
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Supplementary Material
Deep Generative Modeling for Identification of Noisy,

Non-Stationary Dynamical Systems

1 METHODS

1.1 VARIATIONAL AUTOENCODERS

In this section, we elaborate on the mathematical foundation of the Variational Autoencoder (VAE)
architecture (19; 6).

Like standard autoencoders, VAEs have an encoder and decoder network to process input
data and generate output. However, instead of mapping inputs to fixed points in the latent space, the
encoder maps them to a probability distribution. The decoder then samples from this distribution to
reconstruct the input. This probabilistic framework reduces overfitting by introducing variability into
the latent space. After computing the reconstruction error, the network is trained via backpropagation,
with the VAE relying on the reparameterization trick to ensure gradients can be propagated through
the network.

Mathematically, we aim to approximate the data distribution p∗(X) of some given observa-
tions X . When direct computation is intractable, we introduce a latent variable z such that p∗(x) is
decomposed as:

p∗(x) =

∫
z

p∗(x|z)p∗(z)dz (1)

where p∗(x|z) is the likelihood and p∗(z) is a prior, often set to a standard normal distribution. Since
this integral is difficult to compute, we approximate pθ(x|z) with a neural network parameterized
by θ. To estimate the posterior distribution p∗(z|x), we approximate it with another neural network
qϕ(z|x), parameterized by ϕ. This is the core idea of variational inference: complex distributions
are approximated by simpler, parametrized ones through optimization. We arrive at the following
objective:

log pθ(x) = log

∫
z

pθ(x, z)dz

= log

∫
z

pθ(x, z)
qϕ(z|x)
qϕ(z|x)

dz

= logEz∼qϕ(z|x)[
pθ(x, z)

qϕ(z|x)
] ≥ Ez[

log pθ(x, z)

qϕ(z|x)
] (2)

by Jensen’s inequality. This leads to the evidence lower bound (ELBO):

L = Ez
log pθ(x, z)

qϕ(z|x)
(3)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

The ELBO sets a lower bound for the evidence of observations and maximizing L will increase the
log-likelihood of X . To find the parameters θ, ϕ so as to maximize the ELBO, it is convenient to
re-write L in the following way:

L =

∫
z

qϕ(z|x) log(
pθ(x, z)

qϕ(z|x)
)

=

∫
z

qϕ(z|x) log(
pθ(x|z)p(z)
qϕ(z|x)

) = Ez∼qϕ(z|x) log(pθ(x|z))−DKL(qϕ(z|x)||p(z)) (4)

where DKL is the Kullback-Leibler divergence between the approximate posterior qϕ(z|x) and
the prior p(z). The ELBO comprises two terms: the expected log-likelihood of the data, and a
regularization term that enforces similarity between the posterior and the prior.

In the autoencoder perspective, the encoder network maps inputs to the latent space via qϕ,
and the decoder maps the latent variables back to the input space via pθ. Both networks are trained
jointly using stochastic gradient descent to optimize the ELBO. More details on the VAE framework
can be found in Kingma et al.’s excellent review (20).

1.2 DYNAMIC VAES

Generating time series data presents unique challenges due to the intricate temporal relationships and
the distribution of features at each time point. One common approach is using generative adversarial
networks (GANs), which often incorporate recurrent neural networks (RNNs) for both generation and
discrimination. However, despite numerous proposed architectures, GANs have struggled to capture
the complex temporal dependencies inherent in time series data. Yoon et al. (11) introduced a novel
approach that blends the supervised training used in autoregressive models with the unsupervised
training of GANs. While we experimented with this method for generating time series, the training
proved to be time-consuming and impractical for our datasets (see Section 3.1). Further limitations
are discussed by Desai et al. (5).
As a result, we shifted our focus to methods based on Variational Autoencoders (VAEs) for time
series, leveraging deep learning techniques to model complex temporal patterns more effectively.

An extensive review (13) offers a unified framework for several VAE models extended to
handle temporal and sequential data. These models, collectively referred to as dynamic VAEs
(DVAEs), share common notation, methodology, and a standardized mathematical formalism. The
review covers various approaches, including Deep Kalman Filters (22; 23), Kalman Variational
Autoencoders (7), Stochastic Recurrent Networks (9), Variational Recurrent Neural Networks
(10; 1), Stochastic Recurrent Neural Networks (15), Recurrent Variational Autoencoders (25),
and Disentangled Sequential Autoencoders (37). In the following section, we will expand on the
mathematical framework common to these methods, as outlined in (13).

Briefly, given a time-series X1:T , and assuming latent variables Z1:T , the goal is to specify
the joint distribution of the observed and latent sequential data pθ(X1:T , Z1:T), where θ denotes the
parameters of the true distribution’s probabilistic model. DVAEs are hierarchical models in which
both observed and latent variables are treated as time-ordered vectors. These models are often causal,
meaning the distribution of variables at time t depends only on previous time steps. This causality
imposes the following factorization:

p(X1:t, Z1:T) =

T∏
t=1

p(xt, zt|x1:t−1, z1:t−1) =

T∏
t=1

p(xt|x1:t−1, z1:t)p(zt|x1:t−1, z1:t−1) (5)

The joint distribution of observed and latent variable sequences can be factorized using the chain
rule. Crucially, different models proposed in the literature make different conditional assumptions to
simplify the dependencies in the conditional distribution. For example, a simple model may make the
following simplifications: p(Xt|X1:t−1, Z1:t) = p(Xt|Zt) and p(Zt|X1:t−1, Z1:t−1) = p(Zt|Zt−1).
In addition, different models may implement different network architectures to approximate pθ and
qϕ. A detailed account of the kind of assumptions that each model implements to simplify (5) can be
found in (13).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

1.2.1 TIMEVAE

TimeVAE is a variational autoencoder designed to generate multivariate time-series data (5). It
extends the standard VAE framework to model both the latent space and the temporal dependencies
of a sequence of data vectors. Supplementary Figure 1A illustrates the basic TimeVAE architecture,
which uses dense and convolutional layers without requiring specific time-series knowledge. The
decoder allows for customizable distributions by adding layers to capture time-series components
like level, trends, and seasonality, though we used the base version that excludes these custom
structures in our experiments.

