A Analysis

A.1 Proof of Lemmal[l]

Proof Denote 0} = (1 — By1)u) + Bea19i(Weg156141) +Yew1 (96(Wewn: €l 41) — gi(Wes €140))-
) B X B .
B {Huiﬂ - gi(WHl)HQ} =E [(1 - El) [|uf — gi(thrl)H2 + 51 |af — gi(WtJrl)H2 (11)

For the first term, we can decompose it as:

(1= 2008 ([~ v

=(1- %)E {Hui - gi(wt)||2} +(1- %)E [”gi(wt) - gi(Wt+1)||2}
20— 2LE (0] — gi(w)) 0:(w2) — gu(wiin))]

O]

(12)

Also, the second term can be written as:

—E |:H171i — gi(wt+1)|‘2:|
:EE (1= Brer) (uf = gi(we)) + (1 = Beg1) (gi(we) — gi(wip1))
+Be1 (9i(Wer136041) — 9i(Wes1)) 4+ Y1 (9i(Wer13€41) — gi(wis €14y)) HQ}

:%E [t = Bes) (ui = gi(we) + (1 = Besr) (9i(we) — gi(Wiet1))

) ) B2 )
11 (9i(Wern3 €l1) — gi(wes €141) HQ} + %E “|gi<wt+1§5z+1) - gz‘(Wt+1)H2}

B X . .
+ %E [(%(WtH;fZH) - gi(WtJrl)) (gz‘(WtH;fZH) - gz‘(Wﬁsz))]

:%E {(1 — Bi+1)? H (u; — gi(wy)) H2]
+ %E “|(1 = Br+1) (9i(We) = 9i(We1)) + Yo (96(Wer15 1) — 96 (Wei §441) HQ}
+ 2WBl(l = Bir1)(1 = Berr — e+ )E [(uf — 5(We)) (95 (W) — gi(wig1))]

(@)

B p? '
+ %E M (9 (Wer1:€041) — 9i(Wis1)) HQ}

n 2B1 B 11741

- E [(gi(Wer136011) — 9i(We1)) (9i(wWegn: €641) — 9w €141)) ]

(13)

The second equation is because of E [gi (Wet1s §§+1) - gi(th)] = 0. The last equation is due to
E [gi(Wit15 € 41) — 9i(we; €41)] = 9i(Wis1) — 9:(Wy) and u} is independent of &, ,. We want to
ensure ) + @ = 0, which requires that 2(1 — 21) + 2B1(1 — B, 1)(1 — By41 — Y241) = 0. Solve
Vi1 and we have vy 11 = Bl(q%ﬁi-l) + (1 = Bi41). According to equation and equation ,
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the equation (1)) can now be written as:

E [y = giwes)||’]

—@Q_§+“ﬁﬁ&)wwmmwﬂﬂ—ﬁwwm%mmmw

Bibiay

+ (9i(Wis1; 1) — 9i(Wei1)) H2

+ E H(l — Bea1) (9:(We) = gi(wer1)) + g1 (96(Wer136040) — 9i(wes €144)) ||2

2B1 811741
+ + + ( (

m 9i Wt+1§€f+1) - gi(wt+1)> (gi(Wt+1;€f+1) - gi(Wt;ﬁfH))

:E[ (1 _ 5B + (1—%;1)131) |uf — gi(wt)”z +(1— %) llgi(we) — gi(Wei1)])?

B Bi(1 - 2

+ 1ﬂt+1 || (gz Wt+1,ft+1) gi(Wt+1))H2 + % [|(gi(w) — gi(wt+1))||2
2B

- % e (g (we) = gi(we i) (14
B .

+ 1%4_1 H gi Wt+1,£t+1) gi(WtQEZ-i-l))HZ

2B . ) .
+ % (9i(Weg1:&41) — 9i(weg1)) (9i(Weg13 €04q) — gi(Wt§€z+1)):|

B ,
< (1 — ﬂ“;nll) E {Hui — gi(wt)HQ} lﬁtHE [H(Qz Wii13 €)= 9i(Wep)) Hz}

4mC?
5 E [ — ]

B ) . )
+ QI&%E [(9i(Wir15611) = 9i(Wiern)) (9i(Wern; ) — 9i(Wis €441)) ]
B . 2B
SQ_@zlqu%mmmﬂ ﬁmEmwMH@H>%mmmﬂ
8mC?

5 E [ — ]
The second equation is due to
i i 2
E [(gs(Weg15011) — 9i(Wei &41)) (9i(Wer) — gi(we))| = [lgi(wega) — gi(we)|1”
The first inequality is because of yi11 < %—"f (since Biy1 < %) and 1 — % + %(1 — Bir1)? <
2%(1 — Bia1)Vex1. The last inequality is due to the fact that

2B : ' '

%E [(9i(Wer1:€41) = 9i(wWer)) (9i(Wer13€641) — 9i(Wes €i41)) ]

2B : ' :
S%E g (Werrs 1) = gi(wer) || |9 (Wer1: €ar) — gi(wis €40)||]

B 5 ‘ B 2 . .
S%E [!|gi(wt+1;£§+1) — gi(WtH)Hﬂ + ME {Hgi(WtJrl;ferl) - gi(Wt;EZH)HQ]

B 62 ; mC
S%E [’|gi(wt+1§£t+1) — gi(weg)|| } + TE [Hwt“ WtHQ}

Finally, we have:

E [||ut+1 —g(wira)| } ZE [Hut+1 gi(we)|| }

B 8m2C? 2B,023?
s@—@“])EMm—mmmﬂ+ K [wers —wil?] + 2227
m B, By
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A.2  Proof of Lemmal[2]
Proof We will start with single block and them sum over multiple blocks. To start, we have
; 2
Hu1Zt+1 - gi(wt+1)H
B i 2
(1= 21t - st

Bl H2

H (1= B )i + Br19i(Wer13 € 41) + 1 V9i(Wes13601) T (Wer — W) — gi(Wegr)

= (1= 2 | = o+ 20— 000 00500 = o)) o) — o)
Ap

Bl 2
H (1= B )i + Br19i(Wer1: € 1) + 11 V9i(Wer156001) T (Wesn — W) — gi (W) |

A

Next, we will proceed to decompose A.

