
Under review as a conference paper at ICLR 2024

A Proofs

A.1 Proof of the Lemma 2.1

Lemma 2.1 (Aposteriori variance of SGD). Let X ∈ RB×N and Y ∈ RB×M be the input to
the linear layer in the forward pass and the input to it in the backward pass (B here is the
batch size). Then, we can estimate the variance of the noise induced by a random selection
of the samples as

D2
SGD(X, Y ) = B

B − 1

B∑
k=1
∥xk∥2∥yk∥2 − ∥X

⊤Y ∥2
F

B − 1 , (9)

where xk = X⊤ek, yk = Y ⊤ek, k = 1, . . . , B, i.e., xk and yk are the columns of X⊤ and Y ⊤,
respectively.

Proof. Unbiased estimate for the stochastic gradient is

∂L
∂w

= 1
B

B∑
k=1

Bxky⊤
k , (17)

which can be seen as an empirical mean of a matrix random variable
Z = Bxy⊤, (18)

with the following average value
Z = X⊤Y. (19)

In order to estimate the variance of the random variable Z, we use the empirical variance
estimator

D2
Z(X, Y ) = ∥Z − Z∥2

F ≈ E∥Z − EZ∥2
F . (20)

The variance of the empirical mean is connected to it as

D2
SGD(X, Y ) = 1

B − 1D2
Z(X, Y ). (21)

The unbiased estimator of the variance is then evaluated as

D2
SGD(X, Y ) = 1

B(B − 1)

B∑
k=1

∥∥∥Bxky⊤
k − Z

∥∥∥2

F
.

The square of Frobenius norm can be rewritten with a subsequent summation over k

D2
SGD(X, Y ) = B

B − 1

B∑
k=1
∥xky⊤

k ∥2
F + 1

B − 1∥Z∥
2
F −

2
B − 1

〈 B∑
k=1

xky⊤
k , Z

〉
F

, (22)

where ⟨·, ·⟩F is the Frobenius scalar product and〈 B∑
k=1

xky⊤
k , Z

〉
F

= ⟨Z, Z⟩F = ∥Z∥2
F = ∥X⊤Y ∥2

F . (23)

Finally, applying some minor substitutions we get equation equation 9 and finish the proof.

A.2 Proof of the Lemma 2.2

Lemma 2.2 (Apriori variance of RMM). Let X ∈ RB×N and Y ∈ RB×M , then the variance
of a randomized matrix multiplication through a matrix S ∈ RB×Bproj with i.i.d. elements
following the normal distribution N (0, B−0.5

proj ) defined as

D2(X, Y ) = ES ∥X⊤SS⊤Y −X⊤Y ∥2
F (10)

can be evaluated as follows

D2
RMM(X, Y ) = ∥X∥

2
F ∥Y ∥2

F − ∥X⊤Y ∥2
F

Bproj
. (11)

12



Under review as a conference paper at ICLR 2024

Proof. So, we are interested in the deviation of the randomly sampled observations X⊤SS⊤Y :
D2(X, Y ) = ES∥X⊤SS⊤Y −X⊤Y ∥2

F . (24)
The square Frobenius norm can actually be rewritten with a help of a trace of a matrix:

D2(X, Y ) = ES

[
tr
(
(X⊤SS⊤Y −X⊤Y )(X⊤SS⊤Y −X⊤Y )⊤)] . (25)

Due to linearity of the trace we obtain
D2(X, Y ) = ES

[
tr
(
X⊤SS⊤Y Y ⊤SS⊤X

)]
− tr

(
X⊤Y Y ⊤X

)
. (26)

The trace is invariant under a certain shift of multipliers:
tr
(
X⊤SS⊤Y Y ⊤SS⊤X

)
= tr

(
S⊤XX⊤SS⊤Y Y ⊤S

)
. (27)

Let assume some positive values a and b such that 4ab = 1 and introduce the following
symmetric matrices:

A = aXX⊤ + bY Y ⊤, B = aXX⊤ − bY Y ⊤. (28)
Hence, we produce the following substitution:
tr
(
S⊤XX⊤SS⊤Y Y ⊤S

)
= tr

(
S⊤ASS⊤A⊤S

)
−tr

(
S⊤BSS⊤B⊤S

)
= ∥S⊤AS∥2

F−∥S⊤BS∥2
F .