The input to the encoder is a 3D array of size N × D × T , where N is the batch size, D
is the number of feature dimensions, and T is the number of time steps. The encoder processes
the data through convolutional layers with ReLU activations, flattens the output, and then applies
a fully connected layer. The final encoder layer has 2d units, representing the mean and variance
of a multivariate Gaussian distribution, where d is the dimensionality of the latent space, a key
hyperparameter. The reparametrization trick is used to sample from the Gaussian distribution,
parameterized by the encoder’s output.
The decoder reconstructs the data by first passing the sampled latent vector z through a fully
connected layer, reshaping it into a 3D array, and processing it through a series of transposed
convolutional layers with ReLU activation. The last time-distributed fully connected layer produces
the final output that matches the original input dimensions.

Training TimeVAE involves optimizing the ELBO loss function (discussed in Section 1.1)
with different weights on the reconstruction error and KL divergence between the approximate
posterior qϕ(z|x) and the prior pθ(z). Hyperparameters are tuned to determine the appropriate
balance between reconstruction loss, KL divergence, and additional regularization terms (e.g.,
sparsity and total variation, for our problem set-up).

TimeVAE has been tested on four multivariate datasets (5): (1) a 5-dimensional sinusoidal
dataset with varying frequencies, amplitudes, and phases; (2) a 6-dimensional stock market dataset
from Yahoo Finance; (3) a 28-dimensional appliances energy prediction dataset from the UCI
Machine Learning Repository; and (4) a dataset with 15 features of hourly air quality sensor readings
from the UCI Machine Learning Repository. The results show that TimeVAE performs comparably to
top generative models across various metrics, is computationally efficient, and outperforms existing
methods in next-step prediction tasks, particularly when training data is limited (5).

1.2.2 DYNAMIC HYPERSINDY

Inspired by previous work (14; 16), we developed a hierarchical architecture to address non-
autonomous systems, illustrated in Supplementary Figure 1B. The main text focuses on the dynamic
SINDy framework with a timeVAE architecture, while Supplementary Figures 3, 4, 5 show that
incorporating dynamic HyperSINDy results in coefficients and trajectories that closely match the
ground truth.

The first level consists of a standard VAE with encoder and decoder modules (SM Sec.
1.1). The decoder generates X with a probability distribution pt(X) at each time step t. The next
level introduces a hypernetwork, implemented as either a long short-term memory network (LSTM)
or multi-layer perceptron (MLP), which updates the decoder’s weights to adjust the probability
distribution for the following time step, allowing the system to capture temporal drift in the output:

WDecoder(t+ 1) = WDecoder(t) +

M∑
i=1

αi(t) ·Di,where

LSTM(t) = α(t) = [α1(t), ..., αn(t)] (6)

Here, Di are fixed basis tensors to be learned, and αi are hypernetwork outputs. This architecture
adapts to changing dynamics, adjusting the decoder based on reconstruction error and updating the
output probability distribution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

We modified this architecture for our problem. Instead of a VAE generating data, our decoder
produces SINDy coefficients, which, when combined with the SINDy library, replicate system
dynamics. The decoder approximates the true pdf of the SINDy coefficients. This setup builds
on (16) by adding a hypernetwork that updates decoder weights, forming what we call dynamic
HyperSINDy. This extension allows for time-varying SINDy coefficients, processed sequentially
rather than requiring the entire time series as input (as in timeVAE).

Two primary training methods are used for dynamic HyperSINDy:

• Online Learning: Ideal for switching systems where the network adapts as dynamics
change. However, network parameters evolve, requiring tracking of parameter changes and
identifying switch points after training. The hypernetwork is not needed in this setup.

• Alternate learning: The hypernetwork is trained first with fixed main module parameters
and basis tensors Di, followed by adjustment of the main module parameters/Di, while
fixing the hypernetwork. This method is best for continuously varying SINDy coefficients,
with LSTM as the preferred hypernetwork.

Training used the hyperparameters listed in Table 1. We processed one trajectory at a time (trial
batch size of 1) and used batch sizes of 1-10 time steps. The latent dimension of the VAE was set to
25 while the starting threshold was 0.1. Every 50 epochs, we evaluated and set to zero any SINDy
coefficients with a mean absolute value below a threshold. A relaxed L0 norm in the loss function
encouraged sparsity in the SINDy coefficients, following (16; 4).
Several hyperparameters were increased progressively during training. The threshold rose by 0.005
every 50 epochs until it plateaued, alongside the weight λkl for the KL divergence term, which
increased until it reached a maximum value λmax. The threshold plateaus as well once λmax is
reached. We fixed the number of basis tensors Di to 10, which combined linearly with hypernetwork
outputs to form decoder weights via Eq. (6).

The encoder consisted of four fully connected layers with hidden dimensions of 64, using
ELU activation and an input dimension twice that of X , as it takes X and Ẋ as input. The decoder
also had four hidden layers, with a hidden dimension of 256 and ELU activation. The hypernetwork,
either an LSTM or MLP, contained two layers with an input dimension of 25. We trained using the
AdamW optimizer with an initial learning rate of 0.001, weight decay of 1e− 5, gradient clipping
at 1, and Amsgrad. Additionally, an exponential learning rate scheduler with γ = 0.999 was used.
Many hyperparameters match those in (16).

1.3 TRAINING DYNAMIC SINDY WITH TIMEVAE: METHODOLOGY AND HYPERPARAMETERS

Training timeVAE requires normalizing the data beforehand. While (5) normalizes by subtracting the
minimum and dividing by the maximum to scale the data between 0 and 1, we normalize by dividing
only by the maximum value. This normalization method affects the SINDy coefficients produced by
our method, so we re-scale the resulting time-series before comparing them to the ground truth in
synthetic datasets.

The loss function used to train our timeVAE architecture is:

loss = λMSE · || ˆ̇X − Ẋ||22 + λKL · KL div + λsp· < ||ξi,j(t)||1 >i,j (7)

+ λtv ·
< ||ξi,j(t+ 1)− ξi,j(t)||1 >i,j,t

< ||ξi,j(t)|| >i,j,t +ϵ
(8)

where ϵ is the machine precision limit. The hyperparameters λMSE , λKL, λsp, and λtv balance
accuracy and complexity by adjusting the weights on the different loss terms: λMSE controls the
mean squared error, while the others handle regularization.