(1= Ber)(uf = gi(we)) + (1 = Bey1) (9:(we) — gi(Weg1))

+ Big1(gi(Wegr; §§+1) = 9i(We1)) + ver1(9i(Wig1) — gi(we))
2

A:

+ Y4 1(9:(We) — gi(Wit1) + Vi (Wes15641) T (Wepn — wy)

=H<1 — Br) (= ga(we)) + (et + Ber — 1) (ga(Wen) — gu(wi)

+ Yeg1 (9:(We) — gi(Wig1) + Vgi(wig1) T (Weg1 — wy))
A

+ Bir1(9:i(Weg1; §§+1) — gi(Wiy1))

+ 7041 (Vg (Wir1; 6 41) — Vai(win) T (wigr — we)

By taking expectation over A, we have
E[A] =E|(1 = Bes1)? g = gs(We) |* + 21 1A + (verr + Berr — [l gi(Wes) — gi(we) ||

+2(1 = Be1) (g1 + Bepr — D(uy — gi(we) T (gi(Wer1) — gi(we))
Ay
+ 291 (41 + Bear — DA (gi(Wer1) — gi(wy))
2 N’
By By
1 m—B

= (7[%1) the terms involving Ag, Ay will cancel. As a result, we have

[Wey1 — WtH2

+2(1 = Big1)ves1(uf — gi(we)) T A+
Since vi11 + Bri1 —

E|:Hui+1 9i(Wit1) }

2 2
| (1 22) fui = aewo|* + o) - i v
B4 i 2 1
+ *(1 — Bea1)? (14 Begr) luf — gi(we)[|* + (2 + B — i llAd?
262 02 292 0?
+2(Ye41 + Begr — 1)l gs(wig1) — gi(w)||” + 221 tg; [Wit1 — we|?
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Since || A]| < min( 5wy 1 — wil| %, 2C[[wi 1 — wi|) and ||gi(wir1) — g (wi)l| < Cyllwiia —
2 h
|I%, we have

E {[[ug = gi(wern) ]
B .
| (1-21) (ul = st + e - wl?

By 1 L2 |lwipr — we?
+ *(1 = Ber)lluf = gi(wo) | + (2 + et Vep —2 1 Wit — wel|®

2 2 2 2
2610 27410

_ 2
B, B, [Wit1 — we|

+ 21 + Bepr — 1)2C) [wisr — we|* +

Note that we have ||wy11 — w||? <0 C%, ye41 < QB—T and nyv1 < +/Biy1. Therefore

E [Huiﬂ _gi(WtH)HQ}
t ; B t2 o’
< <1 = Blf;“) E[[[uf - gi(we)|*] + 2BrPiao”

mB2
2 2 2
8mo
+E BBy I |lwiyr — Wt4+Blg||Wt+1—Wt||2+BlBQ||Wt+1—Wt|2‘|
B1Bi+1 ; 2 2B, 87, ,0?
(1 Bl 2
(1= 22 & [ - o)) + 2220

8a2\ m
+ (2303 +903+ 5 ) BB [Iwens - wil?

Finally, we have:

B 2B, 52, 0
Bl — g(wian)|?) < (1 22 ) B [l gtwo ] + 220
m 2

m2

802
212 2 2
+ <4LgCF +9C; + B, ) BlE [[[wig1 — wel?]

A.3 Proof of Lemma[3
Proof Note that we have:
E [H@:(wtﬂ;fiﬂ) - gi(Wt+1)H2}
=E [Hgi(wt-i-ﬁd-&-l) = 9i(Wri &) + gi(wr) — gi(Wt+1)H2}
=E | llg:(wesnsin) = 0:(wrs &) [*] + laatwn) = gulwr) I 15
+ 2E [gi(Weg15 60 11) — 9i(wri €640) ] [9s(wr)

=E [[|g:(Wer15€11) = giwri &) | ] = lgs(wr) = gilwrin)|®

- gi(WtJrl)]

<C2||wipr — wo|f?

Since T is the closest small index such that T mod I = 0, we have:

T t 2

> lwesr = wo | < Z 2 (Wei1 =

t=1 k=1
T T (16)
<N I wigr — wi||? < 12 > Wi — wi?
t=1 k=71 t=1
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We can then apply the same analysis as in Section|A.1} until equation (I4):
; 2
E{[[ufr = gs(wein) ]

B X B3 .
< (1 - ﬁml) E [Hui - gi(Wt)Hﬂ + 2 T:LB E {H(/g\i(WHIQﬂJrl) - gi(WtH))HQ}

8mC?