(29)
Similar steps can be applied to the other trace in equation equation 26:

tr
(
X⊤Y Y ⊤X

)
= tr

(
XX⊤Y Y ⊤) = tr

(
AA⊤)− tr

(
BB⊤) = ∥A∥2

F − ∥B∥2
F . (30)

It is now possible to simplify the square deviation as
D2(X, Y ) =

(
ES∥ST AS∥2

F − ∥A∥2
F

)
−
(
ES∥ST BS∥2

F − ∥B∥2
F

)
. (31)

Since the matrix A is symmetric, it is diagonalizeable:
A = Q⊤ΛQ, (32)

with an orthogonal matrix Q ∈ RB×B and a diagonal matrix Λ ∈ RBproj×Bproj . While S
consists of i.i.d. random values following the normal distribution N (0, B−0.5

proj ), the same is
true for a matrix C = QS ∈ RB×Bproj , and therefore

ES∥ST AS∥2
F = EC∥CT ΛC∥2

F . (33)
Let us estimate the latter value:

EC∥CT ΛC∥2
F =

Bproj∑
i=1

Bproj∑
j=1

EC

(
B∑

l=1
λlCliClj

)2

. (34)

In the case i ̸= j:

EC

(
B∑

l=1
λlCliClj

)2

=
B∑

l=1

B∑
p=1

λlλpEC(CliCljCpiCpj) =
B∑

l=1
λ2

l E(C2
li)E(C2

lj) = B−2
proj tr(A2).

(35)
In the case i = j:

EC

(
B∑

l=1
λlCliClj

)2

=
B∑

l=1

B∑
p=1

λlλpEC(C2
liC

2
pi) =

(
B∑

l=1
λlE(C2

li)
)2

= B−2
proj (tr(A))2. (36)

Accumulating all possible values i = 1, . . . , Bproj and j = 1, . . . , Bproj we obtain the following
result:

ES∥ST AS∥2
F =

(
1−B−1

proj

)
tr(A2) + B−1

proj(tr(A))2 (37)
Subtracting the Frobenius norm of A we get

ES∥ST AS∥2
F − ∥A∥2

F = B−1
proj

(
(tr(A))2 − tr(A2)

)
(38)

Coming back to the square of the deviation we obtain:
D2(X, Y ) = B−1

proj

[
tr(A−B)tr(A + B)− tr((A−B)(A + B))

]
. (39)

The first summand is the following:
tr(A−B)tr(A + B) = 4ab tr(XX⊤)tr(Y Y ⊤) = ∥X∥2

F ∥Y ∥2
F . (40)

The second summand is the following:
tr((A−B)(A + B)) = 4ab tr(XX⊤Y Y ⊤) = tr(X⊤Y Y ⊤X) = ∥X⊤Y ∥2

F . (41)
Substituting equations equation 40 and equation 41 into equation equation 39 we finish the
proof.

13



Under review as a conference paper at ICLR 2024

A.3 Proof of the Theorem 2.3

Theorem 2.3 (Upper bound of variance). In the conditions of Lemma 2.1 and Lemma 2.2
the in-sample variance DSGD and the variance DRMM induced by a randomized subsampling
are tied with the following inequality

Bproj

B − 1
D2

RMM(X, Y )
D2

SGD(X, Y ) ≤
α + 1

α
, (12)

where
α = ∥X⊤Y ∥2

F

∥X∥2
F ∥Y ∥2

F

∈ [0, 1]. (13)

