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Supplementary Material
Deep Generative Modeling for Identification of Noisy,

Non-Stationary Dynamical Systems

1 METHODS

1.1 VARIATIONAL AUTOENCODERS

In this section, we elaborate on the mathematical foundation of the Variational Autoencoder (VAE)
architecture (19; 6).

Like standard autoencoders, VAEs have an encoder and decoder network to process input
data and generate output. However, instead of mapping inputs to fixed points in the latent space, the
encoder maps them to a probability distribution. The decoder then samples from this distribution to
reconstruct the input. This probabilistic framework reduces overfitting by introducing variability into
the latent space. After computing the reconstruction error, the network is trained via backpropagation,
with the VAE relying on the reparameterization trick to ensure gradients can be propagated through
the network.

Mathematically, we aim to approximate the data distribution p∗(X) of some given observa-
tions X . When direct computation is intractable, we introduce a latent variable z such that p∗(x) is
decomposed as:

p∗(x) =

∫
z

p∗(x|z)p∗(z)dz (1)

where p∗(x|z) is the likelihood and p∗(z) is a prior, often set to a standard normal distribution. Since
this integral is difficult to compute, we approximate pθ(x|z) with a neural network parameterized
by θ. To estimate the posterior distribution p∗(z|x), we approximate it with another neural network
qϕ(z|x), parameterized by ϕ. This is the core idea of variational inference: complex distributions
are approximated by simpler, parametrized ones through optimization. We arrive at the following
objective:

log pθ(x) = log

∫
z

pθ(x, z)dz

= log

∫
z

pθ(x, z)
qϕ(z|x)
qϕ(z|x)

dz

= logEz∼qϕ(z|x)[
pθ(x, z)

qϕ(z|x)
] ≥ Ez[

log pθ(x, z)

qϕ(z|x)
] (2)

by Jensen’s inequality. This leads to the evidence lower bound (ELBO):

L = Ez
log pθ(x, z)

qϕ(z|x)
(3)
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The ELBO sets a lower bound for the evidence of observations and maximizing L will increase the
log-likelihood of X . To find the parameters θ, ϕ so as to maximize the ELBO, it is convenient to
re-write L in the following way:

L =

∫
z

qϕ(z|x) log(
pθ(x, z)

qϕ(z|x)
)

=

∫
z

qϕ(z|x) log(
pθ(x|z)p(z)
qϕ(z|x)

) = Ez∼qϕ(z|x) log(pθ(x|z))−DKL(qϕ(z|x)||p(z)) (4)

where DKL is the Kullback-Leibler divergence between the approximate posterior qϕ(z|x) and
the prior p(z). The ELBO comprises two terms: the expected log-likelihood of the data, and a
regularization term that enforces similarity between the posterior and the prior.

In the autoencoder perspective, the encoder network maps inputs to the latent space via qϕ,
and the decoder maps the latent variables back to the input space via pθ. Both networks are trained
jointly using stochastic gradient descent to optimize the ELBO. More details on the VAE framework
can be found in Kingma et al.’s excellent review (20).

1.2 DYNAMIC VAES

Generating time series data presents unique challenges due to the intricate temporal relationships and
the distribution of features at each time point. One common approach is using generative adversarial
networks (GANs), which often incorporate recurrent neural networks (RNNs) for both generation and
discrimination. However, despite numerous proposed architectures, GANs have struggled to capture
the complex temporal dependencies inherent in time series data. Yoon et al. (11) introduced a novel
approach that blends the supervised training used in autoregressive models with the unsupervised
training of GANs. While we experimented with this method for generating time series, the training
proved to be time-consuming and impractical for our datasets (see Section 3.1). Further limitations
are discussed by Desai et al. (5).
As a result, we shifted our focus to methods based on Variational Autoencoders (VAEs) for time
series, leveraging deep learning techniques to model complex temporal patterns more effectively.

An extensive review (13) offers a unified framework for several VAE models extended to
handle temporal and sequential data. These models, collectively referred to as dynamic VAEs
(DVAEs), share common notation, methodology, and a standardized mathematical formalism. The
review covers various approaches, including Deep Kalman Filters (22; 23), Kalman Variational
Autoencoders (7), Stochastic Recurrent Networks (9), Variational Recurrent Neural Networks
(10; 1), Stochastic Recurrent Neural Networks (15), Recurrent Variational Autoencoders (25),
and Disentangled Sequential Autoencoders (37). In the following section, we will expand on the
mathematical framework common to these methods, as outlined in (13).

