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(Supplementary Material)

A Proofs

A.1 Upper Bound and Generalization Bound

A.1.1 Proof of Theorem 2

Theorem. Let G = (V,E, dim) be a tensor network structure and let Hregression
G , Hclassif

G , Hcompletion
G

be the corresponding hypothesis classes defined in Equations (4), (5), (6) where each model has NG

parameters (see Equation (3)).

Then, Pdim(Hregression
G ), dVC(Hclassif

G ) and Pdim(Hcompletion
G ) are all upper bounded by

2NG log(12|V |).

Proof. We start with the pseudo-dimension introduced in Definition 1. Consider n input tensors
X 1, · · · ,Xn and arbitrary threshold values t1, · · · , tn. To upper-bound Pdim(Hregression

G ), it is
enough to show that for any set S = {X 1, · · · ,Xn} and threshold values t1 · · · , tn, the number of
relative sign patterns realized by the class of functions Hregression

G , is bounded by a value depending
only on n and tensor network structure G. Formally, we define the maximal number of sign patterns
as follows:

f(n,G) := sup
X1,···Xn2X
t1,··· ,tn2R
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For h 2 Hregression
G , by definition, h : X 7! hW ,X i for some weight tensor W 2 T (G).

Consequently, there exists a collection of core tensors T v 2
N

e2Ev
Rdim(e) such that W =

TN(G, {T v}v2V ) (see Equation (2)) and it follows that h(X ) is a polynomial of degree |V | over
NG variables. The variables of the polynomial are the entries of the core tensors {T v}v2V .

Now, given a set of input tensors S = {X 1, · · · ,Xn}, the value f(n,G) in Equation (8) is thus
bounded by the number of sign patterns that a system of n polynomial equations (one for each input
data point) of order |V | over NG variables can take. It then follows from Warren’s theorem (Theo-
rem 3) that

f(n,G) 
✓
4en|V |
NG

◆NG

. (9)

Bound on the pseudo-dimension To extract a bound on the pseudo-dimension from the above
bound on the number of relative sign patterns, we follow the line of the proof of Theorem 8.3 in [3].
First observe that by the definition of the pseudo-dimension, if f(n,G) < 2n for some n, then

Pdim(Hregression
G ) < n. Using the bound on f(n,G), we have f(n,G) 

⇣
4en|V |

NG

⌘NG

< 2n if and
only if

NG

✓
log n+ log

4e|V |
NG

◆
< n, (10)

with the logarithm being in base 2. Using the classical inequality lnn  nb+ln 1
b �1, or equivalently

log n  nb
ln 2 + log 1

eb , it follows that

log n  n

2NG
+ log

2NG

e ln 2
.

Consequently, Equation (10) is implied by n > 2NG log 8|V |

ln 2 , which is in turn implied by n >
2NG log(12|V |).
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We thus have shown that Pdim(Hregression
G )  2NG log(12|V |). Since Pdim(H) = dVC({(x, t) 7!

sign(h(x)� t) | h 2 H}) for any hypothesis class H, this upper bound implies that there exists no
set of k � 2NG log(12|V |) points that are shattered by the hypothesis class

{(X , t) 7! sign(h(X )� t) | h 2 Hregression
G } = {(X , t) 7! sign(hW ,X i � t) | W 2 T (G)}.

In particular, no set of k points with thresholds t1 = · · · = tk = 0 is shattered by Hregression
G , which is

equivalent to no set of k points being shattered by Hclassif
G , hence dVC(Hclassif

G )  2NG log(12|V |).
Similarly, for the completion case we argue that the maximum number of multiples of indices
shattered by the function class Hcompletion

G is bounded by the same value as Pdim(Hregression
G ). The

Pseudo-dimension of Hcompletion
G is by definition, the maximum number of indices, i.e., the maximum

number of the entries of the tensor, that could be pseudo-shattered (with thresholds zero) by the class
of tensors Hcompletion

G . Each component of the tensor W 2 T (G), i.e., W i1,···ip , can be written as
the following inner product

W i1,···ip = hW , e(1)i1
⌦ e(2)i2

⌦ · · ·⌦ e(p)ip
i

where each e(j)i 2 Rdj is the i-th basis vector of the standard basis of Rdj . By this way of writing,
we make a clear analogy with a regression problem where data points are , e(1)i1

⌦ e(2)i2
⌦ · · ·⌦ e(p)ip

and the weight tensor is W .