• The first term represents the mean squared error between the inferred derivative ˆ̇X using
dynamic SINDy and the derivative from the data Ẋ . For all synthetic datasets, the ground
truth derivative is the one used to obtain the trajectories X .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 1: Hyperparameters for Dynamic HyperSINDy

hyperparameter value

batch size (trials) 1
batch size (time steps) 1-10
latent variable dimension 25
threshold 0.1
threshold interval 50
threshold increment 0.005
λkl 0.01
λkl increment λkl/5
λkl max 1
M (number of basis tensors) 10
hidden dim (decoder) 256
hidden dim (encoder) 64
input dim (LSTM) 25
gradient clip 1.0
cell dimension (LSTM). 30
optimizer AdamW
weight decay 1e-5
amsgrad True
learning rate 0.001
learning rate scheduler ExponentialLR
gamma 0.999

• The second term is the Kullback-Leibler divergence (KL div), a standard term in variational
autoencoders (discussed in SM Sec. 1.1). It measures how closely the posterior distribution
of z, as computed by the encoder given X , resembles the standard normal distribution. The
KL divergence has an analytic form:

KL div = −1

2
· < (1 + 2 log(σzi,j)−

√
µzi,j − exp (2 log σzi,j)) >i,j (9)

where ⟨·⟩ indicates averaging over latent dimensions i and data points j, and µzj and σzj
represent the mean and standard deviation of zj , with µzj and log(σzj) as the encoder
outputs for each input Xj .

• The third term in Eq. (8) is a sparsity penalty that encourages some SINDy coefficients to
be zero.

• The fourth term is a normalized total variation penalty that prevents drastic changes in the
solution over time.

1.3.1 NON-AUTONOMOUS HARMONIC OSCILLATORS

For the non-autonomous harmonic oscillators, we use the hyperparameters in Table 2 to train the
timeVAE architecture. These remain constant across datasets, despite differences in the time-varying
coefficients A(t) and B(t). However, key hyperparameters like λsp and λtv vary depending on the
dataset, as shown in Table 3. Training is performed using the ADAM optimizer with a weight decay
of 1e5 and gradient clipping at 1.

1.3.2 LORENZ DYNAMICS

For the results in Sec. 4.3, involving the chaotic system with a time-varying parameter in the Lorenz
dynamics, we follow the same steps as before (data normalization/post-processing, loss function,
and two-stage training: first for sparsity pattern, then for coefficient recovery), but with different
hyperparameters listed in Table 4. These hyperparameters remain constant, regardless of how the
Lorenz parameters vary over time.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 2: Hyperparameters for timeVAE (non-autonomous harmonic oscillator)

hyperparameter value

batch size 1
latent dimension 2
threshold 0.01
library size 3
λMSE 3
λKL 1000

Table 3: Hyperparameters for timeVAE at different phases of training (non-autonomous harmonic
oscillator)

hyperparameters dataset at first training phase at second training phase

λsp A(t) sigmoid 50 0
A(t) switch signal 1 500 0
A(t) switch signal 2 200 0
A(t) finite Fourier series 1 0

λtv A(t) sigmoid 100 1000
A(t) switch signal 1 100 1000
A(t) switch signal 2 100 1000
A(t) finite Fourier series 1 0 2

During the first training stage, when the sparsity penalty is non-zero, the batch size is set
to 10 to ensure the correct sparsity pattern is learned. We use RMSProp with a weight decay of
10−5 and gradient clipping at 10. The threshold gradually increases from 0.05 to 0.1 in increments
of 0.025 per epoch, while λsp rises from 0 to 20 in steps of 1. λtv is fixed at 1000. This gradual
increase in hyperparameters follows a successful approach from a related study (16).

1.3.3 LOTKA VOLTERRA

The incomplete Lotka Volterra system has only one variable x, therefore the library has three terms:
x, x2, x3. For training, we use the hyperparameters listed in Tables 5 and 6.

2 LATENT VARIABLE DISCOVERY

2.1 NON-AUTONOMOUS HARMONIC OSCILLATOR

We can use the same approach with the non-autonomous harmonic oscillator as with the Lotka-
Volterra system. We set A(t) = −4 and vary B(t) sigmoidally such that B(t) = 2 + 1

1+exp(5+t) .
After dynamic SINDy identifies a trajectory for B, we add it to (x, y) to form a 3D dynamical system.
Using SINDy on (x, y,B), we discover the following ODE which is almost exactly identical to the
true dynamics, given that B is a sigmoid that can be described by Ḃ = −6 + 5B −B2:

ẋ = −3.997y
ẏ = 1 ·Bx (10)

Ḃ = −5.875 + 4.903B − 0.981B2

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 4: Hyperparameters for timeVAE (Lorenz dynamics)

hyperparameter value

latent dimension 5
library size 3
λMSE 3
λKL 1000

Table 5: Hyperparameters for timeVAE (Lotka Volterra)

hyperparameter value

batch size 1
latent dimension 2
library size 3
λMSE 3
λKL 1000

Table 6: Hyperparameters for timeVAE at different phases of training (Lotka Volterra)

hyperparameters at first training phase at second training phase

λsp 0.1 0
λtv 0 0

3 DYNAMIC SINDY FOR SYSTEM IDENTIFICATION OF NEURONAL DYNAMICS
IN THE NEMATODE C. ELEGANS

3.1 RESULTS

Like in Morrison et. al., we have discovered a dynamical system model that switches between
two stable fixed points. The differential equation model is expressed through a cubic function:
ẋ = a ·x3+ b ·x2+ c ·x+d ·y+u with distinct fixed points corresponding to the different switching
states of u. More precisely, the differential model inferred has the form:

ẋ = y

ẏ = −0.002 · x3 + 0.0087x2 − 0.22 · y + 0.05 · x+ ui, i = 1, 2 (11)
u0 ≈ −0.266;u1 ≈ 0.044.