+ BilgE [||Wt+1 - Wt||2}

B . 2B,C?B%1? 8m(C?
s(l—ﬁml)E[Huz—gxw»!Fh( LR g)E{lel—wth]

m Bl

B ) 10mC?
< (1= 2 & i — ]+ T2 [l — ]

The last inequality is due to fI < Bﬂl. Finally, we have:

m
E [Hut-&-l —4g (Wt—&-l)HQ} :ZE {Hui-i-l - Qi(Wt+1)H2}
=1

B.s

9 m2C?
<(1- 2008 [, — g (w) ] + 2 Ca

B, ! Wit *Wt||2
A.4 Proof of Theorem[Il
We denote constant C' = max {1, C;, L%, CE 0%, L3508, L2CF, L3Cy, L3C202, O3 (0* + Cg)}.

Lemma 4 (Lemma 2 in|Li et al.|[2021|]) Suppose function F is L-smooth and consider the update
Wit = Wi — NiZy. With ntL S %, we have:

F(wiia) < F(wi) = G VEW)|? + 12 = VE(wo)|” = 7 [zl
Lemma § Denote |[u; —g(wy)||* = 27", [jui—gu(w)[[2 and [jus—u,a |2 = 557 uj—ui 2

3CPE 2]

Q41
4L2%C? 01 207,02 (0% +C2) by LAC? 9
E2B [luss —wl] + = e PR (s — g(wa) 1]

E [[|ze+1 = VE(Wey1)[*] < (1= arg1)E [[|l2: = VF(we)|]?] +

Proof According to Lemma 1 in|\Wang and Yang|[2022]], if a < % we have:

2L 7E (|2
2 2
E [lfoear = VE(wiet) 7] € (1= ) [Jloe = VE(w) ] 4 —————
t+

3L2C?2 207,02 (62 + C2) By LAC?
20 ] ZEE D i ]

1

15, we have the above lemma.

By setting o <

Lemma 6 If 3,11 < %, we have:

2B,B% 0% 4Byfp? I9m2C?
18410 n 1ﬂ/ft+lE

E —w?] < - 2 IR P
[||11t+1 Ut||]_ B, Hut g(wo)ll”| + B, [Hwt-H Wt||]
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Proof Note that with 5111 < %, we have vi11 < QB—I
E [[lusg1 — ugl?]
B |- i i i i 2
= ZE [||5t+1 (9:(Weg13€041) — ) +Ye1 (9i(Wern: €61) — gi(wis €640)) || ]
i=1
B - i i]|2 i i
<E ZE {25&1 gi(Wer1s &) —wp||” + 2921 llgi(Wes15 €44r) — gi(wt5€t+1)”2}

i=1

<E

2B152 m . -2
T Wi 6) — w2807 O wis — wal |

i=1
S% i (E “|gi(wt+1§£z+1) - gi(wt+1)||2] TE [Hgi(wt“) B H%HQD

+ 2Bﬂ’t%rlchE w1 — WtHQ]

2B182, 02 2Bi1B2 ., & , 8m2C2
< B e B [l =il ]+ B e — ]
210" | 4B 1B,
P P S v vl 2 S i

8 202

n;l E [[lwig1 — wel?]
2B 2 2 4B m 9 02
< 1/;;10 + 16t+1ZE[Hglwt — || + ";1 E [[wesr — will?]

=1

The third inequality is due to E [gl- (Witr1:€041) — 9 (wt+1)] =0.

The rest proofofTheoremI LetTy = F(Wt) + C(]THBW lu; — g(wy)||* + %Hzt —VF(wy)|*
By setting 7; = O”“ ,Co =T72C, 1, < £+ we have:
E[Ty1 — Pt]
- 1 .
=E _F(Wt+1) - F(wy) + comm? lugr1 — g(wign)|I” + aHZt“ = VE(wii)l
By 2 1 2
- — |z~ VF
o o = I = ol = Vw1
< i3 2 @ _ 2 T 2 41 _ 2
<E HVF(Wt)H + o llze = VE(we)|| 1 || |2e = VE(wy)]|
) 212 2 2 (2 2
4 SO 4 2 Cg aess -l + 220G 2 ) | 8O e
ozt 1€o e b+l t min { By, Bz} ¢o t
Sar1L3C B Bifa B _ 2 2BiBE 07
+ P} 3 P} ||ut g(wt)” + B 2
mco Come™ meCoTt CoMt—1m 2M~=CoT)t
2 2 202,02 (02 + C2)
Ui 2 g t+1v f g U 2
<E|-2|vF - G
<E| - ZIVFEI + L2 g — il + oL TR0 g
li%e" 10 Bl 325 1 Bl 23262 (72
+( T 5 ) Il = g(wa) [P + ZEE
mco Come™m meCcomt CoNe—1mM 2M~=CoMt
202, ,C 4B23% . C
<B| — TIVE(w)|? + ———+ .
2 min {By, Bo}cg  BamZcon:
5at+1C’ Bl B2ﬁt+1 Bl 16B152 IC 2
P (Pl A A By SR - gl
0 0Nem m=Comnt CoNt—1M m=co
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By setting ;11 = m (and note that cq = 72C, ;41 = 36Cn;), we have:

202, ,C AB2R2,,C
E [Ty —Ty) <E |:—||VF(Wt)2 m{BtleZ}CO Bginzt;)lnt}
1t 2 36C%n; 164m>Cn}
<E|-M|vF
= { Sy IVEOI B B T 8B

2/3
This means that, by setting 77, = min{/min{B;, Bo}(a + )=/, (BIT‘/E> (a+1)~1/3%

