosphere

Figure C3: Comparison of ROC Rank (lower is better) of HYPER with meta-initialization (in blue) with
increasing numbers of randomly initialized HNs. For instance, it needs 9 randomly initialized HNs to achieve
the same performance as HYPER on ODDS_wine. In general, HYPER shows better efficiency in finding a good

model with much less running time.

As mentioned in HYPER initializes the HPs to the “global best HPs" derived from the historical
training datasets. Specifically, in each fold comprising 7 test datasets, we utilize the HPs that yield
the best average performance across the remaining 28 training datasets as the initial HPs. This
meta-initialization approach leverages meta-learning to initialize HY PER with a potentially promising

HP configuration.

In Figure [C3] we demonstrate the effectiveness of meta-initialization by comparing it with random
initialization on five datasets. In addition to utilizing meta-initialization, one could run HYPER
multiple times with randomly initialized HPs and select the best model based on f,,. However, it
should be noted that f,, serves as a proxy validator rather than ground truth. Therefore, including
more randomly initialized HNs does not guarantee a monotonic improvement in the selected model’s
performance. Nonetheless, increasing the number of random initializations is likely to yield a better
performance by exploring a broader range of search spaces.

To simulate this scenario, we vary the number of random initializations (x-axis) and record all the
fval values along with the corresponding ROC Rank. For each dataset, we select the best model based
on fy, across all trials. We increase the number of random trials from 1 to 15, where the highest f,.
value among the 15 random initialized trials is chosen as the best model. The y-axis represents the

average performance from independent trials.

18

Under review as a conference paper at ICLR 2024

The figure clearly demonstrates the advantage of meta-initialization as a strong starting point for
HYPER’s HP tuning. For example, on the ODDS_wine dataset (refer to Fig. [C34), it requires 9
randomly initialized HNs to attain the same performance as our approach with meta-initialization,
showing a 9-fold increase in the time required for online selection. In other cases (Fig. [C3b}
and [C3d), training 15 randomly initialized HNs fails to achieve the same performance as
meta-initialization, further validating its advantages.

C.3.2 EFFECT OF PATIENCE

As described in §3.1] the convergence criterion 0.2750 3
for HYPER is based on the highest predicted £ 02850 - y
performance by f, remaining unchanged for p ¢ /
consecutive iterations. A larger value of p, also § 0.2950 A
known as “patience , requires more iterations S os0s0] A7
for convergence but is likely to yield better re- ’

i in Fi i i 0.3150 ————
sults. As illustrated in Fig. [C4] increasing the 5 3
value of p allows for more exploration and po- patience (p) patience (p)

tentially better performance. However, this also

prolongs the convergence time Figure C4: Analysis of the effect of patience p: (left)

avg. fva value change when increasing p from 1 to 4;
(right) avg. ROC Rank with increasing p. Larger p leads

In our experiments, we set p=3 to balance per-]
to more exploration and likely better performance.

formance and runtime. The specific value of
p can be determined through cross-validation over the historical datasets, taking into account the
specific criteria and requirements of the underlying application.

C.4 ADDITIONAL RESULTS
In addition to the distribution plot in Fig. [5] we provide the p-values of Wilcoxon signed rank test
between HYPER and baselines in[C3] See §5|for the experiment analysis.

Table C3: Pairwise statistical tests between HYPER and baselines by Wilcoxon signed rank test. HYPER are
statistically better than the baselines and its variants at different significance levels. See Fig[3]for distribution
rank with statistical comparison.

Ours Baseline | p-value
Ours Default 0.0016
Ours Random 0.0001
Ours ISAC 0.0025
Ours AS 0.0052
Ours MetaOD 0.0030
Ours Global Best 0.0015
Ours MC 0.0005
Ours ELECT 0.0568
Ours Ours (reg&width) | 0.0001
QOurs Ours (reg&depth) | 0.0001
Ours Ours (reg only) 0.0001

We present the full results in Table [C4] and [C5] Note that ROC Rank is based on each method’s
performance in regard to the baseline model set’s performance described in §C.2

19

Under review as a conference paper at ICLR 2024

Table C4: ROC of the evaluated methods. The best method per dataset (row) is highlighted in bold.

