
Fast Axiomatic Attribution for Neural Networks
– Supplemental Material –

Robin Hesse1 Simone Schaub-Meyer1 Stefan Roth1,2

1Department of Computer Science, TU Darmstadt 2hessian.AI
{robin.hesse, simone.schaub, stefan.roth}@visinf.tu-darmstadt.de

A Proofs and further results

Proof details for Proposition 3.2. In the proof of Proposition 3.2, we make use of the property
that the derivative of a kth-order homogeneous and differentiable function F is a (k − 1)st-order
homogeneous function, i.e.,

∂F (αx)

∂αxi
= αk−1 ∂F (x)

∂xi
, (9)

see, e.g., Corollary 4 in [43]. Assuming kth-order homogeneity of F and using the chain-rule, the
above Eq. (9) follows from

α
∂F (αx)

∂αxi
=
∂F (αx)

∂αxi

∂αxi
∂xi

=
∂F (αx)

∂xi
=
∂αkF (x)

∂xi
= αk ∂F (x)

∂xi
. (10)

Proof of Proposition 3.8. For any input z ∈ Rn, α ∈ R≥0, and piecewise linear activation function
φl according to Eq. (7), we want to show that

αφl(z) = φl(αz). (11)
For α = 0, both sides evaluate to 0 and the equality holds. For α > 0, the equality holds as long
as the active interval of the activation function does not change. The active interval changes either
when the sign of the input is changed, i.e., it goes from positive to negative or vice versa, or when
a positive input changes to 0, or a value of 0 changes to positive. Since α > 0, a multiplication
with α can neither change the sign nor can make positive values 0 or 0 values positive. Therefore,
scaling the input with α > 0 changes none of the active activation function intervals and nonnegative
homogeneity for α ∈ R≥0 holds.

Proof of Proposition 3.9. For any input z ∈ Rn, α ∈ R≥0, and pooling function ψl with the assumed
properties, we want to show that

αψl(z) = ψl(αz). (12)
If the pooling function is linear, homogeneity implicitly holds. If the pooling function is selecting
values based on their relative ordering, we consider two cases. For α = 0, both sides evaluate to 0
and the equality holds. For α > 0, the relative ordering of the entries in z is unchanged by a scaling
with α, hence the same entry is selected by the pooling function. Since the value of the selected entry
is scaled by α, the above Eq. (12) holds for α ∈ R≥0 and nonnegative homogeneity is satisfied.

Proof that X -Gradient satisfies nonnegative homogeneity (Definition 3.6). Using Eq. (9) and non-
negative 1st-order homogeneity of any X -DNN F , it follows that

XG(F, αx) = αxi
∂F (αx)

∂αxi
= αxiα

0 ∂F (x)

∂xi
= αXG(F, x), (13)

for α ∈ R≥0, and therefore, nonnegative homogeneity of the attribution is satisfied.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Axiomatic attributions. Table 1 in the main text summarizes the axioms [34] that are satisfied by
several attribution methods. For proofs of the axioms that are satisfied by Integrated Gradients, please
refer to [34]. For proofs of the axioms that are satisfied by Expected Gradients, please refer to [7].
For proofs of the axioms that are satisfied by Input×Gradient and Gradient, please refer to [7, 34]
and see below. As X -Gradient equals Integrated Gradients for X -DNNs according to Proposition 3.2,
all the axioms satisfied by Integrated Gradients are also satisfied by X -Gradient (for X -DNNs).

For Expected Gradients to satisfy the same axioms that are satisfied by Integrated Gradients, con-
vergence must have occurred, which can only be expected after multiple gradient evaluations. To
emphasize the advantage of our method when only considering attribution methods that use a single
gradient evaluation, in Table 1 we also show the axioms that are satisfied by Expected Gradients [7]
when using only one reference sample, i.e., when convergence did not yet occur. Proof sketches for
the axioms satisfied by Expected Gradients with only one reference sample are as follows:

1. Sensitivity (a): Since there exist networks for which Sensitivity (a) is not satisfied by
Input×Gradient, and Expected Gradients could choose a sample such that the approximation
equals Input×Gradient, Sensitivity (a) is also not satisfied by Expected Gradients in general.