- 9 T 4, 2014 T
- , 36C 2| , 16'm*C 3
g F <E[l'y =T —— L TN
; Z:IIV (wi)[|”| <E[I'y T+ﬂ+min{31,32} ;”t T 8B,17 ;m
T
<E[[Y] + 16°C*E | (a+ )"
t=1

2
<Ap+ 20 +16°C*In (14 T))
Co7o

Similar to the proof of Theorem 1 in STORM [Cutkosky and Orabonal [2019]], denote M = Ap +
Cigo +162C*1n (1 + T). Using Cauchy-Schwarz inequality, we have:

T
S IVE (w)|?| <E[1/nr]E

w3 IVE (w0 ] 5|2

t=1 i

max B a 1/2 mn o a 1/3
SElM : {\/min{B17B2}( +0 7(le/Bi2> @+7) }]7

which indicate that

Y IVE W)

o\ /3
<v/'M max {(min {Bl,BQ})_1/4 (a + T)1/4, <) (a+ T)l/G} .

B1v/ By

Finally, using Cauchy-Schwarz we have Zthl IVF (wy)|| /T < \/Ethl IVF (we)||*/VT so that:

maxx{ v/ (min R m \Y2 @+ 1)V
) { S Bl v M

< max {\/M(min{Bl,Bz})l/4 <?;/T4 + T11/4> VM (Bl%>l/3 (Ci;; " Tll/?’) }

<o (w{ (inpir) (mor) |)

where the last inequality is due to (a + b)'/? < a'/3 + /3. So, we can achieve the stationary point
withT = O (max{

m 1
Biv/Bge3? min{Bl,BQ}e4 }) °

20



A.5 Proof of Theorem 2|

2= > V(W) V(i)

Lemma 7 Denote |[u;—g(w,)||> = Y27 [[uj —gi(we)||* and [[u;—u; 1 []* = 3777 fluj—uj_, |
1=1

2]
4C?12 20212
) [||ut - ut71||2] + #E [||ut - g(wt)HQ}

E [||lze — VF(w,)|*] <4E

Proof

E [llze — VF(w)|]
=28 ||z — 3" Vgu(w) Vi)

i=1

i zuizvmw,g)wm - %Zv9i<wze>Vfi<gi<Wt>>

2]
- m 2
<E |2||z¢ — —Zng (w¢)Vfi(u Vai(we)V fi(u') = Vgi(we)V fi(gi(wy)) ]

i=1

r 2 2 m 2
<E |2||z; — *valv w)Vfi(u' ;:1 Z — 9i(We) ‘|
=1

[ AN 4C2L§ > 20215 2
<E |4||z — — Z Vgi(w)Vfi(ui )| + w—woq| + u; — g(we)
L 7/nz'zl
Lemma 8
1 & ’ 1 :
E [ Ze = — ; Vai(we)V fi(uj_y) <E l(l — o) ||Ze-1 — — ; Vgi(wi—1)V fi(u;_,)

2@?02 4CQL2
+
By

Lllugoy — wp—a||® + 4C3L2 Wy — thﬂ
Proof

E ||lz: — Tlnzvgi(wt)vfi(ui—ﬁﬂ

i=1

H 1-a) ( B 2>>

i=1

+o ( Z Vyi thft)VfZ(ut 1)~ 7ngz Wy Vfl(ut 1))

ZEBt i=1

+(1 _Oét ( Z Vgi thft)vfz(ut 1 Z sz Wi 1»ft)vfz(ut 2)

ieBt ieB!
2‘|

—% Z Vai(w)V fi(uj_y) + % Z Vgi(th)Vfi(ui2)>

i=1 i=1
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We assume that E {HB% Yient Voi(wo )V fi(ui_y) — 55 320 Vai(wo) Vi(ug_1)|?| <

Due to the fact that the expectation over the last two terms equals zero, we have:

2
1 & ,
E|||lze—— > Vai(w)V fi(ui_y)
=1
1 & - ? 20202
<E[(1—op)?||zeo1 — m ngi(wt—l)vfi(urz‘/—Q) + él
=1
1 i i i i 2
+2(1 - )’ 5 D I Vaiwi €DV fi(wi_y) = Vai(wi 156V fi(u_,)
ieBt
1 « ; ’ 20202
<E|(1-a;)||z—1 — - ngi(wtfl)vfi(ut—ﬂ + B,
i=1
1 - i i |l
A = a2 > |[Vai(wa &) (Vi(ui_y) = Vi(uj )
B
! ieBt
1 - ; i |
+4(1 - @t)2§ Z vfz‘(ujg_2) (vyi(wﬁgt) - vgi(Wt_1;§t)) ]
eBt
2
1 — . 20202 4CZL3
SE[(—a) |zt — 3 Vailwe ) Viluio)| + =5+ 2

i=1

+ 40)20L£2]||Wt — W1 ||2]

Lemma 9 Suppose that § < % and B1 5111 < mayy1. Then, we have:

2

1 1 :
E m s — g (Wern)|* + | 2041 — — ZVgi(WHl)Vfi(uD

i=1
< 20y L g 7] + S0 a7 4 20
+ (1 —a)E |||z — ;iv‘gi(wt)vfi(ui—l) 2 205%1102
Zlc;iL?CIE [luy — ut,lHQ] + 4C?L§IE [lwe1 — wt||2]
<=2 | L gl - 30w v 2
L =1 d
L = R
ST e TN ML SR e
i=1 |
L N HBFeC | 2060
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The rest proof of Theorem Set ny < e . Denote Ty = F(w;) + commAt’ where A; =
L las = g(wo)ll> + [|ze — £ S, Vgs(we)V fi(wi_y)||*. We have:

E[q —TY]
B B
CoTem CoTlt—1M
Mt Uiz Uiz 2
<E| - 5HVF(Wt)H2 + 5 llze — VF(w)|? - =+ il
B B? B 48C 10B25%2 ,C  2a2,,C
< 1 - 12ﬁt+1 7 1 )A + ||Wt+1 WtH2+ 1/§t+1 + t+1
Comem  2mPcony  CoMe—1Mm CoMt Bam?2comy meony
[ 66C 14B382 ,C 202, ,C
<E| = GIVEwIP =5 lall® 2w = wall® + - tghe s 4 =0
| 2 4 com. Bom?2con, meon:
B B B
c(aone B BB,
comem  2mecone  CoMe—1m
By setting 264C = cg, n? = %, Q1 = % and By < m, we have:
“0

148757, C n 20‘%+1C]

Nt 2
E[T — I <E | —=||VF(w
[Ce+1 ] < [ 2 IVEGw)I” + BomZcon; meony

2,34
mntco]

Un 2
<E|-L|VF(w
= [ 2” (Wi +512323%

(2

3
B

This means that, by setting 7, = Yi(a+1t)"3

T

n

S E D IVE(w)®
t=1

't —Tpypr +

micd o 4
512B, B} po ¢

A T
€0
1“14-f2 Ela+t
oA

1
Apt—+-LIn(1+T
r+ S + 512 (1+7)
Denote M = Ap + ﬁ + 50102 In (1 + T). Using Cauchy-Schwarz inequality, we have:
d M
E |\ S IVF(w)I?| <E[/mlE nTZHVF ol | <B |2
t=1

. 2/3
<E M() (a+T)"3],
By

VB:

which indicate that

T , 1/3 e
B\ SIVF I | < VAT (5 7) @+

Finally, using Cauchy-Schwarz we have Zthl IVF (wy)|| /T < \/Zthl |IVF (wy)||?/v/T so that:

T
IVE(w)ll| _ VM(@+D)" ( m \'° al/Sv/M m_ \7?
Pl ey (31\/37) SO\ +(BMB?T)

() ).

where the last inequality is due to (a + b)'/? < a'/3 + b/3. So, we can achieve the stationary point
withT = O (m/B1 3263).
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Algorithm 3 Stage-wise MSVR method
Input: initial points (wq, ug, zo)
for stage s = 1 to S do
Wy, Ug, Z2g = MSVR (with T, as, Bs» Ns and (sth Us—1, Zsfl))
end for
Return wg

A.6 Proof of Theorem

We would show that the complexity can be further improved if the objective function satisfies the
Polyak-t.ojasiewicz (PL) condition or convexity. To achieve this, we utilize the previous analysis and
use a stage-wise version method [[Yuan et al.,[2019b]. In the new algorithm, we decrease o and 3,
after each stage and increase the number of iterations 7. At the end of each stage, we save the output
and use it to restart the next stage. With these modifications, we can obtain a better convergence
guarantee under the PL condition or convexity. The new method is summarized in Algorithm [3|
named Stage-wise MSVR. Next, we will show the proof for optimal MSVR-v2 with Stage-wise
version, and the proof for MSVR-v1 is nearly the same as the MSVR-v2.

Note that in below the numerical subscripts denote the stage index {1,...,S}. Denote A, =
|zs — = >0, Vgi(ws)Vf,»(ué_l)H2 + L Jlus — g(wy)|*. Let’s consider the first stage, A; <
2C = pey and F(wy) — Fy < €, where ¢; = max{%, Ap}. Starting form the second stage, we
would prove by induction.

Suppose at stage s — 1, we have Ag_1 < pes_1 and F (ws_1) — F < €5_1. Then at s stage, by

setting 264C' = ¢y, 775 = 3232 f“, g = BlTﬁs and By < m, we have:
m2n3cl
E[T ) <E|-2|VF 2y _— =0
i~ T < E |- 2P|+ 2
. . o mc? mcg __ 8Bi1vVBapues
This means that by setting 7 = max { Bm\/[gwes, B Boe }, Ne = 1m7%w we have:
1 T
FE S Imrer
t=1
_ 24,2
<E 2(I'y = Trga) L 007752
nsT 256 B2 By
<E 2(F(ws—1) — F.)  2B1A,_ m2cgn?
- nsT C()T]QTm 256B2B%
<2ps€s

Due to the PL condition, we have:

F(ws) —

T
Z IVF(w; ||2] <e

On the other hand, by setting 3, = 524 and a, = £ 15 :we have:

30C
2m 96m20 20[33 4mafC’
As Smﬁ BQBS Z||Wf+1 wil|* + B3

2mpes_y 96m27]fC’ 20[3g 4mo¢§C’
< 2 Z || t” 2
BlﬁsT B?3,T Bip

Spies
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So, we proved that F' (w,) — F, < ¢,. Thatis to say, F' (w,) — F, < ¢ when S = log, (%), and
the iteration complexity is computed as:

S S
Z n>e Z m
it 2 1= 0( Bl\/Bi2,Uf€s>

s=2 s=2

<0 (m )
BV Bspe
When F(w) is convex, we define F'(w) = F(w) + + & lw||2. We know that F(w) is p-strongly
convex, which implies y-PL condition. We have proved: for any § > 0, there exist 7' = O (“ 5)

such that F'(wyp) — F, < 6. It indicates that F(WT) F, <0+ &llw.|* = 4wl <6+ 4D.
For any € > 0, if we choose y1 = 5 and 6 = §, we get F(wp) — F, < ¢, forsome T = O (3%).