Dataset | Default Random MC GB ISAC AS MetaOD ELECT | Ours
DAMI_Annthyroid 0.7124 0.5972 0.6123 0.5929 0.6018 0.5873 0.6050 0.6148 | 0.5888
DAMI_Cardiotocography | 0.7159 0.7202 0.7024 0.7740 0.7571 0.6940 0.6458 0.7818 | 0.7866
DAMI_Glass 0.7442 0.7055 0.6304 0.7244 0.6699 0.7230 0.7225 0.7431 0.6917
DAMI_HeartDisease 0.3045 0.4276 0.4214 0.5250 0.5382 0.4214 0.5312 0.5348 | 0.5926
DAMI_PageBlocks 0.8722 0.9107 0.9219 0.9162 0.9255 0.9002 0.6247 0.8791 0.9215
DAMI_PenDigits 0.3837 0.5248 0.5422 0.5491 0.5069 0.6953 0.6278 0.5084 | 0.6792
DAMI_Pima 0.4005 0.5508 0.4855 0.6216 0.6279 0.6158 0.4862 0.6281 0.6595
DAMI_Shuttle 0.6453 0.9462 0.9400 0.9342 0.9436 0.9530 0.5525 0.9405 | 0.9391
DAMI_SpamBase 0.5208 0.5232 0.4907 0.5210 0.5263 0.5552 0.5307 0.5135 | 0.5525
DAMI_Stamps 0.8687 0.8687 0.8926 0.8981 0.9079 0.8618 0.7112 0.8897 | 0.9003
DAMI_Waveform 0.6810 0.6772 0.6560 0.6941 0.6924 0.6890 0.6900 0.7019 0.6929
DAMI_WBC 0.7493 0.9769 0.9770 0.9682 0.9742 0.9779 0.9809 0.9779 | 0.9826
DAMI_WDBC 0.8092 0.8366 0.8146 0.8597 0.8683 0.8092 0.8361 0.8213 | 0.9039
DAMI_Wilt 0.5080 0.4524 0.4832 0.4653 0.4700 0.4700 04714 0.4700 | 0.3709
DAMI_WPBC 0.4090 0.4464 0.3972 0.4679 0.4548 0.4285 0.4456 0.4726 0.4824
ODDS_annthyroid 0.7353 0.6981 0.6963 0.6982 0.7067 0.7067 0.6903 0.7058 | 0.7014
ODDS_arrhythmia 0.7769 0.7786 0.7810 0.7767 0.7831 0.7798 0.7824 0.7807 | 0.7827
ODDS_breastw 0.5437 0.6187 0.8939 0.9071 0.8032 0.7986 0.5913 0.8649 | 0.9045
ODDS_glass 0.6195 0.5849 0.5453 0.5897 0.5962 0.5962 0.5654 0.5957 | 0.5993
ODDS_ionosphere 0.8708 0.8497 0.8711 0.8252 0.8422 0.8350 0.8727 0.8686 | 0.8509
ODDS_letter 0.5555 0.5758 0.5918 0.6068 0.6244 0.6155 0.6446 0.6211 0.6102
ODDS_lympho 0.9096 0.9959 0.9988 0.9842 0.9929 0.9953 0.9971 1.0000 | 0.9925
ODDS_mammography 0.5287 0.7612 0.7233 0.8362 0.7189 0.7116 0.8640 0.7673 | 0.8542
ODDS_mnist 0.8518 0.8915 0.8662 0.8959 0.9011 0.8580 0.9070 0.9032 | 0.8994
ODDS_musk 0.9940 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 | 1.0000
ODDS_optdigits 0.5104 0.4950 0.5092 0.4806 0.5115 0.5171 0.4973 0.5338 | 0.5584
ODDS_pendigits 0.9263 0.9295 0.9265 0.9305 0.9208 0.9386 0.9360 0.9346 | 0.9435
ODDS_satellite 0.7681 0.7284 0.7445 0.7352 0.7433 0.7324 0.7486 0.7571 0.7432
ODDS_satimage-2 0.9707 0.9826 0.9865 0.9744 0.9838 0.9798 0.9871 0.9786 | 0.9853
ODDS_speech 0.4761 0.4756 0.4692 04726 0.4832 0.4692 0.4706 0.4774 | 0.4707
ODDS_thyroid 0.9835 0.9661 0.9652 0.9535 0.9635 0.9652 0.9740 0.9689 | 0.9667
ODDS_vertebral 0.6019 0.5378 0.5629 0.5253 0.4602 0.5629 0.4657 0.5629 | 0.4757
ODDS_vowels 0.4897 0.5903 0.5965 0.6309 0.6414 0.6686 0.6216 0.5247 | 0.6686
ODDS_wbc 0.4146 0.8401 0.7640 0.8808 0.8745 0.8469 0.8770 0.8469 | 0.9289
ODDS_wine 0.7864 0.5430 0.4084 0.7539 0.5387 0.4084 0.6296 0.6218 | 0.8287