2. Sensitivity (b): As the gradient w.r.t. an irrelevant feature will always be zero, Sensitivity (b)
is satisfied.

3. Implementation invariance: As Expected Gradients use stochastic sampling for the baseline,
there is no guarantee that even for the same model two attributions are equal.

4. Completeness: Again, following the argument from Sensitivity (a), Completeness is not
given.

5. Linearity: As Expected Gradients use a stochastic sampling for the baseline, there is no
guarantee that Linearity holds.

6. Symmetry-preserving: Following the argument from Linearity, Symmetry-preserving does
not hold.

Why is nonnegative homogeneity a desirable axiom for attribution methods? Explainability
is closely related to predictability. Knowing how a model behaves under certain changes to the
input implies an understanding of the model. Therefore, axioms like linearity [34] and nonnegative
homogeneity, which essentially describe a form of predictability, are generally desirable and allow
for a more complete understanding of the model’s behavior.

(Input×)Gradient violates Sensitivity (a). To see that gradients and Input×Gradient violate
Sensitivity (a), it is instructive to consider the concrete example given in [34]: Assume we have a
simple ReLU network f(x) = 1−ReLU(1−x). When having a baseline x′ = 0 and an input x = 2,
f(x′) respectively f(x) changes from 0 to 1. However, as the function flattens out at x = 1, the
above gradient-based attribution methods would yield an attribution of 0 for the input x = 2.

B Experimental details

In the following section we provide additional details to ensure reproducibility of our experiments.
For further information, please see our public code base1 released under an Apache License 2.0.

B.1 Removing the bias term in DNNs

The models for all reported results in Sec. 4.1 have been trained for 100 epochs on the training
split of the ImageNet [24] dataset with a batch size of 256 and using a single Nvidia A100 SXM4
(40GB) GPU. The training time per epoch is approximately 10 minutes for AlexNet, 60 minutes
for VGG16, and 40 minutes for ResNet-50. For training the AlexNet and VGG models, we use the
official PyTorch [44] implementation2 that is published under a BSD 3-Clause license. We use an
SGD optimizer with an initial learning rate of 0.01 that is decayed by a factor of 0.1 every 30 epochs,
a momentum of 0.9, and a weight decay of 1e-4. For training the ResNet models, we use the settings
proposed by [40] and rely on the publicly available code,3 which is released under a BSD 3-Clause

1github.com/visinf/fast-axiomatic-attribution
2github.com/pytorch/examples
3github.com/hongyi-zhang/Fixup

2

https://github.com/visinf/fast-axiomatic-attribution
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/hongyi-zhang/Fixup

license. The hyperparameters are the same as for the AlexNet and VGG models except that we use
mixup regularization [45] with an interpolation strength α = 0.7, a cosine annealing learning rate
scheduler, and an initial learning rate of 0.1.

The mean absolute relative difference between the attribution obtained from Integrated Gradients [34]
and the attribution obtained from calculating Input×Gradient for regular DNNs resp. X -Gradient for
X -DNNs is calculated as

d(A, X) =
1

n|X|
∑
x∈X

n∑
i=1

|IGi(F, x,0)−Ai(F, x)|
|IGi(F, x,0)| , (14)

with X denoting a dataset consisting of samples x ∈ Rn.