A.7 Proof of Theorem 4
Lemma 10 [f 3 < 1 and I < £, we have:

T
1B 6
E [E i —w?| < — E [u; — g(we)|?
t=1

Proof Following the analysis of Lemma@ we have.
2B ~ i 7
E [[lus1 — uy?] ﬂ Z ( [Hgi(WHl; i) — gz’(Wt+1)HZ] +E [Hgi(wtﬂ) - ut||2])

8 202
By

202 T

Z [Wipr — wel|®

||Wt+1 Wt||2

So, we have:

2B, 32
E [[lur — wlf] §2315202 [Wepr — Wopa||” + 7711
8771202
By

E [llg(wisr) = wl]

||Wt+1 Wt||2

So, with B2I? < m? /B2, we have:

T
_2B ﬂ
E Y s —wl?| <= Z lg(Wis1) — | ]
t=1
2 8m 202 T
+ 231/32032 T Z W1 —wel?
t=1
43152
Z lg(we) — ugl|®
T 2 202 T
+ 2B1620312 Z HWt_A,_l — Wt” B Z ||Wt+1 Wt”
t=1
43152 202 T

ZHQ wi) — ug Z|\Wt+1 w||®

We can also replace Lemma 8| with following lemma.
Lemma 11 With ol <1, we have:

T
t=1

2 2

m

z; — % > V(W) V fi(uy_y)

i=1

%Z gz Wi sz(uo)

i=1

T
Z [Wes1 — Wt||2]

<

Q|r

C?L

8
g [Z Juy —wea |*] +

2L2
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Proof First, since hy is an unbiased estimation of = 37" | Vg;(w;)V f;(ui_,), we have:

_ - 2
E htf%ZVgi(Wt)Vfi(ui—ﬂ ]

i=1

£\ 5 N V) Vaiwe ) - Zsz _)Vgi(wes &)

ieBt LeB’

+— vaz Vgl(wTagt ZVgl Wi vfl(ut 1)

|

=1
2
<E Z Vfi(ai_ ) Vai(wi; &) — Z Vfi(uh ) Vgi(wes &)
By ieBt ZEB’
i NI
<E |5 Z |V fi(ui_)Vgi(we; &) = Vfi(ul ) Vagi(wr; &) ]
ieBt
2 2
ZQCJ%Lg |lw: — wT|| + T lui—g —u,— 1||
Next, we have:
R ;
|z — - ZVgi(Wt)vfi(ut—l)HQ]
i=1
1 & ;
=E H (1-« (Zt 1— — Z;ng Wi 1)sz(ut 2)) +a (ht T ;Vgi(wt)vfi(ut1)>

_|_(1 —« (Bl Z Vg; Wt>§t)vf1(ut 1 - = Z ng Wi lagt)vf1<ut 2)

ieBt zer
2]

—% Z Vai(we)V fi(uj_,) + % Z Vgi(th)Vfi(u§2)>

i=1 i=1

2
1 & ,
<[ e~ o Y Vi) VA )| -+ 402 CHEE e w |
i=1
102C2L3
+—27 [ug—1 —ur— 1||

+2(1 - a)2Bi Z HVQi(Wt; fz)vfi(uiq) - Vgi(Wtugf)vfi(uiz)Hﬂ

ieBt

1 ,
| < (1= 0)lms = o 3 Vel ) Vil )P + 140G v — e
=1
40&202112 2L2
ey w2

||llt 1 — We— 2H2+4CfL2||Wt Wt1|2:|

The first inequality is due to the fact that the last two terms equal zero in expectation.
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Summing up, we have:

2

> -

Z gz Wi sz ut 1)

2 T
1 - 2
<= LS | + 100323 - wel
=1 t=1
4a02L2 T o212 T 40212 L
2 e~ < fz e = e =2 e = wel
1 ’ ¢
2
<a Zl_fzv% w1)V f;(uf) +40‘OJ%L§IQZHW”1_W’5”
=1 t=1
4@02L2[2 T 2 2 T 2 2 T
gif — 2 g f - 2 g - ?
T ;Hut w4 Zuut | + gnw wi|
2
1 1 m 802 T T
< Zl_*z;vgt w1)V f;(uh) 8C Ly leut—ut U+ Z (Wip1 — wl?
: —

The last inequality is due to ol < 1.

The rest proof of Theorem[d] According to Lemma(7] we have:

2

2= 3 VW) Vi)
i=1

T T
DNz = VEw)|? < 42
t=1

46’2

c2r2 T
! onuruf P+ 2 f2|ur DI
We use Lemmato replace Zthl Hzt Ly Vgi(Wt)Vfi(uiq)Hzi

T
E|> llze = VF(w)|?
t=1

2
4 1 & , 32C2L2 )
< zl—Eg;v%(wl)wi(ua) T 2 e~ el
3202/:2 T T
antﬂ w %+ fZ [y — w || + onut w)|®
=1
4 1™ P 36 L? T
<= Z1—E§VQ¢(W1)VJC¢(U6) f ZIIut—ut 1|21

Z Wi —wel|*| +

320312 [ &
t=1

ZT:HUt g(wi)| ]
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Set 5B1 < ma. We use Lemmato replace E [Zthl la; — w4 “2} (set ug = uy):