Briefly, given a time-series X1:T , and assuming latent variables Z1:T , the goal is to specify
the joint distribution of the observed and latent sequential data pθ(X1:T , Z1:T ), where θ denotes the
parameters of the true distribution’s probabilistic model. DVAEs are hierarchical models in which
both observed and latent variables are treated as time-ordered vectors. These models are often causal,
meaning the distribution of variables at time t depends only on previous time steps. This causality
imposes the following factorization:

p(X1:t, Z1:T ) =

T∏
t=1

p(xt, zt|x1:t−1, z1:t−1) =

T∏
t=1

p(xt|x1:t−1, z1:t)p(zt|x1:t−1, z1:t−1) (5)

The joint distribution of observed and latent variable sequences can be factorized using the chain
rule. Crucially, different models proposed in the literature make different conditional assumptions to
simplify the dependencies in the conditional distribution. For example, a simple model may make the
following simplifications: p(Xt|X1:t−1, Z1:t) = p(Xt|Zt) and p(Zt|X1:t−1, Z1:t−1) = p(Zt|Zt−1).
In addition, different models may implement different network architectures to approximate pθ and
qϕ. A detailed account of the kind of assumptions that each model implements to simplify (5) can be
found in (13).
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1.2.1 TIMEVAE

TimeVAE is a variational autoencoder designed to generate multivariate time-series data (5). It
extends the standard VAE framework to model both the latent space and the temporal dependencies
of a sequence of data vectors. Supplementary Figure 1A illustrates the basic TimeVAE architecture,
which uses dense and convolutional layers without requiring specific time-series knowledge. The
decoder allows for customizable distributions by adding layers to capture time-series components
like level, trends, and seasonality, though we used the base version that excludes these custom
structures in our experiments.

The input to the encoder is a 3D array of size N × D × T , where N is the batch size, D
is the number of feature dimensions, and T is the number of time steps. The encoder processes
the data through convolutional layers with ReLU activations, flattens the output, and then applies
a fully connected layer. The final encoder layer has 2d units, representing the mean and variance
of a multivariate Gaussian distribution, where d is the dimensionality of the latent space, a key
hyperparameter. The reparametrization trick is used to sample from the Gaussian distribution,
parameterized by the encoder’s output.
The decoder reconstructs the data by first passing the sampled latent vector z through a fully
connected layer, reshaping it into a 3D array, and processing it through a series of transposed
convolutional layers with ReLU activation. The last time-distributed fully connected layer produces
the final output that matches the original input dimensions.

Training TimeVAE involves optimizing the ELBO loss function (discussed in Section 1.1)
with different weights on the reconstruction error and KL divergence between the approximate
posterior qϕ(z|x) and the prior pθ(z). Hyperparameters are tuned to determine the appropriate
balance between reconstruction loss, KL divergence, and additional regularization terms (e.g.,
sparsity and total variation, for our problem set-up).

TimeVAE has been tested on four multivariate datasets (5): (1) a 5-dimensional sinusoidal
dataset with varying frequencies, amplitudes, and phases; (2) a 6-dimensional stock market dataset
from Yahoo Finance; (3) a 28-dimensional appliances energy prediction dataset from the UCI
Machine Learning Repository; and (4) a dataset with 15 features of hourly air quality sensor readings
from the UCI Machine Learning Repository. The results show that TimeVAE performs comparably to
top generative models across various metrics, is computationally efficient, and outperforms existing
methods in next-step prediction tasks, particularly when training data is limited (5).

1.2.2 DYNAMIC HYPERSINDY

Inspired by previous work (14; 16), we developed a hierarchical architecture to address non-
autonomous systems, illustrated in Supplementary Figure 1B. The main text focuses on the dynamic
SINDy framework with a timeVAE architecture, while Supplementary Figures 3, 4, 5 show that
incorporating dynamic HyperSINDy results in coefficients and trajectories that closely match the
ground truth.

The first level consists of a standard VAE with encoder and decoder modules (SM Sec.
1.1). The decoder generates X with a probability distribution pt(X) at each time step t. The next
level introduces a hypernetwork, implemented as either a long short-term memory network (LSTM)
or multi-layer perceptron (MLP), which updates the decoder’s weights to adjust the probability
distribution for the following time step, allowing the system to capture temporal drift in the output:

WDecoder(t+ 1) = WDecoder(t) +

M∑
i=1

αi(t) ·Di,where

LSTM(t) = α(t) = [α1(t), ..., αn(t)] (6)

Here, Di are fixed basis tensors to be learned, and αi are hypernetwork outputs. This architecture
adapts to changing dynamics, adjusting the decoder based on reconstruction error and updating the
output probability distribution.
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We modified this architecture for our problem. Instead of a VAE generating data, our decoder
produces SINDy coefficients, which, when combined with the SINDy library, replicate system
dynamics. The decoder approximates the true pdf of the SINDy coefficients. This setup builds
on (16) by adding a hypernetwork that updates decoder weights, forming what we call dynamic
HyperSINDy. This extension allows for time-varying SINDy coefficients, processed sequentially
rather than requiring the entire time series as input (as in timeVAE).

Two primary training methods are used for dynamic HyperSINDy:

• Online Learning: Ideal for switching systems where the network adapts as dynamics
change. However, network parameters evolve, requiring tracking of parameter changes and
identifying switch points after training. The hypernetwork is not needed in this setup.

• Alternate learning: The hypernetwork is trained first with fixed main module parameters
and basis tensors Di, followed by adjustment of the main module parameters/Di, while
fixing the hypernetwork. This method is best for continuously varying SINDy coefficients,
with LSTM as the preferred hypernetwork.