When u = u0 < 0, the dynamical system has one stable fixed point at −5.25 (the other roots of the
cubic equation are complex). This fixed point corresponds to the reversal behavior. Then, when
u = u1 > 0, the dynamical system has two stable and one unstable fixed point: −2.32 and 7.88
stable fixed points and −1.19 unstable. Therefore, varying u can generate a bifurcation. In practice,
the trajectory shifts between −5.25 and −2.32 in tandem with behavioral switches between reversal
and forward states.

The two-dimensional model is a simple model that fits the first principal component and
captures stable state clusters and turning trajectory variability. Once the low-dimensional coordinates
are identified, dynamic SINDy effectively enables data-driven model discovery. Future work will
extend this approach to multiple animals to test its generality across individuals.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 7: Hyperparameters for timeVAE (C. elegans data)

hyperparameter value

batch size 1
latent dimension 2
threshold 0.01
library size 3
λMSE 3
λKL 1000

3.2 TRAINING DYNAMIC SINDY ON C. ELEGANS DATA

We apply timeVAE to infer dynamics for a single worm as a proof-of-concept, demonstrating
dynamic SINDy’s capability for data-driven discovery. Since there is only one trajectory per worm,
uncertainty quantification isn’t possible. As with synthetic datasets, we normalize the trajectories and
train timeVAE to infer the differential equation’s sparsity pattern using the hyperparameters from
Tables 7 and 8.

With a threshold of 0.01, only the terms 1, x, and x2 are considered important. We add y
and x3 for comparison with the Morrison et al. model and retrain with a fixed sparsity pattern,
omitting sparsity regularization from the loss. Our SINDy coefficients vary over time, matching
behavioral transitions between forward and reversal locomotion. Increasing total variance
regularization was not effective, so we averaged non-constant SINDy coefficients over time to
simplify the model. This is part of the training process, where we take the average of all non-constant
coefficients at the last layer of the network to yield the model output and backpropagate. The constant
SINDy coefficient is not constrained, but all other coefficients do not change in time.

The resulting differential equation model, detailed in Eq. 12, includes the time series u(t),
which is shown in Figure 6C (main text). We interpret u(t) as a switching variable and hypothesize
that even a simple switching time series can qualitatively capture the neural activity data. To test this
hypothesis, we post-process the u(t) time series to generate a switch-like signal.

3.2.1 POST-PROCESSING THE SWITCHING SIGNAL

Starting with the u(t) time series inferred using dynamic SINDy, we perform the following steps:

• Subtract the mean of u(t) over time. We also note the approximate minimum and maximum
values, which will be used later.

• Scale the data by a large factor (1000) and apply a pointwise sigmoid function across time,
producing a time series of switches between 0 and 1.

• Finally, re-scale the time series to vary between the previously determined minimum and
maximum values, and then add back the mean < u(t) >t to obtain the final post-processed
switching time series.

To evaluate the accuracy of our model, we integrate the differential equation from Eq. 12 using
the post-processed switching signal u(t) and compare the resulting trajectory to the real trajectory
(Figure 6E-G, main text). Since the C. elegans data has low time resolution (∆t = 0.35749752), we
interpolate the data using the CubicSpline function from the scipy.interpolate library. We reduce the
time step to ∆t/100 and perform numerical integration using the Euler method.

3.3 BACKGROUND: RELATED STUDIES AND COMPARISONS TO OUR MODEL

3.3.1 COMPARISON WITH STATE SPACE MODELS

Our findings with dynamic SINDy reveal a key similarity with the probabilistic state space model
proposed by Linderman et al. (27): both models switch between different dynamical regimes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 8: Hyperparameters for timeVAE at different phases of training (C. elegans data)

hyperparameters at first training phase at second training phase

λsp 10 0
λtv 100 1000

However, despite being nonlinear, our model is more parsimonious in several ways.

Linderman et al. propose a hierarchical recurrent state space model that switches between
simple linear models, using Bayesian inference to fit the model at scale (27). This model decomposes
complex nonlinear neural activity into discrete states with simple linear dynamics, which correspond
to behaviorally relevant aspects of the worm’s behavior. The transition probabilities depend on both
the preceding state and the position in continuous state space, with each discrete state largely tied to
the activation of specific neuron clusters.

While this model provides insights into C. elegans neural dynamics, its linear state space
models are local. The model switches between eight discrete states, each representing a smaller
linear system fitted to the data to explain local dynamics (27). In contrast, dynamic SINDy discovers
a global nonlinear ODE model that switches between only two states. Thus, we simplify the model
by replacing eight local linear regimes with a more compact nonlinear system switching between two
states.

A future direction is to develop a generative model for the switching behavior of u(t), pos-
sibly using a probabilistic model or differential equation linked to the variables x and y. This
would allow us to eliminate the dynamic SINDy network post-training, retaining a global nonlinear
switching differential equation with just four parameters, compared to the many more parameters
required by the hierarchical recurrent SLDS for its eight linear systems (even when considering only
the continuous variable dynamics for a fair comparison with our approach in PC space).

Moreover, the hierarchical recurrent SLDS is a statistical model that doesn’t directly map
onto network dynamics or account for biologically realistic state transitions. While further research
is needed to validate our model’s connection to biological measurements of neural activity, nonlinear
differential equations like ours are potentially more interpretable. For example, a single parameter
change in a global nonlinear model similar to ours can reproduce different long-timescale behaviors
observed in C. elegans (17) (see Sec. 3.1.4 below). This modulation mirrors distinct changes
in state distribution and switching frequencies seen in experiments, which are linked to specific
neuromodulators and neurons (31; 33).
The challenges discussed here also apply to simpler models based on Markov dynamics, such as
hidden Markov models (HMMs) (32; 36; 2).

3.3.2 COMPARISON WITH A NONLINEAR GLOBAL MODEL WITH CONTROL

Our C. elegans neural activity modeling is inspired by Fieseler et al. and Morrison et al. (3; 17).
Unlike state space models, Morrison et al. discovered a minimally parameterized global nonlinear
model with control that mimics Hidden Markov model state transitions within a single dynamical
system. This model captures key features of the C. elegans calcium imaging data, including two
stable fixed points for forward and reversal behaviors, state transitions triggered by control signals,
and variability in transition trajectories that match neural activity data (17).