According to this analogy, no set of more than 2NG log(12|V |) indices can be shattered by Hcompletion
G ;

since otherwise we would have a set of data points e(1)i1
⌦ · · ·⌦ e(p)ip

that is shattered by Hregression
G ,

which contradicts our earlier result Pdim(Hregression
G )  2NG log(12|V |). Therefore, we conclude

that Pdim(Hcompletion
G )  2NG log(12|V |).

A.1.2 Proof of Theorem 4

Theorem. Let S be a sample of size n drawn from a distribution D. Then, for any � > 0, with
probability at least 1� � over the choice of S, we have for any h 2 Hclassif

G

R(h) < R̂S(h) + 2

s
2

n

✓
NG log

8en|V |
NG

+ log
4

�

◆
. (11)

Proof. We use a symmetrization lemma and a corollary of Hoeffding’s inequality. For this part, let
H = Hclassif

G .

Lemma 8. (Symmetrization Lemma) [6, Lemma 2] Let S and S0 be two random samples of size n
drawn from a distribution D. Then for any t > 0 such that nt2 � 2, we have

PS⇠D


sup
h2H

⇣
R(h)� R̂S(h)

⌘
� t

�
 2 PS,S0⇠D


sup
h2H

⇣
R̂S0(h)� R̂S(h)

⌘
� t

2

�
, (12)

Corollary 9. If Z1, . . . , Zn, Z 0

1, . . . , Z
0

n are 2n i.i.d. random variables with values in [0, 1], then for
all " > 0 we have

P
"
1

n

nX

i=1

Zi �
1

n

nX

i=1

Z 0

i > "

#
 2 exp

✓
�n"2

2

◆
(13)

This statement is proved by rewriting P[ 1n
Pn

i=1 Zi � 1
n

Pn
i=1 Z

0

i > "] as P[ 1n
Pn

i=1(Zi � E[Zi])�
1
n

Pn
i=1(Z

0

i �E[Z 0

i]) > "]  P[ 1n
Pn

i=1(Zi �E[Zi]) >
"
2 ] + P[ 1n

Pn
i=1(�Z 0

i +E[Z 0

i]) >
"
2 ]. Then

by using Hoeffding’s inequality, Equation (13) is proved.

From Lemma 8 we have

PS⇠D


sup
h2H

�
R(h)� R̂S(h)

�
� 2"

�
 2PS⇠D,S0⇠D


max

h2HS,S0
(R̂S0(h)� R̂S(h)) � "

�

 2 PS,S0⇠D

h
9h 2 HS,S0 | (R̂S0(h)� R̂S(h)) � "

i
, (14)
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where HS,S0 is the projection of the hypothesis class H onto the subset S [ S0. Then, by applying
the union bound followed by Corollary 9 (by taking the bounded loss as the random variable Z) and
recalling the notion of the growth function from Definition 1, we get

PS⇠D[sup
h2H

�
R(h)� R̂S(h)

�
� 2"]  2⇧H(2n)

⇣
PS,S0⇠D

h
R̂S0(h)� R̂S(h) � "

i⌘

 4 ⇧H(2n) exp (�n"2

2
), (15)

In order to upper bound the growth function of the hypothesis class Hclassif
G we can use the same

argument as we did for the pseudo-dimension, which results in an upper bound similar to the one for
the number of relative sign patterns in Equation (9)

⇧
H

classif
G

(n) 
✓
4en|V |
NG

◆NG

(16)

Combining Equations (15) and (16), we get

P
S⇠D


sup
h2H

�
R(h)� R̂S(h)

�
� "

�
4

✓
8en|V |
NG

◆NG

e�
n"2

8 (17)

Equation (11) then directly follows from setting the failure probability equal to � and solving for
".