Training used the hyperparameters listed in Table 1. We processed one trajectory at a time (trial
batch size of 1) and used batch sizes of 1-10 time steps. The latent dimension of the VAE was set to
25 while the starting threshold was 0.1. Every 50 epochs, we evaluated and set to zero any SINDy
coefficients with a mean absolute value below a threshold. A relaxed L0 norm in the loss function
encouraged sparsity in the SINDy coefficients, following (16; 4).
Several hyperparameters were increased progressively during training. The threshold rose by 0.005
every 50 epochs until it plateaued, alongside the weight λkl for the KL divergence term, which
increased until it reached a maximum value λmax. The threshold plateaus as well once λmax is
reached. We fixed the number of basis tensors Di to 10, which combined linearly with hypernetwork
outputs to form decoder weights via Eq. (6).

The encoder consisted of four fully connected layers with hidden dimensions of 64, using
ELU activation and an input dimension twice that of X , as it takes X and Ẋ as input. The decoder
also had four hidden layers, with a hidden dimension of 256 and ELU activation. The hypernetwork,
either an LSTM or MLP, contained two layers with an input dimension of 25. We trained using the
AdamW optimizer with an initial learning rate of 0.001, weight decay of 1e− 5, gradient clipping
at 1, and Amsgrad. Additionally, an exponential learning rate scheduler with γ = 0.999 was used.
Many hyperparameters match those in (16).

1.3 TRAINING DYNAMIC SINDY WITH TIMEVAE: METHODOLOGY AND HYPERPARAMETERS

Training timeVAE requires normalizing the data beforehand. While (5) normalizes by subtracting the
minimum and dividing by the maximum to scale the data between 0 and 1, we normalize by dividing
only by the maximum value. This normalization method affects the SINDy coefficients produced by
our method, so we re-scale the resulting time-series before comparing them to the ground truth in
synthetic datasets.

The loss function used to train our timeVAE architecture is:

loss = λMSE · || ˆ̇X − Ẋ||22 + λKL · KL div + λsp· < ||ξi,j(t)||1 >i,j (7)

+ λtv ·
< ||ξi,j(t+ 1)− ξi,j(t)||1 >i,j,t

< ||ξi,j(t)|| >i,j,t +ϵ
(8)

where ϵ is the machine precision limit. The hyperparameters λMSE , λKL, λsp, and λtv balance
accuracy and complexity by adjusting the weights on the different loss terms: λMSE controls the
mean squared error, while the others handle regularization.

• The first term represents the mean squared error between the inferred derivative ˆ̇X using
dynamic SINDy and the derivative from the data Ẋ . For all synthetic datasets, the ground
truth derivative is the one used to obtain the trajectories X .
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Table 1: Hyperparameters for Dynamic HyperSINDy

hyperparameter value

batch size (trials) 1
batch size (time steps) 1-10
latent variable dimension 25
threshold 0.1
threshold interval 50
threshold increment 0.005
λkl 0.01
λkl increment λkl/5
λkl max 1
M (number of basis tensors) 10
hidden dim (decoder) 256
hidden dim (encoder) 64
input dim (LSTM) 25
gradient clip 1.0
cell dimension (LSTM). 30
optimizer AdamW
weight decay 1e-5
amsgrad True
learning rate 0.001
learning rate scheduler ExponentialLR
gamma 0.999

• The second term is the Kullback-Leibler divergence (KL div), a standard term in variational
autoencoders (discussed in SM Sec. 1.1). It measures how closely the posterior distribution
of z, as computed by the encoder given X , resembles the standard normal distribution. The
KL divergence has an analytic form:

KL div = −1

2
· < (1 + 2 log(σzi,j )−

√
µzi,j − exp (2 log σzi,j )) >i,j (9)

where ⟨·⟩ indicates averaging over latent dimensions i and data points j, and µzj and σzj
represent the mean and standard deviation of zj , with µzj and log(σzj ) as the encoder
outputs for each input Xj .

• The third term in Eq. (8) is a sparsity penalty that encourages some SINDy coefficients to
be zero.

• The fourth term is a normalized total variation penalty that prevents drastic changes in the
solution over time.

1.3.1 NON-AUTONOMOUS HARMONIC OSCILLATORS

For the non-autonomous harmonic oscillators, we use the hyperparameters in Table 2 to train the
timeVAE architecture. These remain constant across datasets, despite differences in the time-varying
coefficients A(t) and B(t). However, key hyperparameters like λsp and λtv vary depending on the
dataset, as shown in Table 3. Training is performed using the ADAM optimizer with a weight decay
of 1e5 and gradient clipping at 1.

1.3.2 LORENZ DYNAMICS

For the results in Sec. 4.3, involving the chaotic system with a time-varying parameter in the Lorenz
dynamics, we follow the same steps as before (data normalization/post-processing, loss function,
and two-stage training: first for sparsity pattern, then for coefficient recovery), but with different
hyperparameters listed in Table 4. These hyperparameters remain constant, regardless of how the
Lorenz parameters vary over time.
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Table 2: Hyperparameters for timeVAE (non-autonomous harmonic oscillator)

hyperparameter value

batch size 1
latent dimension 2
threshold 0.01
library size 3
λMSE 3
λKL 1000

Table 3: Hyperparameters for timeVAE at different phases of training (non-autonomous harmonic
oscillator)

hyperparameters dataset at first training phase at second training phase

λsp A(t) sigmoid 50 0
A(t) switch signal 1 500 0
A(t) switch signal 2 200 0
A(t) finite Fourier series 1 0

λtv A(t) sigmoid 100 1000
A(t) switch signal 1 100 1000
A(t) switch signal 2 100 1000
A(t) finite Fourier series 1 0 2

During the first training stage, when the sparsity penalty is non-zero, the batch size is set
to 10 to ensure the correct sparsity pattern is learned. We use RMSProp with a weight decay of
10−5 and gradient clipping at 10. The threshold gradually increases from 0.05 to 0.1 in increments
of 0.025 per epoch, while λsp rises from 0 to 20 in steps of 1. λtv is fixed at 1000. This gradual
increase in hyperparameters follows a successful approach from a related study (16).