Proof. Let us introduce the following correlation ratio:

α = ∥X⊤Y ∥2
F

∥X∥2
F ∥Y ∥2

F

∈ [0, 1]. (42)

Now let us evaluate the following difference:

BprojD2
RMM(X, Y )− (B − 1)α + 1

α
D2

SGD(X, Y ) =∥X∥2
F ∥Y ∥2

F − ∥X⊤Y ∥2
F −B

α + 1
α

B∑
i=1
∥xi∥2∥yi∥2

(43)

+ α + 1
α
∥X⊤Y ∥2

F . (44)

It is clearly reduced to the following statement:

BprojD2
RMM(X, Y )− (B − 1)α + 1

α
D2

SGD(X, Y ) = −B
α + 1

α

B∑
i=1
∥xi∥2∥yi∥2 ≤ 0. (45)

So we finish proving the inequality.

B Details of Experiments

In this section we presents more detailed experimentation results. RoBERTa model was
fine-tuned with PyTorch Paszke et al. (2019) and HuggingFace’s Transformers Wolf et al.
(2020). All hyperparameters and experimental settings in fine-tuning on GLUE are taked
from Fairseq Ott et al. (2019). The only difference is that we use batch size 16 instead of
32 for QNLI task since peak memory usage exceeds 16 GiB in training time. We assume
Gaussian randomized matmul whereever the opposite is not indicated.

B.1 Variance Estimation

We train RoBERTa model on GLUE benchmark. We use a dense layer in output of
transformer block #7 for all experiments related to empirical variance estimation. Auxiliary
values tracked in fine-tuning on GLUE are shown on Figure 5.

B.2 Learning Curves

See Figure 6 for loss curves on training set and evaluation set.

B.3 RMM on Graph Neural Networks in Comparison with EXACT

In this section we compare RMM on non-textual domain (graph neural networks) versus
EXACT (Liu et al., 2021) according to experimental protocols from (Liu et al., 2021)
(see Table 5 and Figure 7).

14



Under review as a conference paper at ICLR 2024

0 2 4 6 8 10
Epoch

2

3

4

5
C

or
re

la
tio

n,
α

×10−4

0 2 4 6 8 10
Epoch

0

2

4

Va
ria

tio
n

ra
tio

×103

Variance ratio
Upper bound

Figure 5: Evolution of correlation coefficient α and variances equation 9 and equation 11
during fine-tuning on CoLA for batch size B = 64 and compression rate ρ = 0.5.

Table 4: Target metric averaged on 3 runs on downstream tasks of GLUE dataset. The
top line in the table means that no compression techique was used.

Rate CoLA MRPC QNLI RTE
— 60.51 ± 1.31 89.30 ± 0.93 92.60 ± 0.13 78.52 ± 2.29
90 59.75 ± 1.14 88.64 ± 0.37 92.75 ± 0.04 77.50 ± 1.04
50 59.45 ± 1.23 88.73 ± 0.49 92.56 ± 0.22 77.18 ± 1.06
20 57.46 ± 1.21 87.99 ± 0.49 92.62 ± 0.17 76.26 ± 1.99
10 57.53 ± 1.17 88.30 ± 0.54 92.55 ± 0.13 75.45 ± 1.08

Rate SST2 STS-B WNLI
— 94.09 ± 0.11 90.37 ± 0.18 56.34 ± 0.00
90 94.72 ± 0.28 90.39 ± 0.18 54.93 ± 3.15
50 94.61 ± 0.57 90.32 ± 0.23 56.34 ± 0.00
20 94.43 ± 0.59 90.06 ± 0.13 56.34 ± 0.00
10 94.27 ± 0.50 89.90 ± 0.19 47.89 ± 7.32

2 4 6 8 10

Epoch

0.1

0.2

0.3

0.4

C
ro

ss
-E

nt
ro

py

10%
20%
50%
90%
No RMM

2 4 6 8 10

Epoch

0.20

0.25

0.30

0.35

0.40

0.45 10%
20%
50%
90%
No RMM

Figure 6: Train and test loss averaged accross 3 runs for RoBERTa fine-tuned on QNLI
task from GLUE benchmark.