A.2 Proof of Theorem 7

In this section, we give the proofs of all the lower bounds appearing in Table 1. All the proofs rely
on the following lemma which gives a useful way for jointly deriving lower bounds on the pseudo-
dimension and VC-dimension of the hypothesis classes of linear models for regression, completion
and classification defined in Eq. (4-6).
Lemma 10. Let V ⇢ Rd and define the hypothesis classes

Hcompletion = {h : i 7! wi | w 2 V }

Hregression = {h : x 7! hw,xi | w 2 V }
Hclassif = {h : x 7! sign(hw,xi) | w 2 V }.

If there exist k indices i1, · · · , ik 2 [d] that are shattered by V , i.e., such that

|{(sign(wi1), sign(wi2), · · · , sign(wik)) | w 2 V }| = 2k,

then dVC(Hclassif), Pdim(Hregression) and Pdim(Hcompletion) are all lower-bounded by k.

Proof. Let e1, · · · , ed be the canonical basis of Rd and let i1, · · · , ik 2 [d] be a set of indices
shattered by V . Since hw, eii = wi for all i 2 [d], the points ei1 , · · · , eik are shattered by Hclassif

and thus dVC(Hclassif) � k.

Similarly, since Pdim(H) = dVC({(x, t) 7! sign(h(x)� t) | h 2 H}) for any hypothesis class H,
the set of points ei1 , · · · , eik with thresholds t1 = t2 = · · · = tk = 0 is shattered by the hypothesis
class {(x, t) 7! sign(hw,xi � t) | w 2 V }, and thus Pdim(Hregression) � k.

Lastly, the set of indices i1, · · · , ik with thresholds t1 = t2 = · · · = tk = 0 is shattered by the class
{(i, t) 7! sign(wi � t) | w 2 V }, and thus Pdim(Hcompletion) � k.

A.2.1 Rank-One Tensors

Theorem 11. Let Grank-one =
d d

· · ·
d d be the tensor network structure corresponding to p-th

order rank-one tensors, i.e., T (Grank-one) = {u1 ⌦ u2 ⌦ · · ·⌦ up | u1,u2, · · · ,up 2 Rd}.

The VC-dimension and pseudo-dimensions dVC(Hclassif
Grank-one

), Pdim(Hregression
Grank-one

), Pdim(Hcompletion
Grank-one

) are
all lower-bounded by (d� 1)p.
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Proof. We show that the set of indices

S = {(d, · · · , d| {z }
i�1 times

, j, d, · · · , d| {z }
p�i times

) | i 2 [p], j 2 [d� 1]}

is shattered by T (Grank-one), the result then follows from Lemma 10. More precisely, we show that S
is shattered by the set of rank-one tensors

A =

⇢✓
v1

1

◆
⌦
✓
v2

1

◆
⌦ · · ·⌦

✓
vp

1

◆
| v1,v2, · · · ,vp 2 Rd�1

�
⇢ T (Grank-one).

Indeed, for any multi-index (d, · · · , d| {z }
i�1 times

, j, d, · · · , d| {z }
p�i times

) 2 S and any rank-one tensor X =

✓
v1

1

◆
⌦

✓
v2

1

◆
⌦ · · ·⌦

✓
vp

1

◆
2 A, we have

X d,··· ,d| {z }
i�1 times

,j, d,··· ,d| {z }
p�i times

=

✓✓
v1

1

◆
⌦
✓
v2

1

◆
⌦ · · ·⌦

✓
vp

1

◆◆

d,··· ,d,j,d,··· ,d

= (vi)j .

It follows that the (d � 1)p components X i1,··· ,ip for X 2 A and (i1, · · · , ip) 2 S can take any
arbitrary values (the entries of the vectors v1, · · · ,vp 2 Rd�1) and thus, that S is shattered by A and
accordingly by T (Grank-one). The result then directly follows from Lemma 10.