20

Under review as a conference paper at ICLR 2024

Table C5: ROC Rank (smaller the better) of the evaluated methods. The best method per dataset (row) is

highlighted in bold.
Dataset \ Default Random MC GB ISAC AS MetaOD ELECT \ Ours
DAMI_Annthyroid 0.0079 0.5317 0.1111 0.6031 0.4206 0.7143 0.3492 0.0794 | 0.6984
DAMI_Cardiotocography | 0.5635 04683 0.6190 0.0476 0.1984 0.6825 1.0000 0.0476 | 0.0238
DAMI_Glass 0.0556 0.7222 0.9365 0.1984 0.9048 0.5556 0.5635 0.0595 | 0.8016
DAMI_HeartDisease 0.9841 0.5556 0.5873 0.1032 0.0238 0.5714 0.0476 0.0317 | 0.0079
DAMI_PageBlocks 1.0000 0.4921 0.2698 0.4048 0.1667 0.7937 1.0000 0.9841 | 0.2937
DAMI_PenDigits 0.9048 0.5317 0.4722 0.4206 0.6429 0.0714 0.1349 0.6270 | 0.0794
DAMI_Pima 1.0000 0.5159 0.9603 0.1508 0.0635 0.2540 0.6508 0.0556 | 0.0079
DAMI_Shuttle 1.0000 0.4444 0.9365 1.0000 0.5635 0.2381 1.0000 0.7302 | 0.9683
DAMI_SpamBase 0.6349 0.5556 0.9921 0.6270 0.3571 0.0397 0.1825 0.8016 | 0.0556
DAMI_Stamps 0.5238 0.5238 0.2619 0.1587 0.0635 0.6032 1.0000 0.2857 | 0.1349
DAMI_Waveform 0.4762 0.5556 0.8175 0.1429 0.2143 0.2619 0.2619 0.0556 | 0.1905
DAMI_WBC 1.0000 0.7381 0.7381 0.9921 0.9365 0.5873 0.0079 0.5873 | 0.0079
DAMI_WDBC 0.8095 0.5397 0.7619 0.2381 0.0873 0.8016 0.5556 0.6984 | 0.0159
DAMI_Wilt 0.0159 0.7302 0.0238 0.7143 0.7143 0.7143 0.0397 0.7143 | 0.9762
DAMI_WPBC 1.0000 0.4365 1.0000 0.2302 0.3413 0.8175 0.4524 0.1667 | 0.0079
ODDS_annthyroid 0.0397 0.3651 0.3889 0.3571 0.2381 0.2302 0.7937 0.2540 | 0.3016
ODDS_arrhythmia 0.7063 0.5556 0.2302 0.7222 0.1270 0.3889 0.1587 0.2857 | 0.1349
ODDS_breastw 0.5794 0.5317 0.1032 0.0714 0.3095 0.3333 0.5317 0.1905 | 0.0794
ODDS_glass 0.2143 0.3571 0.9048 0.3333 0.2937 0.2857 0.5159 0.3095 | 0.2857
ODDS_ionosphere 0.0872 0.4841 0.0873 09683 0.5714 0.8254 0.0476 0.1587 | 0.4603
ODDS_letter 0.6746 0.6429 0.4762 0.3333 0.0476 0.1349 0.0079 0.0635 | 0.2539
ODDS_lympho 1.0000 0.4921 0.2143 1.0000 0.9365 0.6429 0.4365 0.0437 | 0.9365
ODDS_mammography 1.0000 0.3889 0.8968 0.2381 0.9127 0.9286 0.0317 0.3571 | 0.0714