B.4 Memory Usage

For more extensive exploration of memory usage for various GLUE tasks see Figure 8.

15



Under review as a conference paper at ICLR 2024

Table 5: Comparison of EXACT and RMM (ours) on graph neural network GCN2 on
obgn-arxiv dataset. Both methods are applied with the same compression rate ρ = 0.1.
Each experiment is repeated 3 times.

Method Test Accuracy Ratio
Baseline 72.87 ± 0.68 0.0%
EXACT 72.61 ± 0.27 -0.36%
RMM (Gauss) 70.99 ± 0.33 -2.58%
RMM (Rademacher) 71.53 ± 0.13 -1.84%

0 200 400 600 800 1000

Epoch

0.0

0.2

0.4

0.6

A
cc

ur
ac

y

Baseline
EXACT
RMM (Gauss)
RMM (Rademacher)

Figure 7: Test accuracy averaged accross 3 runs for GCN2 graph neural network trained
on obgn-arxiv dataset. Memory saving method EXACT and RMM (ours) are applied
with the same compression rate ρ = 0.1.

C Method Details

C.1 Complexity

C.1.1 Computational Complexity

Let B denote the batch dimension and Nin and Nout be the input and the output sizes of a
linear layer respectively. Also, let the compression rate ρ ∈ (0, 1] and the compressed batch
dimension Bproj = ρB.
According to Alg. 1 the forward pass of a linear layer requires O(BNinNout) operations to
compute the output X̂ and O(BBprojNin) operations to obtain the compressed input Xproj
for the backward pass.
Arithmetical complexity of the baseline backward pass, which is based on the non-compressed
input X, is O(BNinNout) floating point operations. On the other hand, our approach
for the backward pass requires multiplication of the output gradients by a rematerialized
random matrix S and estimation of the gradients with respect to weights resulting in
O(BBprojNout + BprojNinNout) operations. Total asymptotic complexity of a single forward-
backward cycle is O(BNinNout) for the baseline implementation and O(BprojNout(B + Nin))
for our approach.
Assume that N = Nin ∼ Nout then overall complexities become O(BN2) and O(ρBN(B +
N)), respectively. In real world scenarios of large Transformer models with N ≪ B, we
conclude to O(B2N) operations where compression rate is merged into a constant multiplier.
Randomized matmul modification of a linear layer has worse asymptotic in terms of the batch
size but choosing small enough compression rate ρ reduces computational time significantly
and makes our approach practically appealing.

16



Under review as a conference paper at ICLR 2024

2.5

5.0

7.5

10.0

12.5

15.0

M
em

or
y

U
sa

ge
,G

iB

Limit
No RMM
50%
20%
10%

Limit
No RMM
50%
20%
10%

2.5

5.0

7.5

10.0

12.5

15.0

M
em

or
y

U
sa

ge
,G

iB

Limit
No RMM
50%
20%
10%

Limit
No RMM
50%
20%
10%

2.5

5.0

7.5

10.0

12.5

15.0

M
em

or
y

U
sa

ge
,G

iB

Limit
No RMM
50%
20%
10%

Limit
No RMM
50%
20%
10%

0 50 100 150 200 250

Batch Size

2.5

5.0

7.5

10.0

12.5

15.0

M
em

or
y

U
sa

ge
,G

iB

Limit
No RMM
50%
20%
10%

0 50 100 150 200 250

Batch Size

Limit
No RMM
50%
20%
10%

Figure 8: Memory usage during training on GLUE tasks during for epoch with randomized
Gaussian matmul (from left to right and from top to bottom CoLA, MRPC, QQP, SST2,
STSB, WNLI, RTE, and QNLI).

17