A.2.2 Tensor Train and Tensor Ring

Theorem 12. Let r  db
p�1
2 c, let GTT(r) =

d

r

d

r
···

r

d

r

d
be the tensor network struc-

ture corresponding to p-th order tensors of tensor train rank at most r, and let GTR(r) =

d

r

d

r
···

r r

d

r

d
be the tensor network structure corresponding to p-th order tensors of

tensor ring rank at most r.

Then, the VC-dimension and pseudo-dimensions dVC(Hclassif
GTT(r)

), dVC(Hclassif
GTR(r)

), Pdim(Hregression
GTT(r)

),

Pdim(Hregression
GTR(r)

), Pdim(Hcompletion
GTT(r)

) and Pdim(Hcompletion
GTR(r)

) are all lower-bounded by r2d.

Moreover, in the particular case where r = d and p = 3k for some k 2 N,
the VC-dimension and pseudo-dimensions dVC(Hclassif

GTT(r)
), dVC(Hclassif

GTR(r)
), Pdim(Hregression

GTT(r)
),

Pdim(Hregression
GTR(r)

), Pdim(Hcompletion
GTT(r)

) and Pdim(Hcompletion
GTR(r)

) are all lower-bounded by p(r2d�1)
3 .

Proof. We start with the tensor train case, the tensor ring case will be handled similarly.

Let r  db
p�1
2 c. We will show that there exists a set of r2d indices (i1, · · · , j1), · · · , (ir2d, · · · , jr2d)

that is shattered by T (GTT(r)) (the set of tensors of tensor train rank at most r), i.e., such that
��{(sign(W i1,··· ,j1), sign(W i2,··· ,j2), · · · , sign(W ir2d,··· ,jr2d

)) | W 2 T (GTT(r))}
�� = 2r

2d.

In order to do so, we will consider a tensor train tensor T with cores G(1), · · · ,G(p), where one of
the core tensors will be free, while the other cores are fixed in such a way that each component of the
free core tensor appears exactly once in the entries of T .

Let e1, · · · , er be the canonical basis of Rr and let ei = 0 for any i > r. Let k = bp
2c and let G(k)

be the k-th core of the tensor train tensor T (i.e., the middle core). The other cores of T are defined
as follows: for each j 2 [d],

G(1)
j,: = e>j

G(s)
:,j,: = e1e

>

(j�1)ds�1+1 + e2e
>

(j�1)ds�1+2 + · · ·+ ere
>

(j�1)ds�1+r for s = 2, · · · , k � 1

G(s)
:,j,: = e(j�1)dp�s+1e

>

1 + e(j�1)dp�s+2e
>

2 + · · ·+ e(j�1)dp�s+re
>

r for s = k + 1, · · · , p� 1

G(p)
:,j = ej .
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With these definitions, one can check that

G(1)
i1,:

G(2)
:,i2,:

G(3)
:,i3,:

· · ·G(k�1)
:,ik�1,:

= e>i1+(i2�1)d+(i3�1)d2+···+(ik�1�1)dk�2

for any i1, · · · , ik�1 2 [d] and

G(k+1)
:,ik+1,:

G(k+2)
:,ik+2,:

· · ·G(p�1)
:,ip�1,:

G(p)
:,ip

= eip+(ip�1�1)d+(ip�2�1)d2+···+(ik+1�1)dp�k�1

for any ik+1, · · · , ip 2 [d]. Letting [[j0, · · · , jt]] = j0 + (j1 � 1)d+ (j2 � 1)d2 + · · ·+ (jt � 1)dt

for any j0, · · · , jt 2 [d], it follows that for any i1, · · · , ip 2 [d],

T i1,··· ,ip =

(
G(k)

[[i1,i2··· ,ik�1]],ik,[[ip,ip�1,··· ,ik+1]]
if [[i1, i2 · · · , ik�1]]  r and [[ip, ip�1, · · · , ik+1]]  r

0 otherwise.