The model is represented as:

ẋ = F (x, β) + u(t) (12)

where β governs longer timescale dynamics, and u(t) is a control signal operating on faster
timescales. u(t) is a one-dimensional signal that may integrate multiple local and non-local processes.
This separation of intrinsic dynamics and control inputs increases the model’s interpretability.

Nonlinear control has been used in other biological networks to describe switching between multiple

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

stable states (21; 35; 34) A significant advantage is that a nonlinear model can have multiple fixed
points corresponding to different behavioral states – in the case of C. elegans, forward and reversal
motion. A heuristic model capturing C. elegans behavior is:

ẋ = y
ẏ = −(x− 1)(x− β)(x + 1) + λy + u(t) (13)

When u = 0 this cubic system has two stable fixed points at x = ±1 corresponding to forward and
reversal motions, as well as an unstable point at β. The fixed points correspond to locations in the
state space where F (x, β) = 0 and u(t) = 0. Transitions to the other stable fixed point occur when
u(t) ̸= 0, corresponding to a shift in the behavior of the animal. To capture the stochasticity of the
data, additional noise terms are added to ẋ, ẏ.

The model is fit to reproduce the dominant PCA mode of the neural activity data. Impor-
tantly, the optimization is done by using the manually annotated behavioral labels to determine when
the control switches values. For forward and reversal motion, u = 0, while each type of turn (reversal
to forward and vice versa) corresponds to a different u value. These distinct models are fitted to the
corresponding time series segments based on the annotations. The resulting nonlinear control model
and the parameters found through optimization is fully described in (17).

Both our model and the global nonlinear model with control described above employ non-
linear terms in the dynamics. These are global models with few parameters that capture the most
important qualitative features in the C. elegans data.
A key difference is that the control variable in Morrison et al. takes 3 values, including 0 during
stable states, while dynamic SINDy’s switching variable takes 2 values that influence the fixed points
and are longer-lasting than the transient controls.

A key advantage of our method is that it is entirely data-driven, requiring no behavioral an-
notations or manual fitting. We directly input the low-dimensional neural activity time series,
allowing dynamic SINDy to automatically discover the governing equations. This reduces the effort
required from the data scientist while still capturing the system’s essential dynamics.

3.3.3 COMPARISON WITH A LINEAR MODEL WITH CONTROL

A related study proposed a global linear model with control whereby a linear dynamical system is
actuated by temporally sparse control signals (3). Denoting xj = x(tj), neural activity across neurons
at time tj , and X a matrix of neuronal data at different snapshots in time, X = [x1, ..., xm], dynamic
mode decomposition (DMD) provides a linear model for the dynamics of the state space:

X′ = AX (14)

where X′ = [x2, x3, ...xm+1] is offset by one time step compared to X. Since a linear model alone
cannot capture the neural activity data, DMD with control (DMDc, (12)) is employed to distinguish
between the underlying dynamics and control signals U = [u1,u2, . . .um], where uj = u(tj) are
actuation signals at a snapshot in time. DMDc regresses to the linear control system:

X′ = AX + BU (15)

The control signal can either be fixed using manually annotated behavioral onsets in a supervised
setting or learned jointly with A and B (Algorithm 1, (3)). To avoid trivial solutions, the control
signals are constrained to be sparse, meaning transitions between states should be infrequent. The
following loss function, incorporating an l0 regularization, is minimized using the sequential least
squares thresholding algorithm:

loss = min
A,B,U

= ||AX + BU− X′||2 + λ||U||0 (16)

If control signals are internally generated, they are either random or encoded within the network.
Sparse variable selection and time-delay embeddings test the influence of present and past data to
determine which neurons predict the controls:

uk = K1xk + K2xk−1 + . . . (17)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Key findings from this study include that the unsupervised algorithm produces control signals
somewhat correlating with manually annotated behavioral onsets, though it fails to capture forward
motion onsets. This suggests that neurons involved in forward motion 1 require non-trivial
nonlinearities throughout the time series for full reconstruction, not just control signals at the onset.
Reversal neurons are well-modeled by the supervised control signals, implying fewer required
nonlinearities other than the transition signal itself. Turns are also largely captured by the neuronal
activity in specific cells, although there is much more variability.

The global linear framework, with internally generated control signals, partially explains
neuronal activity but produces a weak qualitative and quantitative match with the data. For instance,
the correlation between real neuronal activity and the model is at or only slightly above 0.5, even
for neurons not implicated in forward motion, that the model supposedly is successful in capturing.
Incorporating manual annotations significantly improves the model’s accuracy, but it shifts the
approach from data-driven to supervised.

The inability to capture forward motion and the ineffectiveness of forward control signals
demonstrate that nonlinearities are necessary for many interactions in the system. A linear model with
control can produce only one fixed point, with all other states simply being longer-lived, conflicting
with empirical evidence that both forward and reversal behaviors in C. elegans are stable states (3).
Empirical studies have instead shown that multiple behavioral states appear to be stable (18).

These results support our approach using dynamic SINDy, which automatically identifies
nonlinear systems with multiple fixed points, without requiring manual annotations. Dynamic SINDy
discovers a dynamical system with switching signals as opposed to controls, while incorporating
nonlinearities that could be critical in capturing complex neural dynamics. Furthermore, our
framework, as described in Sec. 4.4, could discover how transition signals depend on the data to
create a fully closed-loop feedback system. Future work should confirm that our low-dimensional
model can explain neural activity according to cell class.