B.2 Benchmarking gradient-based attribution methods

For the experimental comparison of gradient-based attribution methods in Sec. 4.2, we use the models
from Sec. 4.1 (see Appendix B.1 for details) and evaluate on the ImageNet validation split using a
single Nvidia A100 SXM4 (40GB) GPU. To quantify the quality of attributions, we use the attribution
quality metrics proposed by Lundberg et al. [15]. The metrics reflect how well an attribution method
captures the relative importance of features by masking out a progressively increasing fraction of the
features based on their relative importance:

Keep Positive Mask (KPM) measures the attribution method’s capability to find the features that
lead to the greatest increase in the model’s output logit of the target class. For that a
progressively increasing fraction of the features is masked out, ordered by least positive to
most positive attribution. Then the AUC of the resulting curve is measured. Intuitively, if
an attribution reflects the true behavior of the model, unimportant features will be masked
out first and the model output logit decreases only marginally, resulting in a high value for
the AUC. The other way around, when an attribution does not reflect the true behavior of
the model, an important feature might be masked out too early and the target class output
decreases quickly, leading to a smaller score.

Keep Negative Mask (KNM) works analogously for negative features. This means that the better
the attribution, the smaller the metric. Note that for KPM and KNM, all negative and positive
features are masked out by default, respectively.

Keep Absolute Mask (KAM) and Remove Absolute Mask (RAM) work similarly but using the
absolute value of the attributions and measuring the AUC of the top-1 accuracy. For KAM,
we keep the most important features and measure the AUC of the top-1 accuracy over
different fractions of masking. A high-quality attribution method should keep the features
most important for making a correct classification, and therefore, the metric should be
as high as possible. RAM masks out the most important features first, meaning that the
accuracy should drop fast. Therefore, a smaller value indicates a better attribution.

As we evaluate attributions for image classification models, we adapt the above metrics to work with
image data. This is achieved by replacing the masked pixels with those of a blurry image, which is
obtained using a Gaussian blur with a kernel size of 51× 51 and σ = 41 applied to the original input
image. The parameters were chosen such that the resulting image is visually heavily blurred. This
ensures that features can properly be removed.

B.3 Training with attribution priors

Our experiment with attribution priors in Sec. 4.3 replicates the experimental setup of [7]. We use the
original code, which includes the NHANES I dataset and is published under the MIT license.4 We
use the attribution prior proposed by Erion et al. [7] to learn sparser models, which have improved
generalizability. The prior is defined as

Ωsparse(Ā) = −
∑n

i=1

∑n
j=1 |Āi − Āj |

m
∑n

i=1 Āi
,

4github.com/suinleelab/attributionpriors

3

https://github.com/suinleelab/attributionpriors/tree/master/sparsity

0 50 100 150 200 250
Approximation steps

0.000

0.001

0.002

0.003

0.004

D
iff

er
en

ce
to

IG
w

/
30

0
ap

p
ro

x
.

st
ep

s

12
8

Integrated Gradients

Figure 3: Convergence of Integrated Gradients [34]. We plot the mean absolute difference of
Integrated Gradients obtained by using 300 and different numbers of approximation steps for AlexNet
on the ImageNet validation split. We find convergence to occur after approximately 128 steps.

with Ā denoting the mean attribution of a mini-batch with m samples. This prior improves sparsity
of the model by minimizing the statistical dispersion of the feature attributions. We use the following
attribution methods as baselines, which are commonly used for training with attribution priors:
Expected Gradients (EG), the input gradient of the log of the output logit as proposed by [23] (RRR),
and a regular input gradient (Grad). We compare these methods with our novel X -Gradient (XG)
attribution method. For each attribution method, we perform an individual hyperparameter search to
find the optimal regularization strength λ ∈ {0.01, 0.1, 1, 10, 100}. We find λ = 0.1 for RRR and
Grad, and λ = 1.0 for XG and EG. When training the model with Expected Gradients using more
than one reference sample, we continue to use the regularization strength λ that was found using one
reference sample. All other hyperparameters are kept as in the original experiment of [7]. To train the
models, we use a Nvidia GeForce RTX 3090 (24GB) GPU.