T
E [Z e VF<wt>||2]

2

4 1« ; 144(C2L3)B1 8% [ &
< llm o 2 Veilw) Vi) +— 2 I —g(we I?
i=1
396m C4L2 320202 [&
S S— Z||Wf+1 wi|?+ —LE [waﬂ Wt”]
202L2 T
fE[Z [ — P]
4 1 * sosme. [&
i m 2
Sa EZV%(WI)VJ%(UO) + abB; E ;Hwtﬂ—wtll ]

14602L2

ilut g(w: II]

We use Lemmato replace E {thl lu; — g(wy) ||2} :

T
E | llze— VE(w)|?
t=1
4 1 & 428mC
<a E Z Vgi(wl)Vfi(uo Z HWtJrl WtH
i=1
146C212E [nuﬁg(won} 1460m>C12 I
+ NG + 575 Z||Wt+1 wi
2 212
A L | 146C2L3E |:||u179(wl)||]
<— - — i V fi(ug
<= m;w(wl) filwg)|| + BB

1888m2C
BQB Z||Wt+1 Wt||

2
<aA190 5A79 18838;”; < Z Wi — wel|”
Set % < £. We have:

T
D llze = VEw)|?| <
t=1
According to LemmaEL we have:

Z IVE ()|

A
— Z Al

E

T T
<) 4 S 8 [ - VEOOI] - 3 3

L2EwW1) Do Ao
oo aly By

Finally,

2F A A
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77T CkToT BT()T

T
Z IVF(w)|?| <

28



Note that the sample complexity is (31 BT + m"T) To ensure the first term and the second term at

the same order, we set [ = ( B”f&) Also, since we assume that o < 1 and 51 < < B, we directly

set v = B1B2 and g = B2 This setting also satisfies the requirement B; 5 < ma. We also require
mn n

% < 5. So, we set ) = O(B;l\?) WithT = O (B:'\’/‘]/?’ZEQ) and Ty = O (\/LB%), We

have: LE [thl IVR(w)|?] < e

A.8 Proof of Theorem

The analysis is very similar form Theorem 3] We still use Algorithm [3]but employ MSVR-v3 instead.
Also, we do not need to decrease «, 3, 7 and increase T’ during each stage. Let’s consider the first stage,

Az — 2 0 Vo w)Vfi(uh) | < 40 < ey, 2L uy — gwy)|? < 146C < pey and
F(wy) — F. < Ap < ¢, where we set ¢ = max{Ap, 1450}. Note that in below the numerical

subscripts denote the stage index {1,...,S5}. Set a = B;f:?, 8 = %, n = (’)(B;T V?) and
T=0 (maX{BlB2, BvT })

Starting form the second stage, we would prove by induction. Suppose at the stage s — 1,

: 2

we have F(we_1) — F. < €1, 4jzem1 — 2307, Vgi(w)Vfi(ul_y)||” < pes—q, and

146C2 L7 Hu
m

o1 — g(w3_1)||2 < pes—1. Then at s stage, we have:

1
F(w,) - F, < 2 IVE(w,)|*

€s—1 €s—1 mes—1
<=
— T T BBT

On the other hand, following the very similar analysis in Theorem 3] we have:
2

1 — ,
4 s — — v 7 V 7 ;_ S s
2 o 2 Ve VA < e
146C7 L3 5
||u9 79(“’9)” S HeEs

m

We proved that F (w,)—F, < €,. Thatis to say, F' (wg)—F, < e when S = log, (22) = log, (£),
and the iteration Complexity until this stage is computed as:

mn_ myn_ 1
E T, < .log =
O (maX{BlBQ ‘uBl\/B } o8 6)

s=1

When F(w) is convex, we define F'(w) = F(w)+4 £{lw||?. We know that F(w) is p-strongly convex,

which implies u-PL condition. We have proved: for any § > 0, there exist T = O (u B./Bs log 6)

such that F'(wyp) — F, < 6. It indicates that F(wp) — F, < 6§ + Bllw.|? = &llwr|* <6+ 4D.

For any ¢ > 0, if we choose u = 5 and 6 = 5, we get F(wr) — F. < ¢, for some T" =

0(531\/7 log = )

B MSVR with Adaptive Learning Rates

Now we show that the proposed MSVR method can be extended to adaptive learning rates and
remains the same sample complexity. To use adaptive learning rates, we can revise the weight update
step wyy1 = Wy — 1;2, in origin MSVR method as follows:

Tt
_ g
i (17)

hi = (1 -8 h;_, + Bz,

Wil = W —
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where § > 0 is a parameter to avoid dividing zero, IIz,, denotes the projection onto the ball with
radius Ly and hy = h} (Adam-style) or hy = max (h;_1,h}) (AMSGrad-style). Inspired by the
recent study of Adam-style methods [|Guo et al., 2021]], we can give the sample complexity of the
Adaptive MSVR using similar analysis. We show the proof of adaptive MSVR-v2 for example:

Theorem 6 If we choose parameters a1 = (9( ) Biy1 = O (m;f), a = O(%Jf?) and
1

=0 ((M)Qﬁ’(a + t)_1/3>, Adaptive MSVR-v2 with learning rate defined in , can obtain

a stationary point in O ( B, F) iterations.

Remark: The sample complexity is still at the order of O (673). For MSVR-vl and MSVR-v3, or
under the convexity or PL condition, adaptive method can still get the same complexity as the origin
rate using a very similar analysis.