Since r  db
p�1
2 c and k = bp

2c, this implies that for any k-th core G(k), the tensor train tensor T
contains all the r2d entries of G(k). Thus, the set of r2d indices {(i1, · · · , ip) | [[i1, i2 · · · , ik�1]] 
r, ik 2 [d], [[ip, ip�1, · · · , ik+1]]  r} is shattered by T (GTT(r)) and the first part of the theorem
follows from Lemma 10.

We now prove the second part of the theorem for the TT case, using a different construction. Let
r = d and p = 3k for some k 2 N. We will construct a family of tensors in T (GTT(r)) where a
third of the p = 3k cores will be free while the other cores are fixed in such a way that the resulting
tensor T can be seen as the outer product of k 3rd order tensor of size d⇥ d⇥ d. By observing that
such tensors can be interpreted as rank-one k-th order tensors in Rd3

⇥d3
⇥···⇥d3

, the second part of
the theorem will follow from Theorem 11.

Let G(1), · · · ,G(p) be the core tensors of the TT decomposition. The core tensors G(3s+2) 2 Rd⇥d⇥d

for s = 0, · · · , k � 1 are free while the other cores are defined as follows: for any j 2 [d],

G(1)
j,: = e>j

G(3s+3)
:,j,: = eje

>

1 for s = 0, · · · , k � 2

G(3s+1)
:,j,: = e1e

>

j for s = 1, · · · , k � 1

G(p)
j,: = ej .

It follows that, for any i1, · · · , ip 2 [d], we have

T i1,··· ,ip = G(1)
i1,:

G(2)
:,i2,:

· · ·G(p�1)
:,ip�1,:

G(p)
:,ip

= (e>i1)(G
(2)
:,i2,:

)(ei3e
>

1 ) (e1e
>

i4)(G
(5)
:,i5,:

)(ei6e
>

1 ) · · · (e1e>ip�2
)(G(p�1)

:,ip�1,:
)(eip)

= G(2)
i1,i2,i3

G(5)
i4,i5,i6

· · ·G(p�1)
ip�2,ip�1,ip

which implies that T = G(2) ⌦ G(5) ⌦ · · · ⌦ G(p�1) =
Nk�1

s=0 G
(3s+2). By reshaping the set of

tensors constructed in this way into kth order tensors in Rd3
⇥···⇥d3

, one can see that this set of tensors
is exactly the set of rank one kth order tensors of size d3 ⇥ · · ·⇥ d3, for which the corresponding
VC dimension and pseudo dimensions are lower bounded by k(d3 � 1) = p(r2d � 1)/3 from
Theorem 11.

The proof for the tensor ring case uses the exact same constructions with the difference in the
definition of the first and last core tensors which are defined by G(1)

:,j,: = e1e>j and G(p)
:,j,: = eje>1 for

each j 2 [d]. With these definitions, one can check that

G(1)
:,i1,:

G(2)
:,i2,:

G(3)
:,i3,:

· · ·G(k�1)
:,ik�1,:

= e1e
>

[[i1,i2,···ik�1]]

for any i1, · · · , ik�1 2 [d] and

G(k+1)
:,ik+1,:

G(k+2)
:,ik+2,:

· · ·G(p�1)
:,ip�1,:

G(p)
:,ip,:

= e[[ip,ip�1,ik+1]]e
>

1
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for any ik+1, · · · , ip 2 [d]. It follows that for any i1, · · · , ip 2 [d],

T i1,··· ,ip = Tr
⇣
G(1)

:,i1,:
G(2)

:,i2,:
G(3)

:,i3,:
· · ·G(k�1)

:,ik�1,:
G(k)G(k+1)

:,ik+1,:
G(k+2)

:,ik+2,:
· · ·G(p�1)

:,ip�1,:
G(p)

:,ip,:

⌘

=

(
G(k)

[[i1,i2··· ,ik�1]],ik,[[ip,ip�1,··· ,ik+1]]
if [[i1, i2 · · · , ik�1]]  r and [[ip, ip�1, · · · , ik+1]]  r

0 otherwise.

The proof of the first part of the theorem then follows the exact same argument as for the TT case.
The second part of the theorem for TR is proved exactly as the one for TT by replacing the first and
last cores again by G(1)

:,j,: = e1e>j and G(p)
:,j,: = eje>1 for each j 2 [d].