1.3.3 LOTKA VOLTERRA

The incomplete Lotka Volterra system has only one variable x, therefore the library has three terms:
x, x2, x3. For training, we use the hyperparameters listed in Tables 5 and 6.

2 LATENT VARIABLE DISCOVERY

2.1 NON-AUTONOMOUS HARMONIC OSCILLATOR

We can use the same approach with the non-autonomous harmonic oscillator as with the Lotka-
Volterra system. We set A(t) = −4 and vary B(t) sigmoidally such that B(t) = 2 + 1

1+exp(5+t) .
After dynamic SINDy identifies a trajectory for B, we add it to (x, y) to form a 3D dynamical system.
Using SINDy on (x, y,B), we discover the following ODE which is almost exactly identical to the
true dynamics, given that B is a sigmoid that can be described by Ḃ = −6 + 5B −B2:

ẋ = −3.997y
ẏ = 1 ·Bx (10)

Ḃ = −5.875 + 4.903B − 0.981B2
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Table 4: Hyperparameters for timeVAE (Lorenz dynamics)

hyperparameter value

latent dimension 5
library size 3
λMSE 3
λKL 1000

Table 5: Hyperparameters for timeVAE (Lotka Volterra)

hyperparameter value

batch size 1
latent dimension 2
library size 3
λMSE 3
λKL 1000

Table 6: Hyperparameters for timeVAE at different phases of training (Lotka Volterra)

hyperparameters at first training phase at second training phase

λsp 0.1 0
λtv 0 0

3 DYNAMIC SINDY FOR SYSTEM IDENTIFICATION OF NEURONAL DYNAMICS
IN THE NEMATODE C. ELEGANS

3.1 RESULTS

Like in Morrison et. al., we have discovered a dynamical system model that switches between
two stable fixed points. The differential equation model is expressed through a cubic function:
ẋ = a ·x3+ b ·x2+ c ·x+d ·y+u with distinct fixed points corresponding to the different switching
states of u. More precisely, the differential model inferred has the form:

ẋ = y

ẏ = −0.002 · x3 + 0.0087x2 − 0.22 · y + 0.05 · x+ ui, i = 1, 2 (11)
u0 ≈ −0.266;u1 ≈ 0.044.

When u = u0 < 0, the dynamical system has one stable fixed point at −5.25 (the other roots of the
cubic equation are complex). This fixed point corresponds to the reversal behavior. Then, when
u = u1 > 0, the dynamical system has two stable and one unstable fixed point: −2.32 and 7.88
stable fixed points and −1.19 unstable. Therefore, varying u can generate a bifurcation. In practice,
the trajectory shifts between −5.25 and −2.32 in tandem with behavioral switches between reversal
and forward states.

The two-dimensional model is a simple model that fits the first principal component and
captures stable state clusters and turning trajectory variability. Once the low-dimensional coordinates
are identified, dynamic SINDy effectively enables data-driven model discovery. Future work will
extend this approach to multiple animals to test its generality across individuals.
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Table 7: Hyperparameters for timeVAE (C. elegans data)

hyperparameter value

batch size 1
latent dimension 2
threshold 0.01
library size 3
λMSE 3
λKL 1000

3.2 TRAINING DYNAMIC SINDY ON C. ELEGANS DATA

We apply timeVAE to infer dynamics for a single worm as a proof-of-concept, demonstrating
dynamic SINDy’s capability for data-driven discovery. Since there is only one trajectory per worm,
uncertainty quantification isn’t possible. As with synthetic datasets, we normalize the trajectories and
train timeVAE to infer the differential equation’s sparsity pattern using the hyperparameters from
Tables 7 and 8.

With a threshold of 0.01, only the terms 1, x, and x2 are considered important. We add y
and x3 for comparison with the Morrison et al. model and retrain with a fixed sparsity pattern,
omitting sparsity regularization from the loss. Our SINDy coefficients vary over time, matching
behavioral transitions between forward and reversal locomotion. Increasing total variance
regularization was not effective, so we averaged non-constant SINDy coefficients over time to
simplify the model. This is part of the training process, where we take the average of all non-constant
coefficients at the last layer of the network to yield the model output and backpropagate. The constant
SINDy coefficient is not constrained, but all other coefficients do not change in time.

The resulting differential equation model, detailed in Eq. 12, includes the time series u(t),
which is shown in Figure 6C (main text). We interpret u(t) as a switching variable and hypothesize
that even a simple switching time series can qualitatively capture the neural activity data. To test this
hypothesis, we post-process the u(t) time series to generate a switch-like signal.