4 OTHER METHODS FOR SYSTEM IDENTIFICATION OF NON-AUTONOMOUS
DYNAMIC SYSTEMS

4.1 SWITCHING LINEAR DYNAMICAL SYSTEM (SLDS)

The generative model for switching linear dynamical systems (SLDS) is as follows: for each time
t = 1, 2, ..., T , there is a discrete latent state zt ∈ {1, 2, ...,K} that follows Markov dynamics:

zt+1|zt, {πk}Kk=1 ∼ πzt ,

where {πk}Kk=1 is the Markov transition matrix and πk ∈ [0, 1]K is the k-th matrix row. In addition
to zt, there is a continuous latent state xt ∈ RM following linear dynamics that depend on zt:

xt+1 = Azt+1
xt + bzt+1

+ vt, vt ∼ N(0, Qzt) (18)

where Azt , Qzt are matrices and bzt is a vector depending on the latent state zk ∈ 1, ...,K. In
addition, we have access to observables yt, generated from the continuous latent state xt:

yt = Cxt + d+ wt, wt ∼ N(0, S) (19)

where C, S, d are shared matrices and a vector across different discrete states zt. We denote the
complete set of parameters as θ = {πk, Ak, Qk, bk, C, S, d|k = 1, ...,K} and learn SLDS using
Bayesian inference and a set of convenient priors as detailed in (28).

An extension of SLDS – rsLDS – allows the discrete switches to depend on the continuous
latent state and exogeneous inputs through a logistic regression (28). Specifically, when a discrete
switch occurs whenever a continuous state enters a particular region of state space, SLDS is unable

1This comparison between model and data at the single neuron level is only possible due to identification of
neurons with stereotyped identities, as described in (24)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

to learn this dependence, while rSLDS designed to address this state dependence. An important
contribution of (28) is an inference algorithm leveraging Polya-gamma auxiliary variable methods to
make inference fast, scalable, and, easy. We make use of this algorithm through the open-source
rSLDS libraries (26).

4.1.1 TRAINING

To train the SLDS/rSLDS models, we first select the number of latent states in advance. For
switch-like underlying coefficients, we choose two states to maximize SLDS’s ability to identify the
switching dynamics. We then perform principal component analysis (PCA) on the data, followed
by fitting a simpler autoregressive hidden Markov model (AR-HMM), which lacks continuous
latent states. The discrete latent variables z inferred from the AR-HMM, along with the data
projected onto a small number of principal components, are used to initialize the SLDS/rSLDS
algorithms. The SLDS/rSLDS training algorithms are implemented from the following github
repository: https://github.com/slinderman/recurrent-slds.

4.2 A METHOD BASED ON GROUP SPARSITY

We focus on two studies (29; 8) that address system identification in non-autonomous systems. Both
studies propose a method for identifying ODEs with time-varying SINDy coefficients by dividing
the trajectory into smaller time windows and applying SINDy to each segment while maintaining
the same sparsity pattern across all segments. In (29), this sparsity pattern is enforced using group
sparsity regularization, while (8) introduces a novel algorithm based on sequential thresholding least
squares (STLQ) from the original SINDy paper (30). This STLQ adaptation averages the SINDy
coefficients across time windows and compares the average to a threshold, setting coefficients below
this threshold to zero.

The group sparse penalized method for model selection and parameter estimation is used
with datasets of multiple trajectories that share the same physical laws, but differ in bifurcation
parameters (8). This framework is subsequently adapted to switching systems, whereby in a Lorenz
system, the parameter α changes from −1 to 6.66 at some unknown time. The framework matches
our problem, therefore we adapt the algorithm proposed in this analysis to the non-autonomous
dynamical systems we study (Sec. 3.3).

Adapting the notation in (8) to our own, we have a total of M time windows that partition
the trajectory, and we denote time windows by i. Data points from specific time windows are indexed
by superscript i, while different variables of the system are denoted by subscript j, j = 1, ..., n. For
instance, in the Lorenz system variables x, y, z correspond to xj , j = 1, 2, 3, where xi

j corresponds
to variable xj within time window i. We can then define variable Ξj in terms of ξij which are SINDy
coefficients corresponding to variable j within time window i:

Ξj =

 | | |
ξ1j ξ2j ... ξMj
| | |


Next we can define the data matrix X(i), the velocity matrix Ẋ(i), and the dictionary matrix Θ(i) as:

Xi =

 | | |
xi
1 xi

2 ... xi
n

| | |

 =.


x1(t1;λ

(i)) x2(t1;λ
(i)) ... xn(t1;λ

(i))
x1(t2;λ

(i)) x2(t2;λ
(i)) ... xn(t2;λ

(i))
...

x1(tli ;λ
(i)) x2(tli ;λ

(i)) ... xn(tli ;λ
(i))



Ẋi =

 | | |
ẋi
1 ẋi

2 ... ẋi
n

| | |

 =.


ẋ1(t1;λ

(i)) ẋ2(t1;λ
(i)) ... ẋn(t1;λ

(i))
ẋ1(t2;λ

(i)) ẋ2(t2;λ
(i)) ... ẋn(t2;λ

(i))
...

ẋ1(tli ;λ
(i)) ẋ2(tli ;λ

(i)) ... ẋn(tli ;λ
(i))


and

12

https://github.com/slinderman/recurrent-slds

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Θi =
[
1li,1 Xi (Xi)2 (Xi)3 ...

]
Using this notation, the optimization problem can be rewritten as a least-square fitting :

min
Ξj

n∑
i=1

||Θiξij − Ẋi
j ||22 (20)

for each j = 1, ..., n.

To help prevent overfitting, we add regularization to this cost function, by including a penalty on the
number of active candidate functions. The main assumption of this method is that coefficients ξi have
the same support set (in j) for each i, but can differ in value. Thus we can group each row j together
to be either zero or nonzero, therefore the number of active (nonzero) rows in Ξj is sparse. The cost
function now implements the following group-sparse optimization problem:

min
Ξj

m∑
i=1

||Θiξij − Ẋi
j ||22 + λ||Ξj ||2,0 (21)

where the l2,0 penalty is defined as:

||A||2,0 = #{k : (

m∑
l=1

|akl|2)1/2 ̸= 0} (22)

for any matrix A = [ak,l]. Although the problem is non-convex, the authors in (8) propose to solve it
numerically using an iterative hard thresholding algorithm, the group hard-iterative thresholding
algorithm for dynamical systems:

Group Hard-Iterative Thresholding Algorithm for Dynamical Systems:
1: Given: initialization matrix Ξ(0), tol and parameters γ.
2:
3: while ||Ξ(k+1) − Ξ(k)|| > tol do
4:
5: for i= 1 to m do
6:
7: (ξi)(k+1) = (ξi)(k) − (Θi)T

(
Θi(ξi)(k) − Ξi

)
8:
9: end for

10:
11: S(k+1) = supp(H√

γ [ξ
1, ξ2, ..., ξm])

12:
13: for i= 1 to m do
14:
15: (ξi)(k+1) = argminξi ||Θiξi − Ẋi||22 s.t. supp(ξi) ⊂ Sk+1

16:
17: end for
18:
19: end while
20:

where supp(x) is the support set of x, i.e. the indices of x that correspond to the nonzero values.