A.2.3 Tucker

Theorem 13. Let r  d and let GTucker(r) = d d
· · ·

d d

r
r r

r
be the tensor network structure

corresponding to p-th order tensors of Tucker rank at most r.

Then, the VC-dimension and pseudo-dimensions dVC(Hclassif
GTucker(r)

), Pdim(Hregression
GTucker(r)

) and

Pdim(Hcompletion
GTucker(r)

) are all lower bounded by rp.

Proof. Let r  d. We show that there exists a set of rp indices (i1, · · · , j1), · · · , (irp , · · · , jrp) that
is shattered by T (GTucker(r)) (the set of tensors of Tucker rank at most r), i.e., such that

|{(sign(W i1,··· ,j1), sign(W i2,··· ,j2), · · · , sign(W irp ,··· ,jrp )) | W 2 T (GTucker(r))}| = 2r
p

.

Let P =
�
Ir⇥r 0r⇥(d�r)

�> 2 Rd⇥r. We consider the following subset of T (GTucker(r)):

A = {G ⇥1 P⇥2 P⇥3 · · ·⇥p P | G 2 Rr⇥r⇥···⇥r} ⇢ T (GTucker(r))

where ⇥k denotes the mode-k product (see, e.g., [32]). It is easy to see that any tensor T =
G ⇥1 P ⇥2 P ⇥3 · · · ⇥p P 2 A will have entries T i1,··· ,ip = Gi1,··· ,ip for any i1, · · · , ip 2 [r].
Hence the set of rp indices [r]⇥ [r]⇥ · · ·⇥ [r] ⇢ [d]⇥ [d]⇥ · · ·⇥ [d] is shattered by T (GTucker(r))
and the result directly follows from Lemma 10.

A.2.4 CP

Theorem 14. Let r  dp�1 and let GCP(r) = d d
· · ·

d d

r
r r

r
be the tensor network structure

corresponding to p-th order tensors of CP rank at most r.

Then, the VC-dimension and pseudo-dimensions dVC(Hclassif
GCP(r)

), Pdim(Hregression
GCP(r)

) and

Pdim(Hcompletion
GCP(r)

) are all lower-bounded by rd.

Proof. Let r  dp�1. We show that there exists a set of rd indices (i1, · · · , j1), · · · , (ird, · · · , jrd)
that is shattered by T (GCP(r)) (the set of tensors of CP rank at most r), i.e., such that

|{(sign(W i1,··· ,j1), sign(W i2,··· ,j2), · · · , sign(W ird,··· ,jrd)) | W 2 T (GCP(r))}| = 2rd.

We construct a tensor T of CP rank at most r such that each component of a matrix A 2 Rd⇥r

appears at least once in the entries of T . Similarly to the previous proofs, A will be a free parameter
allowed to take any value while the other components of the parametrization of T will be fixed.

Let A 2 Rd⇥r, we define p tensors A(1), · · · ,A(p) 2 Rd⇥···⇥d of order p as follows: for all
i1, · · · , ip, ⌧1, · · · , ⌧p�1 2 [d],

A(1)
i1,⌧1,···⌧p�1

=

⇢
Ai1,⌧1+(⌧2�1)d+···+(⌧p�1�1)dp�2 if ⌧1 + (⌧2 � 1)d+ · · ·+ (⌧p�1 � 1)dp�2  r
0 otherwise

A(s)
is,⌧1,···⌧p�1

= �is,⌧s�1 for s = 2, · · · , p
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where � is the Kronecker symbol. Let S = {(⌧1, · · · , ⌧p�1) 2 [d]⇥ · · ·⇥ [d] | ⌧1+(⌧2� 1)d+ · · ·+
(⌧p�1 � 1)dp�2  r}. Let T 2 Rd⇥···d be the pth order tensor defined by