Proof Note that since the norm of estimated gradient ||z || is bounded, the value of the learning rate
scaling factorc =1/ (\/ht + 5) is also upper bounded and lower bounded, which can be presented
as ¢; < |||, < cu. (Note that projection onto a ball of radius C'r does not change the analysis,
since VF' is also in this ball.) With this property, We have:

Lemma 12 (Lemma 3 in [|Guo et al.| 2021|]) For w1 = Wy — 124, with nye; < 1y < nycy, and
Ly < ¢;/2c2, we have following guarantee:

Nt Cuy 2 77tCl 2 7]tCl
F(wip1) < F(wy) + 2“ IVE(we) —z]|” — [VE(w)|” — [

Then very similar to the proof to Theorem Denote T'y = F(wy) + A;, where Ay =
2 / i 2
2wy — g(wo)||I° + ||ze — & Y0, Vai(we)V fi(ui_y)||". We have:

Ly — Ty

CO"']t 1m

B
Apgr — ——— A,
CoTem CoMg—1M

7761 Nt 770l
< — | VE(w)|? + f“H ¢ = VE(w)|? = = ||z
+< Bi  Bifin By ) 480 2, 10B232 +1() 207 ,C

:F(Wt+1> - F(Wt) +

Ay + — \|Wf+1 w||” +

comem  2m2con;  Cof—1m BzmQCom mcony

c c 64Ccu 14B2B2,,Cec, 202, ,Cey,
< = BRIVEw)I? = 22 fe]|* + 2= [[wi = w [P 4 L
2M=CoT)t mcoT
B B B
+ <QCcunt+ LI 12ﬁt+1 — ! )At
Comem  2mPcony  Cofe—1m
By setting 256C'c,, /¢, = co, 17 = %, Qg1 = Blffl and Bs < m, we have:
Za
c 14B25%2 ,Cc, 202 ,Ccy
Do = Dy < =TV (w))|? 4 — L o
2M=CoTt mcone
3.4.3
ﬁtCl 24 m*n}cge
< - VF —_—
< IV F(w) | + St
This means that, by setting 1, = (BIT VB2)i(a+1t)" 3
T 242 T
nr 9 I'n —T'riq mecyc; 3
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Figure 2: Results for Multi-task AUC Optimization.
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Figure 3: Results with different networks.
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In (1 + T). Using Cauchy-Schwarz inequality, we have:

T
<E[1/n7]E [nr Y IVF (wy)|?

t=1

2/3
) (a+1)"?|,

T
DIVE (wo)|?

m

B/ By

Then following the same analysis, we will finally have :
m

T 1/6 1/3
IVE(wo)ll| _ VM (a+T)" /
P (B\/B*) :

VT
m 1/3
(TB1 vV Bs ) ’
where the last inequality is due to (a + b)1/3 < a'/3 4+ b'/3. So, we can achieve the stationary point
withT = O (m/Bn/Bge?’).
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aV/5\/I
+
VT

(31¢§2T>1/3

C More Experimental Results

In this section, we provide more experimental results and ablation studies. We will consider more
applications in the long version of the paper.

C.1 Ablation Study on Algorithm Design

In this subsection, we conduct the ablation study for our algorithm design. Specially, we verify
the effects of our customized error correction term. To compare with traditional variance reduced
estimator, we can design an estimator using STORM [Cutkosky and Orabona, 2019] as follows:

(1 - 5)“2—1 + ﬂBﬂlgi (Wt;fg) + (1 - B)Bﬂl (gi (Wt§§§) —Gi (Wt—1§§§)) (&S Bi
(1 =By i¢ Bl

i __
u, =

(18)
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Figure 4: Results with varying B;.
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Figure 5: Results with varying Bs.

To show the effects of our customized error correction term, we replace the MSVR estimator in our
MSVR-v1 and MSVR-v2 algorithm, and use equation (I8) instead. We name these two methods
Variant-v1 and Variant-v2. For the finite-sum case, we modify the estimator similarly:

ut = (1- 5)u§_1 + 5,3&1911 (Wt;ﬁ) +(1- 5)3% (gi (Wt;ff) —Gi (Wt—1§§é)) i€ Bi (19)
=By, i¢ B

where G; (w; &) = gi(wi; &) — gi(wr; €D + gi(w,). So, for MSVR-v3, we replace the MSVR
estimator with equation (T9) and keep other parts unchanged. This new method is named as Variant-
v3.

Results. We compare different methods on the CIFAR100 dataset and plot the results in Figure[2] As
can be seen, all methods perform worse than the origin algorithms, indicating the effectiveness of our
customized error correction term in the proposed algorithm.

C.2 Results with Different Networks

In this subsection, we conduct experiments on SVHN data set with different networks, ResNet18,
ResNet34 and DenseNetl121, respectively. As can be seen in Figure [3] with all three networks,
MSVR-V1 performs closely to SOX, MSVR-v2 converges faster than SOX and MSVR-v1, and the
loss of MSVR-v3 decreases most rapidly, indicating the effectiveness of our methods with different
networks.

C.3 Results with Different Batch size

In this subsection, we explore the effect of different batch sizes. First, we fix the inner batch size
By = 128 and vary By in the range {2,5,9}. Then, we fix the outer batch size B; = 5 and vary Bs
in the range {32, 64, 128}. We conduct the experiments on the Fashion-MNIST data set and show the
results in Figure[]and [5] As can be seen, in terms of iteration complexities, the larger batch size (B;
or Bs), the faster the convergence, which is consistent with our theory.
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