3.2.1 POST-PROCESSING THE SWITCHING SIGNAL

Starting with the u(t) time series inferred using dynamic SINDy, we perform the following steps:

• Subtract the mean of u(t) over time. We also note the approximate minimum and maximum
values, which will be used later.

• Scale the data by a large factor (1000) and apply a pointwise sigmoid function across time,
producing a time series of switches between 0 and 1.

• Finally, re-scale the time series to vary between the previously determined minimum and
maximum values, and then add back the mean < u(t) >t to obtain the final post-processed
switching time series.

To evaluate the accuracy of our model, we integrate the differential equation from Eq. 12 using
the post-processed switching signal u(t) and compare the resulting trajectory to the real trajectory
(Figure 6E-G, main text). Since the C. elegans data has low time resolution (∆t = 0.35749752), we
interpolate the data using the CubicSpline function from the scipy.interpolate library. We reduce the
time step to ∆t/100 and perform numerical integration using the Euler method.

3.3 BACKGROUND: RELATED STUDIES AND COMPARISONS TO OUR MODEL

3.3.1 COMPARISON WITH STATE SPACE MODELS

Our findings with dynamic SINDy reveal a key similarity with the probabilistic state space model
proposed by Linderman et al. (27): both models switch between different dynamical regimes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 8: Hyperparameters for timeVAE at different phases of training (C. elegans data)

hyperparameters at first training phase at second training phase

λsp 10 0
λtv 100 1000

However, despite being nonlinear, our model is more parsimonious in several ways.

Linderman et al. propose a hierarchical recurrent state space model that switches between
simple linear models, using Bayesian inference to fit the model at scale (27). This model decomposes
complex nonlinear neural activity into discrete states with simple linear dynamics, which correspond
to behaviorally relevant aspects of the worm’s behavior. The transition probabilities depend on both
the preceding state and the position in continuous state space, with each discrete state largely tied to
the activation of specific neuron clusters.

While this model provides insights into C. elegans neural dynamics, its linear state space
models are local. The model switches between eight discrete states, each representing a smaller
linear system fitted to the data to explain local dynamics (27). In contrast, dynamic SINDy discovers
a global nonlinear ODE model that switches between only two states. Thus, we simplify the model
by replacing eight local linear regimes with a more compact nonlinear system switching between two
states.

A future direction is to develop a generative model for the switching behavior of u(t), pos-
sibly using a probabilistic model or differential equation linked to the variables x and y. This
would allow us to eliminate the dynamic SINDy network post-training, retaining a global nonlinear
switching differential equation with just four parameters, compared to the many more parameters
required by the hierarchical recurrent SLDS for its eight linear systems (even when considering only
the continuous variable dynamics for a fair comparison with our approach in PC space).

Moreover, the hierarchical recurrent SLDS is a statistical model that doesn’t directly map
onto network dynamics or account for biologically realistic state transitions. While further research
is needed to validate our model’s connection to biological measurements of neural activity, nonlinear
differential equations like ours are potentially more interpretable. For example, a single parameter
change in a global nonlinear model similar to ours can reproduce different long-timescale behaviors
observed in C. elegans (17) (see Sec. 3.1.4 below). This modulation mirrors distinct changes
in state distribution and switching frequencies seen in experiments, which are linked to specific
neuromodulators and neurons (31; 33).
The challenges discussed here also apply to simpler models based on Markov dynamics, such as
hidden Markov models (HMMs) (32; 36; 2).

3.3.2 COMPARISON WITH A NONLINEAR GLOBAL MODEL WITH CONTROL

Our C. elegans neural activity modeling is inspired by Fieseler et al. and Morrison et al. (3; 17).
Unlike state space models, Morrison et al. discovered a minimally parameterized global nonlinear
model with control that mimics Hidden Markov model state transitions within a single dynamical
system. This model captures key features of the C. elegans calcium imaging data, including two
stable fixed points for forward and reversal behaviors, state transitions triggered by control signals,
and variability in transition trajectories that match neural activity data (17).

The model is represented as:

ẋ = F (x, β) + u(t) (12)

where β governs longer timescale dynamics, and u(t) is a control signal operating on faster
timescales. u(t) is a one-dimensional signal that may integrate multiple local and non-local processes.
This separation of intrinsic dynamics and control inputs increases the model’s interpretability.

Nonlinear control has been used in other biological networks to describe switching between multiple

9
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stable states (21; 35; 34) A significant advantage is that a nonlinear model can have multiple fixed
points corresponding to different behavioral states – in the case of C. elegans, forward and reversal
motion. A heuristic model capturing C. elegans behavior is:

ẋ = y
ẏ = −(x− 1)(x− β)(x + 1) + λy + u(t) (13)

When u = 0 this cubic system has two stable fixed points at x = ±1 corresponding to forward and
reversal motions, as well as an unstable point at β. The fixed points correspond to locations in the
state space where F (x, β) = 0 and u(t) = 0. Transitions to the other stable fixed point occur when
u(t) ̸= 0, corresponding to a shift in the behavior of the animal. To capture the stochasticity of the
data, additional noise terms are added to ẋ, ẏ.