T i1,i2,··· ,ip =
dX

⌧1=1

dX

⌧2=1

· · ·
dX

⌧p�1=1

A(1)
i1,⌧1,⌧2,··· ,⌧p�1

A(2)
i2,⌧1,⌧2,··· ,⌧p�1

· · ·A(p)
ip,⌧1,⌧2,··· ,⌧p�1

for all i1, · · · , ip 2 [d]. It can easily be checked that T is a tensor of CP rank at most r, i.e.,
T 2 T (GCP(r)). Indeed, from the definition of A(1), we have

T i1,i2,··· ,ip =
dX

⌧1=1

dX

⌧2=1

· · ·
dX

⌧p�1=1

A(1)
i1,⌧1,⌧2,··· ,⌧p�1

A(2)
i2,⌧1,⌧2,··· ,⌧p�1

· · ·A(p)
ip,⌧1,⌧2,··· ,⌧p�1

=
X

(⌧1,··· ,⌧p�1)2S

A(1)
i1,⌧1,⌧2,··· ,⌧p�1

A(2)
i2,⌧1,⌧2,··· ,⌧p�1

· · ·A(p)
ip,⌧1,⌧2,··· ,⌧p�1

where the sum is over at most r terms (from the definition of S). At the same time, we have

T i1,i2,··· ,ip =
X

(⌧1,··· ,⌧p�1)2S

A(1)
i1,⌧1,⌧2,··· ,⌧p�1

A(2)
i2,⌧1,⌧2,··· ,⌧p�1

· · ·A(p)
ip,⌧1,⌧2,··· ,⌧p�1

=
X

(⌧1,··· ,⌧p�1)2S

A(1)
i1,⌧1,⌧2,··· ,⌧p�1

�i2,⌧1�i3,⌧2 · · · �ip,⌧p�1

=

⇢
Ai1,i2+(i3�1)d+···+(ip�1)dp�2 if i2 + (i3 � 1)d+ · · ·+ (ip � 1)dp�2  r
0 otherwise

Hence, each one of the components of A appears exactly once in T . In particular, this implies that
the set of indices

{(i1, · · · , ip) 2 [d]⇥ · · ·⇥ [d] | i2 + (i3 � 1)d+ · · ·+ (ip � 1)dp�2  r}

of size rd is shattered by T (GCP(r)). The theorem then directly follows from Lemma 10.

B Experiments

To evaluate the theoretical upper bound provided in Theorem 4, we perform a simple binary classifi-
cation experiment with synthetic data. We draw a random low rank TT target tensor W 2 R4⇥4⇥4⇥4

of rank 8 by drawing the components of the cores of the TT decomposition i.i.d. from a uniform
distribution between -1 and 1. Input-output data is generated with yi = sign(hW ,X ii) for training
and testing, where the components of X i are drawn i.i.d. from a normal distribution. Using the
cross-entropy as loss function, we optimize the empirical risk using stochastic gradient descent with
a learning rate of 10�2 to learn a TT hypothesis of rank r.

In Figure 3, we report the log generalization gap of the learned hypothesis h, log(R(h)� R̂S(h)),
where the true risk R(h) is estimated on a test set of size 4, 000 for different scenarios. In Fig-
ure 3 (left), we show how the sample size affects the generalization gap for learned hypothesis of
rank r = 2 and r = 4. As expected, the generalization gap decreases as the sample size grows, and
is smaller for r = 2 than r = 4 which is also expected from the Theorem 4. In Figure 3 (right), we
show how the rank r of the learned hypothesis affects the generalization for samples sizes 2,000 and
4,000. As expected, the higher the rank of the TT weight tensor, the larger the model complexity and
hence the generalization gap. In both figures, we observe that the theoretical upper bound and the
experimental results follow a similar trend as a function of sample size and hypothesis rank.
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Figure 3: Dashed lines represent the theoretical bound, full lines represent the log generalization gap
(averaged over 20 runs for both experiments), and shaded areas show the standard deviation. (left)
Generalization error for two models with ranks r = 2 and r = 4 as a function of training size. (right)
Generalization error for two sample sizes n = 2000 and n = 4000 as a function of the rank of the
learned hypothesis.
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