To provide a numerical comparison of the efficiency of X -Gradient and Expected Gradients [7],
we report the computation time and GPU memory usage for training a ResNet-50 on the ImageNet
dataset with Expected Gradients using 32 reference samples and with X -Gradient. We use a single
Nvidia A100 SXM4 (40GB) GPU and a batch size of two. The number of reference samples
corresponds to the number of reference samples determined in the experiment in Fig. 1(right), where
both networks achieve the same ROC-AUC. When using Expected Gradients for training, the GPU
memory usage is 14.57 GB while for X -Gradient the memory usage is 4.21 GB. The computation
time per iteration, averaged over 100 iterations, is 1.12 s for Expected Gradients and 0.0086 for
X -Gradient. To conclude, in this scenario we observe a massive improvement in the efficiency
of X -Gradient compared to Expected Gradients. Expected Gradients requires ∼ 130 times more
computation time and ∼ 3.46 times more GPU memory.

B.4 Homogeneity of X -DNNs

For the experiment in Sec. 4.4, we use the same models as in Sec. 4.1 (see Appendix B.1 for details)
and evaluate on the ImageNet validation split using a single Nvidia A100 SXM4 (40GB) GPU.
Additional qualitative examples of the attributions for the output logit of the target class for a regular
AlexNet and an X -AlexNet, as in Fig. 2(right), are shown in Fig. 4. Our findings in Sec. 4.4 are
consistent with the additional results. As with Fig. 2(right) in the main paper, we observe that
X -Gradient (XG) equals Integrated Gradients (IG) for the X -AlexNet up to a small approximation
error and that reducing the contrast of the images keeps the attribution unchanged up to a scaling
factor (not visible due to normalization for display purposes). On the other hand, for the regular
AlexNet the attributions obtained from Input×Gradient and Integrated Gradients differ and change
depending on the contrast.

B.5 Convergence of Integrated Gradients

For our experimental comparisons with Integrated Gradients [34], we assume convergence of the
method. To empirically find a suitable number of approximation steps, we analyze the mean absolute

4

difference of the Integrated Gradients obtained by using n and 300 approximation steps as plotted
in Fig. 3. We choose 300 steps for reference because Sundararajan et al. [34] report 300 steps
as the upper bound for convergence. We use the trained AlexNet model from Sec. 4.1 (details in
Appendix B.1), the ImageNet validation split, and n ∈ [1, 2, 4, 8, 16, 32, 64, 128, 256]. We find 128
approximation steps to be sufficient and use this number in our experiments.

References
[43] Kim C. Border. Euler’s theorem for homogeneous functions. Technical report, Caltech – Division of the

Humanities and Social Sciences, 2000.

[44] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop, 2017.

[45] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In ICLR, 2018.

5

Image XG IG I×G IG
X -AlexNet AlexNet

Figure 4: Qualitative examples of normalized attributions for the output logit of the target class for
X -AlexNet and AlexNet using the attribution methods Input×Gradient (I×G), X -Gradient (XG),
and Integrated Gradients (IG).

6

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 3.
(b) Did you describe the limitations of your work? [Yes] See Section 3 (Limitations).
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3 and

supplemental material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code and
instructions how to reproduce the main experimental results can be found in the code
base at the URL provided in the main paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] All the training details are specified in Section 4 and the supplemental
material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] in Section 4.3. [No] for the ImageNet experiments. As
training ImageNet models requires a significant amount of computational power, which
negatively affects our environment, and high variance is not expected, we decided to
train only one model.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplemental material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See supplemental material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We publish our code base to reproduce our results.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We are not curating data and use only publicly available datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We are not curating data and use only publicly
available datasets. We use the established ImageNet for training. The results shown
in the paper do not contain any identifiable information or offensive content. The
NHANES I survey contains no personally identifiable information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

7

	Proofs and further results
	Experimental details
	Removing the bias term in DNNs
	Benchmarking gradient-based attribution methods
	Training with attribution priors
	Homogeneity of X-DNNs
	Convergence of Integrated Gradients