The model is fit to reproduce the dominant PCA mode of the neural activity data. Impor-
tantly, the optimization is done by using the manually annotated behavioral labels to determine when
the control switches values. For forward and reversal motion, u = 0, while each type of turn (reversal
to forward and vice versa) corresponds to a different u value. These distinct models are fitted to the
corresponding time series segments based on the annotations. The resulting nonlinear control model
and the parameters found through optimization is fully described in (17).

Both our model and the global nonlinear model with control described above employ non-
linear terms in the dynamics. These are global models with few parameters that capture the most
important qualitative features in the C. elegans data.
A key difference is that the control variable in Morrison et al. takes 3 values, including 0 during
stable states, while dynamic SINDy’s switching variable takes 2 values that influence the fixed points
and are longer-lasting than the transient controls.

A key advantage of our method is that it is entirely data-driven, requiring no behavioral an-
notations or manual fitting. We directly input the low-dimensional neural activity time series,
allowing dynamic SINDy to automatically discover the governing equations. This reduces the effort
required from the data scientist while still capturing the system’s essential dynamics.

3.3.3 COMPARISON WITH A LINEAR MODEL WITH CONTROL

A related study proposed a global linear model with control whereby a linear dynamical system is
actuated by temporally sparse control signals (3). Denoting xj = x(tj), neural activity across neurons
at time tj , and X a matrix of neuronal data at different snapshots in time, X = [x1, ..., xm], dynamic
mode decomposition (DMD) provides a linear model for the dynamics of the state space:

X′ = AX (14)

where X′ = [x2, x3, ...xm+1] is offset by one time step compared to X. Since a linear model alone
cannot capture the neural activity data, DMD with control (DMDc, (12)) is employed to distinguish
between the underlying dynamics and control signals U = [u1,u2, . . .um], where uj = u(tj) are
actuation signals at a snapshot in time. DMDc regresses to the linear control system:

X′ = AX + BU (15)

The control signal can either be fixed using manually annotated behavioral onsets in a supervised
setting or learned jointly with A and B (Algorithm 1, (3)). To avoid trivial solutions, the control
signals are constrained to be sparse, meaning transitions between states should be infrequent. The
following loss function, incorporating an l0 regularization, is minimized using the sequential least
squares thresholding algorithm:

loss = min
A,B,U

= ||AX + BU− X′||2 + λ||U||0 (16)

If control signals are internally generated, they are either random or encoded within the network.
Sparse variable selection and time-delay embeddings test the influence of present and past data to
determine which neurons predict the controls:

uk = K1xk + K2xk−1 + . . . (17)
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Key findings from this study include that the unsupervised algorithm produces control signals
somewhat correlating with manually annotated behavioral onsets, though it fails to capture forward
motion onsets. This suggests that neurons involved in forward motion 1 require non-trivial
nonlinearities throughout the time series for full reconstruction, not just control signals at the onset.
Reversal neurons are well-modeled by the supervised control signals, implying fewer required
nonlinearities other than the transition signal itself. Turns are also largely captured by the neuronal
activity in specific cells, although there is much more variability.

The global linear framework, with internally generated control signals, partially explains
neuronal activity but produces a weak qualitative and quantitative match with the data. For instance,
the correlation between real neuronal activity and the model is at or only slightly above 0.5, even
for neurons not implicated in forward motion, that the model supposedly is successful in capturing.
Incorporating manual annotations significantly improves the model’s accuracy, but it shifts the
approach from data-driven to supervised.

The inability to capture forward motion and the ineffectiveness of forward control signals
demonstrate that nonlinearities are necessary for many interactions in the system. A linear model with
control can produce only one fixed point, with all other states simply being longer-lived, conflicting
with empirical evidence that both forward and reversal behaviors in C. elegans are stable states (3).
Empirical studies have instead shown that multiple behavioral states appear to be stable (18).

These results support our approach using dynamic SINDy, which automatically identifies
nonlinear systems with multiple fixed points, without requiring manual annotations. Dynamic SINDy
discovers a dynamical system with switching signals as opposed to controls, while incorporating
nonlinearities that could be critical in capturing complex neural dynamics. Furthermore, our
framework, as described in Sec. 4.4, could discover how transition signals depend on the data to
create a fully closed-loop feedback system. Future work should confirm that our low-dimensional
model can explain neural activity according to cell class.

4 OTHER METHODS FOR SYSTEM IDENTIFICATION OF NON-AUTONOMOUS
DYNAMIC SYSTEMS

4.1 SWITCHING LINEAR DYNAMICAL SYSTEM (SLDS)

The generative model for switching linear dynamical systems (SLDS) is as follows: for each time
t = 1, 2, ..., T , there is a discrete latent state zt ∈ {1, 2, ...,K} that follows Markov dynamics:

zt+1|zt, {πk}Kk=1 ∼ πzt ,

where {πk}Kk=1 is the Markov transition matrix and πk ∈ [0, 1]K is the k-th matrix row. In addition
to zt, there is a continuous latent state xt ∈ RM following linear dynamics that depend on zt:

xt+1 = Azt+1
xt + bzt+1

+ vt, vt ∼ N(0, Qzt) (18)

where Azt , Qzt are matrices and bzt is a vector depending on the latent state zk ∈ 1, ...,K. In
addition, we have access to observables yt, generated from the continuous latent state xt:

yt = Cxt + d+ wt, wt ∼ N(0, S) (19)

where C, S, d are shared matrices and a vector across different discrete states zt. We denote the
complete set of parameters as θ = {πk, Ak, Qk, bk, C, S, d|k = 1, ...,K} and learn SLDS using
Bayesian inference and a set of convenient priors as detailed in (28).