While we implement this algorithm and test it on the data, we have found, surprisingly,
that a simpler algorithm is more effective in many cases:

Simple sequential thresholding algorithm:
Solve ΘiΞi = Ẋi for each time window i and trajectory X and stack these least squares results in
a matrix Ξ̃(0) to be used as initial condition

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Choose threshold
for j = 1 to 100 do %100 iterations

%average over time windows s and compare to threshold:
smallinds← {k1, k2 | < |Ξ̃(j−1)[k1, k2, s]| >s< threshold}
biginds← {k1, k2 | > |Ξ̃(j−1)[k1, k2, s]| >s> threshold}
for i = 1 to m do

Solve for Ξi: Θi[biginds] · (Ξi[biginds])(j) = Ẋi

(Ξi[smallinds])(j) = 0 %coefficients are 0 all across time windows i
end for
Ξ̃(j) = [(Ξ1)(j), ..., (Ξm)(j)]

end for

Comments starting with “%” are provided throughout the code to clarify its meaning. We use this
algorithm throughout to showcase our results using the group sparsity method.

For training, we have varied the total time for the trajectories, the number of batches used,
the time window, as well as the precise algorithm used. Throughout these experiments we have found
that the algorithm was highly sensitive to whether the data was normalized or not, specifically we
have found that not normalizing the data yielded superior results.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

REFERENCES

[1] Goyal A, Ke NR Sordoni A, Côté MA, and Bengio Y. Z-forcing: Training stochastic recurrent
networks. dvances in Neural Information Processing Systems (NeurIPS). Long Beach, CA,
2017.

[2] Arous BJ, Laffont S, and Chatenay D. Molecular and sensory basis of a food related two-state
behavior in c. elegans. PLoS One, 4(10):e7584, 2009.

[3] Fieseler C, Kunert-Graf J, and Kutz JN. The control structure of the nematode caenorhabditis
elegans: Neuro-sensory integration and proprioceptive feedback. J. Biomech., 74:1–8, 2018.

[4] Louizos C, Welling M, and Kingma DP. Learning sparse neural networks through l0 regulariza-
tion.

[5] Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational
auto-encoder for multivariate time series generation, 2021.

[6] Rezende DJ, Mohamed S, and Wierstra D. Stochastic backpropagation and approximate
inference in deep generative models. International Conference on Machine Learning, 2014.

[7] Paquet U Fraccaro M, Kamronn S and Winther O. A disentangled recognition and nonlinear
dynamics model for unsupervised learning. Advances in Neural Information Processing Systems
(NeurIPS). Long Beach, CA, 2017.

[8] Schaeffer H, Tran G, and Ward R. Learning dynamical systems and bifurcation via group
sparsity, 2013.

[9] Bayer J and Osendorfer C. Learning stochastic recurrent networks. 2014.

[10] Chung J, Kastner K, Goel K Dinh L, Courville A, and Bengio Y. A recurrent latent variable
model for sequential data. Advances in Neural Information Processing Systems (NeurIPS).
Montréal, Canada, 2015.

[11] Yoon J, Jarrett D, and van der Schaar M. Time-series generative adversarial networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[12] Proctor JL, Brunton SL, and Kutz JN. Dynamic mode decomposition with control. SIAM J.
Appl. Dyn. Syst., S 15:142–161, 2016.

[13] Girin L, Leglaive S, Bie X, Diard J, Hueber T, and Alameda-Pineda X. Dynamical Variational
Autoencoders: A Comprehensive Review. 2021.

[14] Jiang LP and Rao RPN. Dynamic predictive coding: A model of hierarchical sequence learning
and prediction in the neocortex. PLoS Comput Biology;20(2):e1011801, 2024.

[15] Fraccaro M, Sønderby SK, Paquet U, and Winther. Sequential neural models with stochastic
layers. Advances in Neural Information Processing Systems (NeurIPS). Barcelona, Spain, 2016.

[16] Jacobs M, Brunton BW, Brunton SL, Kutz JN, and Raut RV. Hypersindy: Deep generative
modeling of nonlinear stochastic governing equations, 2023.

[17] Morrison M, Fieseler C, and Kutz JN. Nonlinear control in the nematode c. elegans. Frontiers
in Computational Neuroscience, 14, 2021.

[18] Morrison M, Fieseler C, and Kutz JN. Nonlinear control in the nematode c. elegans. Frontiers
in Computational Neuroscience, 2021.

[19] Kingma PD and Welling M. Auto-encoding variational bayes, 2013.

[20] Kingma PD and Welling M. An introduction to variational autoencoders. Foundations and
Trends in Machine Learning: Vol. 12: No. 4, pp 307-392, 2019.

[21] Purnick PEM and Weiss R. The second wave of synthetic biology: from modules to systems.
Nat. Rev. Mol. Cell Biol., 10:410–422, 2009.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

[22] Krishnan R, Shalit U, and Sontag D. Deep kalman filters. 2015.

[23] Krishnan R, Shalit U, and Sontag D. AAAI Conference on Artificial Intelligence, San Francisco,
CA, 2017.

[24] Kato S, Kaplan H. S., Schrödel T, Skora S, Lindsay TH, Yemini E, Lockery S, and Zimmer M.
Global brain dynamics embed the motor command sequence of caenorhabditis elegans. Cell,
163(3):656–669, 2015.

[25] Leglaive S, Girin L, and Horaud R. “a variance modeling framework based on variational
autoencoders for speech enhancement. IEEE International Workshop on Machine Learning for
Signal Processing (MLSP), Aalborg, Denmark, 2018.