ODDS_mnist 0.9286 0.6746 0.8651 0.6190 0.4603 0.9048 0.1270 0.3492 | 0.5238
ODDS_musk 1.0000 0.8810 0.3730 0.3730 0.3730 0.3730 0.3730 0.3730 | 0.3730
ODDS_optdigits 0.3651 0.5714 0.4048 0.6825 0.3333 0.2063 0.5238 0.1032 | 0.0397
ODDS_pendigits 0.7222 0.6587 0.7222 0.6269 0.8254 0.1825 0.2619 0.3730 | 0.0397
ODDS_satellite 0.0238 0.7222 0.2778 0.6825 0.3651 0.7063 0.0873 0.0317 | 0.3889
ODDS_satimage-2 1.0000 0.6270 0.0556 0.9841 0.4048 0.8413 0.0317 0.9048 | 0.0714
ODDS_speech 0.4048 04286 0.8651 0.5873 0.1825 0.8730 0.6825 0.3810 | 0.6746
ODDS_thyroid 0.0079 0.4841 0.5556 1.0000 0.6905 0.5635 0.0476 0.4603 | 0.4762
ODDS_vertebral 0.0159 0.6984 0.3571 0.7381 0.9127 0.5159 0.8730 0.3571 | 0.8254
ODDS_vowels 1.0000 0.5873 0.5397 0.3254 0.2063 0.1111 0.3730 0.8016 | 0.1111
ODDS_wbc 1.0000 0.6349 0.9762 0.1746 0.2460 0.5714 0.2063 0.5714 | 0.0079
ODDS_wine 0.0238 0.4841 0.9603 0.0397 0.5000 0.9603 0.3333 0.3810 | 0.0159
Avg. ROC Rank | 0.5954 0.5603 0.5642 0.4668 0.4181 0.5222 0.3918 0.3621 | 0.2954

Table C6: Hyperparameter search space for both free-range and HN models. We give the list of HPs as well as
the range of the selected HPs.

List of Hyperparameters (HPs) [# HPs
n_layers: [2,4,6,8] 4
compression_rate: [1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0] 10
dropout: [0.0,0.2,0.4] 3
weight_decay: [0.0,1e-6,1e-5] 3
Total Number: 240

21

	Introduction
	Related Work
	Present Work

	Preliminaries
	Problem and Challenges
	Hypernetworks

	Proposed Framework for UDOMS: HyPer
	Meta-Training (Offline on Historical Datasets)
	Model Selection (Online on New Dataset)

	Proposed Hypernetwork for Speed up – Train One, Get Many
	Experiments
	Experiment Results
	Ablation Studies (See others in Appx. §C.3)

	Conclusion
	Meta-Training Details
	Hypernetwork Details
	Additional Experiment Settings and Results
	Datasets
	Algorithm Settings and Baselines
	Additional Ablations
	Effect of Meta-initialization
	Effect of Patience

	Additional Results