An extension of SLDS – rsLDS – allows the discrete switches to depend on the continuous
latent state and exogeneous inputs through a logistic regression (28). Specifically, when a discrete
switch occurs whenever a continuous state enters a particular region of state space, SLDS is unable

1This comparison between model and data at the single neuron level is only possible due to identification of
neurons with stereotyped identities, as described in (24)
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to learn this dependence, while rSLDS designed to address this state dependence. An important
contribution of (28) is an inference algorithm leveraging Polya-gamma auxiliary variable methods to
make inference fast, scalable, and, easy. We make use of this algorithm through the open-source
rSLDS libraries (26).

4.1.1 TRAINING

To train the SLDS/rSLDS models, we first select the number of latent states in advance. For
switch-like underlying coefficients, we choose two states to maximize SLDS’s ability to identify the
switching dynamics. We then perform principal component analysis (PCA) on the data, followed
by fitting a simpler autoregressive hidden Markov model (AR-HMM), which lacks continuous
latent states. The discrete latent variables z inferred from the AR-HMM, along with the data
projected onto a small number of principal components, are used to initialize the SLDS/rSLDS
algorithms. The SLDS/rSLDS training algorithms are implemented from the following github
repository: https://github.com/slinderman/recurrent-slds.

4.2 A METHOD BASED ON GROUP SPARSITY

We focus on two studies (29; 8) that address system identification in non-autonomous systems. Both
studies propose a method for identifying ODEs with time-varying SINDy coefficients by dividing
the trajectory into smaller time windows and applying SINDy to each segment while maintaining
the same sparsity pattern across all segments. In (29), this sparsity pattern is enforced using group
sparsity regularization, while (8) introduces a novel algorithm based on sequential thresholding least
squares (STLQ) from the original SINDy paper (30). This STLQ adaptation averages the SINDy
coefficients across time windows and compares the average to a threshold, setting coefficients below
this threshold to zero.

The group sparse penalized method for model selection and parameter estimation is used
with datasets of multiple trajectories that share the same physical laws, but differ in bifurcation
parameters (8). This framework is subsequently adapted to switching systems, whereby in a Lorenz
system, the parameter α changes from −1 to 6.66 at some unknown time. The framework matches
our problem, therefore we adapt the algorithm proposed in this analysis to the non-autonomous
dynamical systems we study (Sec. 3.3).

Adapting the notation in (8) to our own, we have a total of M time windows that partition
the trajectory, and we denote time windows by i. Data points from specific time windows are indexed
by superscript i, while different variables of the system are denoted by subscript j, j = 1, ..., n. For
instance, in the Lorenz system variables x, y, z correspond to xj , j = 1, 2, 3, where xi

j corresponds
to variable xj within time window i. We can then define variable Ξj in terms of ξij which are SINDy
coefficients corresponding to variable j within time window i:

Ξj =

 | | |
ξ1j ξ2j ... ξMj
| | |


Next we can define the data matrix X(i), the velocity matrix Ẋ(i), and the dictionary matrix Θ(i) as:

Xi =

 | | |
xi
1 xi

2 ... xi
n

| | |

 =.


x1(t1;λ

(i)) x2(t1;λ
(i)) ... xn(t1;λ

(i))
x1(t2;λ

(i)) x2(t2;λ
(i)) ... xn(t2;λ

(i))
... ... ... ...

x1(tli ;λ
(i)) x2(tli ;λ

(i)) ... xn(tli ;λ
(i))



Ẋi =

 | | |
ẋi
1 ẋi

2 ... ẋi
n

| | |

 =.


ẋ1(t1;λ

(i)) ẋ2(t1;λ
(i)) ... ẋn(t1;λ

(i))
ẋ1(t2;λ

(i)) ẋ2(t2;λ
(i)) ... ẋn(t2;λ

(i))
... ... ... ...

ẋ1(tli ;λ
(i)) ẋ2(tli ;λ

(i)) ... ẋn(tli ;λ
(i))


and
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Θi =
[
1li,1 Xi (Xi)2 (Xi)3 ...

]
Using this notation, the optimization problem can be rewritten as a least-square fitting :

min
Ξj

n∑
i=1

||Θiξij − Ẋi
j ||22 (20)

for each j = 1, ..., n.