[26] Linderman S. recurrent-slds. https://github.com/slinderman/
recurrent-slds, 2016.

[27] Linderman S., Nichols A., Blei D., Zimmer M, and Paninski L. Hierarchical recurrent state
space models reveal discrete and continuous dynamics of neural activity in c. elegans, 2019.

[28] Linderman S, Johnson M, Miller A, Adams R, Blei D, and Paninski L. Bayesian learning and
inference in recurrent switching linear dynamical systems. In Proc. of the 20th Int. Conf. on
Artificial Intelligence and Statistics, vol. 54 (eds A Singh, J Zhu), Proc. of Machine Learning
Research, pp. 914–922. Fort Lauderdale, FL: JLMR: WCP., 2017.

[29] Rudy SH, Brunton SL, Proctor JL, and Kutz JN. Data-driven discovery of partial differential
equations. Sci. Adv. 3, e1602614., 2017.

[30] Brunton SL, Proctor JL, and Kutz JN. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences
(PNAS), 2016.

[31] Flavell SW, Pokala N, Macosko EZ, DR Albrecht, Larsch J, and Bargmann CI. Serotonin
and the neuropeptide pdf initiate and extend opposing behavioral states in c. elegans. Cell,
154:1023–1035, 2013.

[32] Gallagher T, Bjorness T, Greene R, You Y-J, and Avery L. The geometry of locomotive
behavioral states in c. elegans. PLoS ONE, 8:e59865, 2013.

[33] Wakabayashi T, Kitagawa I, and Shingai R. Neurons regulating the duration of forward
locomotion in caenorhabditis elegans. Neurosci. Res., 50:103–111, 2004.

[34] Kepler TB and Elston TC. Stochasticity in transcriptional regulation: origins, consequences,
and mathematical representations. Biophys. J., 81:3116–3136, 2001.

[35] Gardner TS, Cantor CR, and Collins JJ. Construction of a genetic toggle switch in escherichia
coli. Nature, 403:339–342, 2000.

[36] Roberts WM, Augustine SB, Lawton KJ, Lindsay TH, Thiele TR, Izquierdo EJ, Faumont S,
Lindsay RA, Britton MC, Pokala N, Bargmann CI, and Lockery SR. A stochastic neuronal
model predicts random search behaviors at multiple spatial scales in c. elegans. eLife, 5:e12572,
2016.

[37] Li Y and Mandt S. Disentangled sequential autoencoder. International Conference on Machine
Learning (ICML). Stockholm, Sweden, 2018.

16

https://github.com/slinderman/recurrent-slds
https://github.com/slinderman/recurrent-slds

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Supplementary Figures

timeVAE

dynamic
HyperSINDy

zEncoder Decoder XX

hyper
network||X - X||2

A

B

Figure 1: (A) Schematic of timeVAE architecture from (5); (B) Schematic of dynamic HyperSINDy
architecture described in SM Sec. 1.2.2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

(a) switch signal 1 (b) 2 sinusoids (c) Fourier series

Set of synthetic datasets used to test dynamic SINDy
 (coe�cient time series and trajectory)

Figure 2: Time-varying coefficients (above) and corresponding dynamics (below) for the non-
autonomous harmonic oscillator of Eq. (3) (main text). Complementary to Figure 1A (main text)

(a) sinusoid A(t)

dynamic HyperSINDy: non-autonomous harmonic oscillators
A(t), B(t) sinusoids

(b) sinusoid B(t) (c) reconstruction

Figure 3: Data-driven discovery of sinusoid SINDy coefficients (a and b)and trajectory reconstruction
(c) of a non-autonomous harmonic oscillator with dynamic HyperSINDy.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

dynamic HyperSINDy: non-autonomous harmonic oscillators
A(t), B(t) sigmoid and switch signals

(a) sigmoid A(t) (b) reconstruction
 for sigmoid A(t)

(c) switch signal A(t) (d) reconstruction
for switch signal A(t)

Figure 4: Data-driven discovery of sigmoid and switch signal coefficients (a and c) and the corre-
sponding trajectory reconstruction (b and d) of a non-autonomous harmonic oscillator with dynamic
HyperSINDy.

dynamic HyperSINDy: Lorenz dynamical system
σ(t) sigmoid and sinusoid

(a) sigmoid σ(t) (b) constant β(t) (c) constant ρ(t)

(d) reconstruction for
 sigmoid σ(t)

(e) sinusoid σ(t) (e) constant ρ(t)

Figure 5: Data-driven discovery of sigmoid (a), constant (b, c and e) and sinusoid (e) SINDy
coefficients and trajectory reconstruction (d) of the Lorenz dynamics with dynamic HyperSINDy.
Time series of coefficients that correspond to constants in the real dynamics sometimes inherit
frequency content from the dynamics, as in (e).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

 Reconstruction of X trajectory
.

(a) sigmoid
σ = 0.01

(b) switch signal 1,
σ = 0.01

(c) Fourier series 1,
σ = 1.0

(d) Fourier series 2,
σ = 0.1

Figure 6: Trajectory reconstructions with timeVAE for a non-autonomous harmonic oscillator with
different coefficients (sigmoid, switch signal, finite Fourier series) and different levels of noise in the
coefficients (0.01, 0.1, 1).

20

	Methods
	Variational Autoencoders
	Dynamic VAEs
	timeVAE
	dynamic HyperSINDy

	Training dynamic SINDy with timeVAE: methodology and hyperparameters
	Non-autonomous harmonic oscillators
	Lorenz dynamics
	Lotka Volterra

	Latent variable discovery
	Non-autonomous harmonic oscillator

	Dynamic SINDy for system identification of neuronal dynamics in the nematode C. elegans
	Results
	Training dynamic SINDy on C. elegans data
	Post-processing the switching signal

	Background: related studies and comparisons to our model
	Comparison with state space models
	Comparison with a nonlinear global model with control
	Comparison with a linear model with control

	Other methods for system identification of non-autonomous dynamic systems
	Switching Linear Dynamical System (SLDS)
	Training

	A method based on group sparsity