To help prevent overfitting, we add regularization to this cost function, by including a penalty on the
number of active candidate functions. The main assumption of this method is that coefficients ξi have
the same support set (in j) for each i, but can differ in value. Thus we can group each row j together
to be either zero or nonzero, therefore the number of active (nonzero) rows in Ξj is sparse. The cost
function now implements the following group-sparse optimization problem:

min
Ξj

m∑
i=1

||Θiξij − Ẋi
j ||22 + λ||Ξj ||2,0 (21)

where the l2,0 penalty is defined as:

||A||2,0 = #{k : (

m∑
l=1

|akl|2)1/2 ̸= 0} (22)

for any matrix A = [ak,l]. Although the problem is non-convex, the authors in (8) propose to solve it
numerically using an iterative hard thresholding algorithm, the group hard-iterative thresholding
algorithm for dynamical systems:

Group Hard-Iterative Thresholding Algorithm for Dynamical Systems:
1: Given: initialization matrix Ξ(0), tol and parameters γ.
2:
3: while ||Ξ(k+1) − Ξ(k)|| > tol do
4:
5: for i= 1 to m do
6:
7: (ξi)(k+1) = (ξi)(k) − (Θi)T

(
Θi(ξi)(k) − Ξi

)
8:
9: end for

10:
11: S(k+1) = supp(H√

γ [ξ
1, ξ2, ..., ξm])

12:
13: for i= 1 to m do
14:
15: (ξi)(k+1) = argminξi ||Θiξi − Ẋi||22 s.t. supp(ξi) ⊂ Sk+1

16:
17: end for
18:
19: end while
20:

where supp(x) is the support set of x, i.e. the indices of x that correspond to the nonzero values.

While we implement this algorithm and test it on the data, we have found, surprisingly,
that a simpler algorithm is more effective in many cases:

Simple sequential thresholding algorithm:
Solve ΘiΞi = Ẋi for each time window i and trajectory X and stack these least squares results in
a matrix Ξ̃(0) to be used as initial condition

13
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Choose threshold
for j = 1 to 100 do %100 iterations

%average over time windows s and compare to threshold:
smallinds← {k1, k2 | < |Ξ̃(j−1)[k1, k2, s]| >s< threshold}
biginds← {k1, k2 | > |Ξ̃(j−1)[k1, k2, s]| >s> threshold}
for i = 1 to m do

Solve for Ξi: Θi[biginds] · (Ξi[biginds])(j) = Ẋi

(Ξi[smallinds])(j) = 0 %coefficients are 0 all across time windows i
end for
Ξ̃(j) = [(Ξ1)(j), ..., (Ξm)(j)]

end for

Comments starting with “%” are provided throughout the code to clarify its meaning. We use this
algorithm throughout to showcase our results using the group sparsity method.

For training, we have varied the total time for the trajectories, the number of batches used,
the time window, as well as the precise algorithm used. Throughout these experiments we have found
that the algorithm was highly sensitive to whether the data was normalized or not, specifically we
have found that not normalizing the data yielded superior results.
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Supplementary Figures

timeVAE

dynamic 
HyperSINDy 

zEncoder Decoder XX

hyper
network||X  - X||2

A

B

Figure 1: (A) Schematic of timeVAE architecture from (5); (B) Schematic of dynamic HyperSINDy
architecture described in SM Sec. 1.2.2
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(a) switch signal 1 (b) 2 sinusoids (c) Fourier series

Set of synthetic datasets used to test dynamic SINDy
 (coe�cient time series and trajectory)

Figure 2: Time-varying coefficients (above) and corresponding dynamics (below) for the non-
autonomous harmonic oscillator of Eq. (3) (main text). Complementary to Figure 1A (main text)

(a)  sinusoid A(t)

dynamic HyperSINDy: non-autonomous harmonic oscillators
A(t), B(t) sinusoids

(b)  sinusoid B(t) (c)  reconstruction

Figure 3: Data-driven discovery of sinusoid SINDy coefficients (a and b)and trajectory reconstruction
(c) of a non-autonomous harmonic oscillator with dynamic HyperSINDy.
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dynamic HyperSINDy: non-autonomous harmonic oscillators
A(t), B(t) sigmoid and switch signals

(a)  sigmoid A(t) (b)  reconstruction
 for sigmoid A(t)

(c)  switch signal A(t) (d)  reconstruction
for switch signal A(t)

Figure 4: Data-driven discovery of sigmoid and switch signal coefficients (a and c) and the corre-
sponding trajectory reconstruction (b and d) of a non-autonomous harmonic oscillator with dynamic
HyperSINDy.

dynamic HyperSINDy: Lorenz dynamical system
σ(t) sigmoid and sinusoid

(a)  sigmoid σ(t) (b)  constant β(t) (c)  constant ρ(t)

(d)  reconstruction for 
      sigmoid σ(t)

(e)  sinusoid σ(t) (e)  constant ρ(t)

Figure 5: Data-driven discovery of sigmoid (a), constant (b, c and e) and sinusoid (e) SINDy
coefficients and trajectory reconstruction (d) of the Lorenz dynamics with dynamic HyperSINDy.
Time series of coefficients that correspond to constants in the real dynamics sometimes inherit
frequency content from the dynamics, as in (e).
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        Reconstruction of X trajectory
.

(a) sigmoid
σ = 0.01

(b) switch signal 1,
σ = 0.01

(c) Fourier series 1,
σ = 1.0

(d) Fourier series 2,
σ = 0.1

Figure 6: Trajectory reconstructions with timeVAE for a non-autonomous harmonic oscillator with
different coefficients (sigmoid, switch signal, finite Fourier series) and different levels of noise in the
coefficients (0.01, 0.1, 1).
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